Opened 11 years ago
Closed 11 years ago
#668 closed defect (invalid)
Clarify 2.1.1 vs. 2.2.2 discrepancies in pp -> VV -> VV processes
Reported by: | Juergen Reuter | Owned by: | kilian |
---|---|---|---|
Priority: | P0 | Milestone: | v2.2.3 |
Component: | core | Version: | 2.2.2 |
Severity: | normal | Keywords: | |
Cc: |
Description
Here are Ulrike's files.
Attachments (4)
Change History (16)
Changed 11 years ago by
Attachment: | vbs.v2.1.1.sin added |
---|
comment:1 Changed 11 years ago by
Priority: | P3 → P1 |
---|
JRR has had a first quick look into it. The LHAPDF version (5.8.9 with 2.1.1) and (5.9.1 with 2.2.2) does not seem to play a role, as in both cases cteq6LL = cteq6L1 are used. The positive-sign process does have a not so nice convergence, so it looks that 2.1.1 performs/behaves better. The negative sign-processes seem equally stable.
comment:2 Changed 11 years ago by
Priority: | P1 → P0 |
---|---|
Severity: | normal → major |
comment:3 Changed 11 years ago by
I checked that process now, too. I get for 2.1.1 with LHAPDF 5.8.9
vbslplp: 1.45942727E+01 +- 3.79E-02 fb vbslmlm: 6.71498788E+00 +- 1.87E-02 fb
for 2.2.2 with LHAPDF 5.8.9
vbslplp: 1.1427124E+01 +- 4.74E-02 fb vbslmlm: 4.5575367E+00 +- 2.04E-02 fb
so the discrepancy is there. Looking into more details now.
comment:4 Changed 11 years ago by
I checked the PHS files: as expected, besides white space, line breaks and the MD5 sums (which also depend on this) the files are identical.
comment:5 Changed 11 years ago by
As I thought, there are differences in the weights of the phase space groves, this is version 2.2.2, vbslplp:
############################################################################### | Phase-space chain (grove) weight history: (numbers in %) | chain | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |=============================================================================| 1 | 1 2 4 2 4 2 4 2 2 2 2 2 4 1 2 1 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 1 0 1 4 0 0 1 3 0 3 3 2 3 2 0 3 3 3 2 2 0 1 1 0 2 | 4 8 2 8 1 4 1 0 0 0 0 3 1 7 0 9 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 1 6 0 0 1 2 8 1 0 1 0 4 1 1 10 0 0 1 1 0 1 3 | 5 10 1 15 1 4 1 0 0 0 0 4 1 6 0 9 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 1 1 8 1 0 1 0 6 1 1 11 0 0 0 0 0 2 4 | 6 12 1 17 1 2 1 0 0 0 0 6 1 4 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 8 1 0 1 0 6 1 1 7 0 0 0 0 0 2 5 | 7 14 1 18 1 2 1 0 0 0 0 7 1 5 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 5 1 0 1 0 7 1 1 4 0 0 0 0 0 3 6 | 6 15 1 19 1 1 1 0 0 0 0 6 1 6 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 4 1 0 1 0 8 1 1 3 0 0 0 0 0 4 7 | 6 14 1 22 1 1 1 0 0 0 0 6 1 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 4 1 0 1 0 10 1 1 2 0 0 0 0 0 4 8 | 7 15 1 21 1 1 1 0 0 0 0 6 1 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 4 1 0 1 0 9 1 1 2 0 0 0 0 0 5 9 | 6 14 1 22 1 1 1 0 0 0 0 7 1 6 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 3 1 0 1 0 10 1 1 2 0 0 0 0 0 3 10 | 6 12 1 23 1 1 1 0 0 0 0 9 1 6 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 3 1 0 1 0 11 1 1 2 0 0 0 0 0 2 11 | 6 11 1 23 1 1 1 0 0 0 0 9 1 6 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 3 1 0 1 0 11 1 1 1 0 0 0 0 0 3 12 | 7 9 1 24 1 1 1 0 0 0 0 10 1 7 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 2 1 0 1 0 10 1 1 1 0 0 0 0 0 3 13 | 7 10 1 23 1 1 1 0 0 0 0 10 1 7 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 2 1 0 1 0 10 1 1 1 0 0 0 0 0 3 14 | 7 9 1 23 1 1 1 0 0 0 0 10 1 7 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 1 0 9 1 1 1 0 0 0 0 0 3 15 | 7 9 1 22 1 1 1 0 0 0 0 11 1 8 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 3 16 | 6 9 1 22 1 1 1 0 0 0 0 11 1 8 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 1 0 9 1 1 1 0 0 0 0 0 2 17 | 7 10 1 23 1 1 1 0 0 0 0 12 1 8 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 1 2 1 1 0 1 0 10 1 1 0 0 0 0 0 0 2 18 | 6 10 1 22 1 0 1 0 0 0 0 13 1 9 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 1 1 1 1 0 1 0 9 1 1 1 0 0 0 0 0 2 19 | 6 10 1 22 1 0 1 0 0 0 0 13 1 9 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 2 20 | 7 10 1 20 1 0 1 0 0 0 0 14 1 9 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 1 1 1 1 0 1 0 9 1 1 1 0 0 0 0 0 3 21 | 5 11 1 21 1 0 1 0 0 0 0 14 1 9 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 1 1 1 1 0 1 0 11 1 1 1 0 0 0 0 0 2 22 | 5 11 1 22 1 0 1 0 0 0 0 15 1 9 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 2 23 | 5 10 1 21 1 0 1 0 0 0 0 15 1 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 1 24 | 5 10 1 20 1 0 1 0 0 0 0 16 1 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 2 |-----------------------------------------------------------------------------| 25 | 5 10 1 20 1 0 1 0 0 0 0 16 1 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 2 26 | 5 10 1 20 1 0 1 0 0 0 0 16 1 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 2 27 | 5 10 1 20 1 0 1 0 0 0 0 16 1 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 2 28 | 5 10 1 20 1 0 1 0 0 0 0 16 1 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 2 29 | 5 10 1 20 1 0 1 0 0 0 0 16 1 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 2 30 | 5 10 1 20 1 0 1 0 0 0 0 16 1 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 2 31 | 5 10 1 20 1 0 1 0 0 0 0 16 1 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 2 32 | 5 10 1 20 1 0 1 0 0 0 0 16 1 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 2 33 | 5 10 1 20 1 0 1 0 0 0 0 16 1 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 2 34 | 5 10 1 20 1 0 1 0 0 0 0 16 1 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 2 35 | 5 10 1 20 1 0 1 0 0 0 0 16 1 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 2 36 | 5 10 1 20 1 0 1 0 0 0 0 16 1 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 2 37 | 5 10 1 20 1 0 1 0 0 0 0 16 1 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 2 38 | 5 10 1 20 1 0 1 0 0 0 0 16 1 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 2 39 | 5 10 1 20 1 0 1 0 0 0 0 16 1 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 2 40 | 5 10 1 20 1 0 1 0 0 0 0 16 1 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 2 41 | 5 10 1 20 1 0 1 0 0 0 0 16 1 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 2 42 | 5 10 1 20 1 0 1 0 0 0 0 16 1 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 2 43 | 5 10 1 20 1 0 1 0 0 0 0 16 1 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 2 44 | 5 10 1 20 1 0 1 0 0 0 0 16 1 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 1 1 1 1 0 1 0 10 1 1 1 0 0 0 0 0 2 |=============================================================================|
and this is 2.1.1 vbslplp:
############################################################################### | Phase-space grove weight history: (numbers in %) | grove | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |=============================================================================| 1 | 1 2 4 2 4 2 4 2 2 2 2 2 4 1 2 1 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 1 0 1 4 0 0 1 3 0 3 3 2 3 2 0 3 3 3 2 2 0 1 1 0 2 | 1 2 4 2 4 2 4 2 2 2 2 2 4 1 2 1 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 1 0 1 4 0 0 1 3 0 3 3 2 3 2 0 3 3 3 2 2 0 1 1 0 3 | 5 6 1 6 1 4 1 2 0 1 0 5 1 3 0 4 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 19 0 0 1 1 8 1 0 1 0 3 1 1 9 0 0 2 1 0 2 4 | 7 8 1 8 1 4 1 1 0 0 0 5 1 2 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 15 0 0 1 1 7 1 0 1 0 4 1 1 9 0 0 1 0 0 3 5 | 12 9 1 9 1 3 1 0 0 0 0 5 1 1 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 15 1 0 1 2 6 1 0 1 0 3 1 1 8 0 0 1 0 0 2 6 | 11 10 1 12 1 4 1 0 0 0 0 3 1 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 13 1 0 1 2 5 1 0 1 0 4 1 1 7 0 0 1 0 0 2 7 | 10 10 1 13 1 4 1 0 0 0 0 2 1 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 12 1 0 1 2 5 1 0 1 0 4 1 1 7 0 0 1 0 0 2 8 | 8 9 1 14 1 4 1 0 0 0 0 1 1 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 15 1 0 1 3 5 1 0 1 0 4 1 1 6 0 0 0 0 0 2 9 | 8 11 1 16 1 4 1 0 0 0 0 1 1 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 15 1 0 1 2 4 1 0 1 0 4 1 1 6 0 0 0 0 0 1 10 | 8 11 1 16 1 3 1 0 0 0 0 0 1 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 14 1 0 1 3 4 1 0 1 0 5 1 1 6 0 0 0 0 0 1 11 | 7 11 1 16 1 3 1 0 0 0 0 0 1 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 16 1 0 1 2 4 1 0 1 0 5 1 1 5 0 0 0 0 0 2 12 | 7 10 1 17 1 3 1 0 0 0 0 0 1 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 17 1 0 1 2 3 1 0 1 0 4 1 1 5 0 0 0 0 0 2 13 | 7 9 1 19 1 4 1 0 0 0 0 0 1 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 15 1 0 1 2 3 1 0 1 0 4 1 1 5 0 0 0 0 0 2 14 | 6 9 1 19 1 4 1 0 0 0 0 0 1 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 14 1 0 1 2 3 1 0 1 0 4 1 1 5 0 0 0 0 0 2 15 | 5 9 1 20 1 4 1 0 0 0 0 0 1 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 19 1 0 1 1 3 1 0 1 0 4 1 1 4 0 0 0 0 0 2 16 | 6 8 1 22 1 4 1 0 0 0 0 0 1 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 17 1 0 1 1 3 1 0 1 0 3 1 1 3 0 0 0 0 0 2 17 | 5 8 1 21 1 4 1 0 0 0 0 0 1 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 15 1 0 1 2 2 1 0 1 0 4 1 1 4 0 0 0 0 0 2 18 | 5 8 1 20 1 3 1 0 0 0 0 0 1 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 17 0 0 1 2 2 1 0 1 0 3 1 1 4 0 0 0 0 0 2 19 | 5 8 1 20 1 3 1 0 0 0 0 0 1 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 20 0 0 1 2 2 1 0 1 0 4 1 1 3 0 0 0 0 0 2 20 | 5 8 1 19 1 2 1 0 0 0 0 0 1 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 21 0 0 1 2 2 1 0 1 0 4 1 1 3 0 0 0 0 0 3 21 | 6 8 1 19 1 2 1 0 0 0 0 0 1 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 23 0 0 1 2 2 1 0 1 0 3 1 1 3 0 0 0 0 0 3 22 | 6 8 1 19 1 1 1 0 0 0 0 0 1 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 22 0 0 1 1 2 1 0 1 0 4 1 1 3 0 0 0 0 0 2 23 | 6 9 1 18 1 1 1 0 0 0 0 0 1 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 20 0 0 1 1 2 1 0 1 0 4 1 1 3 0 0 0 0 0 3 24 | 7 8 1 19 1 1 1 0 0 0 0 0 1 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 21 0 0 1 1 2 1 0 1 0 3 1 1 3 0 0 0 0 0 2 |-----------------------------------------------------------------------------| 25 | 11 10 1 12 1 4 1 0 0 0 0 3 1 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 13 1 0 1 2 5 1 0 1 0 4 1 1 7 0 0 1 0 0 2 26 | 11 10 1 12 1 4 1 0 0 0 0 3 1 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 13 1 0 1 2 5 1 0 1 0 4 1 1 7 0 0 1 0 0 2 27 | 11 10 1 12 1 4 1 0 0 0 0 3 1 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 13 1 0 1 2 5 1 0 1 0 4 1 1 7 0 0 1 0 0 2 28 | 11 10 1 12 1 4 1 0 0 0 0 3 1 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 13 1 0 1 2 5 1 0 1 0 4 1 1 7 0 0 1 0 0 2 29 | 11 10 1 12 1 4 1 0 0 0 0 3 1 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 13 1 0 1 2 5 1 0 1 0 4 1 1 7 0 0 1 0 0 2 30 | 11 10 1 12 1 4 1 0 0 0 0 3 1 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 13 1 0 1 2 5 1 0 1 0 4 1 1 7 0 0 1 0 0 2 31 | 11 10 1 12 1 4 1 0 0 0 0 3 1 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 13 1 0 1 2 5 1 0 1 0 4 1 1 7 0 0 1 0 0 2 32 | 11 10 1 12 1 4 1 0 0 0 0 3 1 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 13 1 0 1 2 5 1 0 1 0 4 1 1 7 0 0 1 0 0 2 33 | 11 10 1 12 1 4 1 0 0 0 0 3 1 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 13 1 0 1 2 5 1 0 1 0 4 1 1 7 0 0 1 0 0 2 34 | 11 10 1 12 1 4 1 0 0 0 0 3 1 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 13 1 0 1 2 5 1 0 1 0 4 1 1 7 0 0 1 0 0 2 35 | 11 10 1 12 1 4 1 0 0 0 0 3 1 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 13 1 0 1 2 5 1 0 1 0 4 1 1 7 0 0 1 0 0 2 36 | 11 10 1 12 1 4 1 0 0 0 0 3 1 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 13 1 0 1 2 5 1 0 1 0 4 1 1 7 0 0 1 0 0 2 37 | 11 10 1 12 1 4 1 0 0 0 0 3 1 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 13 1 0 1 2 5 1 0 1 0 4 1 1 7 0 0 1 0 0 2 38 | 11 10 1 12 1 4 1 0 0 0 0 3 1 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 13 1 0 1 2 5 1 0 1 0 4 1 1 7 0 0 1 0 0 2 39 | 11 10 1 12 1 4 1 0 0 0 0 3 1 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 13 1 0 1 2 5 1 0 1 0 4 1 1 7 0 0 1 0 0 2 40 | 11 10 1 12 1 4 1 0 0 0 0 3 1 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 13 1 0 1 2 5 1 0 1 0 4 1 1 7 0 0 1 0 0 2 41 | 11 10 1 12 1 4 1 0 0 0 0 3 1 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 13 1 0 1 2 5 1 0 1 0 4 1 1 7 0 0 1 0 0 2 42 | 11 10 1 12 1 4 1 0 0 0 0 3 1 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 13 1 0 1 2 5 1 0 1 0 4 1 1 7 0 0 1 0 0 2 43 | 11 10 1 12 1 4 1 0 0 0 0 3 1 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 13 1 0 1 2 5 1 0 1 0 4 1 1 7 0 0 1 0 0 2 44 | 11 10 1 12 1 4 1 0 0 0 0 3 1 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 13 1 0 1 2 5 1 0 1 0 4 1 1 7 0 0 1 0 0 2 |=============================================================================|
comment:7 Changed 11 years ago by
Grove #38 is pp -> WH with H->WW* -> lvjj. Missing in 2.2.2. I thought this special treatment of that process was done. Has it dropped? Groves #12,#14,#16 are multi-peripheral diagrams with either a photon or a Higgs in the t-channel. #48 is VV di-boson production with an additional radiation of a W. Anybody any idea?
comment:8 Changed 11 years ago by
So I have run it with a bit more statistics and specified the flags for the integration, i.e.
24:160000"gw", 20:100000""
, which I understand as adapt grids and weights in the first step and use those grids and wheights in the second step without changing them. Whizard 2.1.1 behaves as I would expect it, in the iterations of the first step error and accuracy fluctuate around and in the second step the errors reduces with each iteration
|=============================================================================| | It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] | |=============================================================================| 1 160000 1.1891861E+01 2.40E+00 20.17 80.67* 1.16 2 160000 1.0517448E+01 6.55E-01 6.23 24.92* 1.92 3 160000 1.3387314E+01 4.27E-01 3.19 12.75* 0.99 4 160000 2.7472905E+01 1.26E+01 45.74 182.95 0.13 5 160000 1.3302865E+01 4.15E-01 3.12 12.48* 0.34 6 160000 1.6847888E+01 1.54E+00 9.16 36.65 0.17 7 160000 1.4303879E+01 7.23E-01 5.06 20.23* 0.18 8 160000 1.4486646E+01 4.77E-01 3.29 13.16* 0.34 9 160000 1.4187903E+01 3.22E-01 2.27 9.06* 0.53 10 160000 1.5067145E+01 4.96E-01 3.29 13.17 0.35 11 160000 1.4255463E+01 3.85E-01 2.70 10.80* 0.50 12 160000 1.5404994E+01 6.87E-01 4.46 17.84 0.25 13 160000 1.3887635E+01 5.09E-01 3.67 14.66* 0.26 14 160000 1.5885457E+01 1.35E+00 8.48 33.92 0.13 15 160000 1.3569080E+01 5.81E-01 4.28 17.12* 0.20 16 160000 1.4522410E+01 5.51E-01 3.80 15.18* 0.23 17 160000 1.5019584E+01 5.87E-01 3.91 15.64 0.20 18 160000 1.4505406E+01 4.90E-01 3.38 13.53* 0.25 19 160000 1.4994318E+01 9.69E-01 6.46 25.85 0.18 20 160000 1.4614210E+01 5.41E-01 3.70 14.81* 0.26 21 160000 1.4369553E+01 5.77E-01 4.02 16.06 0.25 22 160000 1.5040803E+01 8.42E-01 5.60 22.40 0.21 23 160000 1.4009136E+01 3.52E-01 2.51 10.05* 0.51 24 160000 1.4596655E+01 4.39E-01 3.01 12.04 0.52 |-----------------------------------------------------------------------------| 24 3840000 1.4168294E+01 1.10E-01 0.77 15.18 0.52 2.63 24 |-----------------------------------------------------------------------------| | Process vbslplp: Using integration grids from iteration #9 | Reading integration grids and results from file 'vbslplp.vgb': 25 100000 1.3849740E+01 3.84E-01 2.77 8.77* 0.62 26 100000 1.3868043E+01 2.57E-01 1.86 5.87* 0.50 27 100000 1.4009834E+01 1.99E-01 1.42 4.50* 0.40 28 100000 1.3900196E+01 1.66E-01 1.19 3.77* 0.37 29 100000 1.3966594E+01 1.44E-01 1.03 3.26* 0.36 30 100000 1.3871864E+01 1.25E-01 0.90 2.86* 0.34 31 100000 1.3887958E+01 1.20E-01 0.87 2.74* 0.33 32 100000 1.3874092E+01 1.13E-01 0.82 2.58* 0.28 33 100000 1.3925290E+01 1.11E-01 0.80 2.52* 0.29 34 100000 1.3910577E+01 1.05E-01 0.75 2.38* 0.26 35 100000 1.3928696E+01 1.03E-01 0.74 2.34* 0.21 36 100000 1.3942285E+01 9.98E-02 0.72 2.26* 0.19 37 100000 1.3963781E+01 9.83E-02 0.70 2.23* 0.18 38 100000 1.3900474E+01 9.15E-02 0.66 2.08* 0.16 39 100000 1.3924293E+01 8.96E-02 0.64 2.03* 0.17 40 100000 1.3932563E+01 8.77E-02 0.63 1.99* 0.16 41 100000 1.3944635E+01 8.74E-02 0.63 1.98* 0.13 42 100000 1.3946071E+01 8.74E-02 0.63 1.98* 0.07 43 100000 1.3950072E+01 8.73E-02 0.63 1.98* 0.06 44 100000 1.3960715E+01 8.62E-02 0.62 1.95* 0.05 |-----------------------------------------------------------------------------| 44 2000000 1.3929746E+01 2.41E-02 0.17 2.45 0.05 0.08 20 |-----------------------------------------------------------------------------| |=============================================================================| 44 2000000 1.3929746E+01 2.41E-02 0.17 2.45 0.05 0.08 20 |=============================================================================|
In Whizard 2.2.0 the first step is the same but the second step looks quite wrong and doesn't seem under control.
|=============================================================================| | It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] | |=============================================================================| 1 159068 2.0804910E+01 5.56E+00 26.72 106.55* 1.26 2 157744 1.2784234E+01 1.45E+00 11.37 45.17* 0.25 3 156388 1.2955367E+01 8.44E-01 6.52 25.78* 0.28 4 155140 3.2965040E+01 1.44E+01 43.66 171.98 0.05 5 154044 1.1893896E+01 2.77E-01 2.33 9.14* 0.50 6 153024 1.2755525E+01 4.33E-01 3.40 13.29 0.36 7 152136 2.5947147E+01 1.24E+01 47.72 186.12 0.05 8 151228 1.2085415E+01 2.09E-01 1.73 6.73* 0.54 9 150416 1.2583647E+01 3.16E-01 2.51 9.74 0.44 10 149640 1.3563774E+01 7.22E-01 5.32 20.59 0.24 11 148968 1.3686272E+01 9.08E-01 6.63 25.60 0.21 12 148424 1.5512446E+01 1.47E+00 9.48 36.52 0.10 13 147928 1.4301676E+01 5.62E-01 3.93 15.12* 0.20 14 147416 1.4217377E+01 5.80E-01 4.08 15.66 0.24 15 146944 1.4128115E+01 4.63E-01 3.28 12.57* 0.27 16 146492 1.5141513E+01 9.26E-01 6.11 23.40 0.15 17 146112 1.4572568E+01 7.37E-01 5.06 19.33* 0.16 18 145744 1.4465130E+01 8.42E-01 5.82 22.22 0.13 19 145396 1.5091374E+01 9.44E-01 6.25 23.84 0.20 20 145104 1.4482308E+01 7.48E-01 5.17 19.69* 0.14 21 144864 1.3328406E+01 3.29E-01 2.47 9.40* 0.28 22 144644 1.5569039E+01 1.81E+00 11.61 44.15 0.11 23 144444 1.3128327E+01 2.60E-01 1.98 7.52* 0.55 24 144228 1.3787222E+01 4.01E-01 2.91 11.06 0.54 |-----------------------------------------------------------------------------| 24 3585536 1.2986676E+01 9.74E-02 0.75 14.20 0.54 3.95 24 |-----------------------------------------------------------------------------| 25 99552 1.3322733E+01 2.47E-01 1.85 5.85* 0.94 26 99552 1.3773137E+01 6.36E-01 4.62 14.57 0.42 27 99552 1.3875115E+01 3.39E-01 2.44 7.71* 0.33 28 99552 1.3992922E+01 4.66E-01 3.33 10.51 0.26 29 99552 1.3850281E+01 4.25E-01 3.07 9.68* 0.22 30 99552 1.4374144E+01 5.72E-01 3.98 12.55 0.20 31 99552 1.3961919E+01 4.54E-01 3.25 10.26* 0.19 32 99552 1.4244927E+01 7.83E-01 5.50 17.35 0.16 33 99552 1.7507386E+01 4.05E+00 23.15 73.05 0.17 34 99552 1.3280116E+01 2.34E-01 1.76 5.56* 0.13 35 99552 1.3608978E+01 4.23E-01 3.11 9.80 0.13 36 99552 1.5929793E+01 2.03E+00 12.74 40.20 0.11 37 99552 1.3332882E+01 2.64E-01 1.98 6.25* 0.09 38 99552 1.3360835E+01 2.47E-01 1.85 5.84* 0.09 39 99552 1.4110141E+01 3.95E-01 2.80 8.82 0.09 40 99552 1.5328715E+01 2.06E+00 13.47 42.50 0.07 41 99552 1.3754286E+01 4.32E-01 3.14 9.92* 0.06 42 99552 1.4339752E+01 1.05E+00 7.32 23.09 0.07 43 99552 2.1474332E+01 8.04E+00 37.46 118.19 0.05 44 99552 1.3651000E+01 5.41E-01 3.97 12.51* 0.03 |-----------------------------------------------------------------------------| 44 1991040 1.3594857E+01 9.19E-02 0.68 9.54 0.03 0.85 20 |=============================================================================|
Note that this 'feature' is already apparent in Ulrikes logs if you look for the convergence of the second step in W2.2.0. With the increased statistics, the missmatch has reduced from 26 % to 2.5 %.
So either the phase space mapping is incomplete, as JR hints at, and the hitting of near-divergencies spoils smooth convergence in Whizard 2.2.0 or the flags are not correctly set and VAMP still adapts the grids?
comment:9 Changed 11 years ago by
I ran the process again with high statistics in whizard-2.2.2 and I got the same results as whizard-2.1.1 :
|=============================================================================| | It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] | |=============================================================================| 1 298908 1.0936528E+01 3.44E+00 31.50 172.20* 0.65 2 297640 1.2286775E+01 3.80E-01 3.09 16.86* 0.38 3 296220 1.4402977E+01 5.64E-01 3.92 21.32 0.40 4 294912 1.4451602E+01 3.10E-01 2.14 11.64* 0.41 5 293532 1.4197785E+01 1.73E-01 1.22 6.59* 0.65 6 292220 1.4823604E+01 1.56E-01 1.05 5.69* 0.78 7 291028 1.4557914E+01 1.26E-01 0.87 4.67* 1.13 8 289852 1.4890761E+01 1.30E-01 0.87 4.69 0.96 9 288812 1.4817479E+01 1.35E-01 0.91 4.88 1.07 10 287800 1.4646721E+01 1.07E-01 0.73 3.92* 1.48 11 286784 1.4912248E+01 1.05E-01 0.71 3.79* 1.85 12 285856 1.4806848E+01 1.02E-01 0.69 3.68* 1.75 13 284972 1.4667024E+01 1.00E-01 0.68 3.64* 1.86 14 284056 1.5089483E+01 1.93E-01 1.28 6.81 0.78 15 283176 1.4693273E+01 3.01E-01 2.05 10.90 0.40 |-----------------------------------------------------------------------------| 15 4355768 1.4712176E+01 3.82E-02 0.26 5.42 0.40 4.66 15 |-----------------------------------------------------------------------------| 16 283176 1.4942487E+01 3.13E-01 2.09 11.14 0.27 17 283176 1.4346429E+01 1.99E-01 1.39 7.38* 0.25 18 283176 1.4286616E+01 1.66E-01 1.16 6.19* 0.25 19 283176 1.5330968E+01 4.31E-01 2.81 14.98 0.21 20 283176 1.4703255E+01 2.34E-01 1.59 8.46* 0.18 21 283176 1.4347073E+01 1.78E-01 1.24 6.61* 0.18 22 283176 1.4572312E+01 3.10E-01 2.13 11.31 0.16 23 283176 1.4957280E+01 3.49E-01 2.33 12.40 0.17 24 283176 1.4386129E+01 1.75E-01 1.22 6.49* 0.16 25 283176 1.5788340E+01 8.00E-01 5.06 26.95 0.14 |-----------------------------------------------------------------------------| 25 2831760 1.4495138E+01 7.46E-02 0.51 8.66 0.14 1.58 10 |=============================================================================|
Here is also the phase space:
############################################################################### | Phase-space chain (grove) weight history: (numbers in %) | chain | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |=============================================================================| 1 | 1 2 4 2 4 2 4 2 2 2 2 2 4 1 2 1 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 1 0 1 4 0 0 1 3 0 3 3 2 3 2 0 3 3 3 2 2 0 1 1 0 2 | 3 8 2 10 0 6 0 0 0 0 0 5 0 6 0 6 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 1 6 4 0 0 3 15 0 0 0 0 4 0 0 10 0 0 1 1 0 1 3 | 4 9 1 11 0 7 0 0 0 0 0 6 0 9 0 7 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 7 1 0 0 3 12 0 0 0 0 3 0 0 9 0 0 1 0 0 2 4 | 4 8 1 9 0 7 0 0 0 0 0 8 0 8 0 5 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 16 1 0 0 2 9 0 0 0 0 3 0 0 7 0 0 2 0 0 2 5 | 4 7 1 8 0 7 0 0 0 0 0 8 0 8 0 5 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 21 1 0 0 2 8 0 0 0 0 2 0 0 6 0 0 2 0 0 1 6 | 4 7 1 8 0 7 0 0 0 0 0 8 0 7 0 4 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 20 1 0 0 2 7 0 0 0 0 2 0 0 5 0 0 3 0 0 2 7 | 4 7 0 8 0 7 0 0 0 0 0 8 0 7 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 21 0 0 0 2 7 0 0 0 0 3 0 0 5 0 0 3 0 0 1 8 | 4 7 0 8 0 8 0 0 0 0 0 8 0 7 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 19 0 0 0 2 7 0 0 0 0 3 0 0 5 0 0 3 0 0 2 9 | 4 7 0 9 0 8 0 0 0 0 0 9 0 7 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 20 0 0 0 2 7 0 0 0 0 3 0 0 5 0 0 4 0 0 1 10 | 4 7 0 9 0 8 0 0 0 0 0 8 0 7 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 21 0 0 0 2 7 0 0 0 0 3 0 0 5 0 0 4 0 0 1 11 | 4 7 0 9 0 8 0 0 0 0 0 9 0 7 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 19 0 0 0 2 7 0 0 0 0 3 0 0 5 0 0 4 0 0 1 12 | 4 7 0 9 0 8 0 0 0 0 0 9 0 6 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 18 0 0 0 2 7 0 0 0 0 3 0 0 5 0 0 4 0 0 1 13 | 4 6 0 9 0 9 0 0 0 0 0 9 0 7 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 17 0 0 0 2 7 0 0 0 0 4 0 0 5 0 0 4 0 0 1 14 | 4 6 0 10 0 9 0 0 0 0 0 9 0 6 0 4 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 18 0 0 0 1 7 0 0 0 0 4 0 0 5 0 0 4 0 0 2 15 | 4 6 0 9 0 9 0 0 0 0 0 9 0 6 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 21 0 0 0 1 7 0 0 0 0 4 0 0 5 0 0 3 0 0 2 |-----------------------------------------------------------------------------| 16 | 4 6 0 9 0 9 0 0 0 0 0 9 0 6 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 21 0 0 0 1 7 0 0 0 0 4 0 0 5 0 0 3 0 0 2 17 | 4 6 0 9 0 9 0 0 0 0 0 9 0 6 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 21 0 0 0 1 7 0 0 0 0 4 0 0 5 0 0 3 0 0 2 18 | 4 6 0 9 0 9 0 0 0 0 0 9 0 6 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 21 0 0 0 1 7 0 0 0 0 4 0 0 5 0 0 3 0 0 2 19 | 4 6 0 9 0 9 0 0 0 0 0 9 0 6 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 21 0 0 0 1 7 0 0 0 0 4 0 0 5 0 0 3 0 0 2 20 | 4 6 0 9 0 9 0 0 0 0 0 9 0 6 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 21 0 0 0 1 7 0 0 0 0 4 0 0 5 0 0 3 0 0 2 21 | 4 6 0 9 0 9 0 0 0 0 0 9 0 6 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 21 0 0 0 1 7 0 0 0 0 4 0 0 5 0 0 3 0 0 2 22 | 4 6 0 9 0 9 0 0 0 0 0 9 0 6 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 21 0 0 0 1 7 0 0 0 0 4 0 0 5 0 0 3 0 0 2 23 | 4 6 0 9 0 9 0 0 0 0 0 9 0 6 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 21 0 0 0 1 7 0 0 0 0 4 0 0 5 0 0 3 0 0 2 24 | 4 6 0 9 0 9 0 0 0 0 0 9 0 6 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 21 0 0 0 1 7 0 0 0 0 4 0 0 5 0 0 3 0 0 2 25 | 4 6 0 9 0 9 0 0 0 0 0 9 0 6 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 21 0 0 0 1 7 0 0 0 0 4 0 0 5 0 0 3 0 0 2 |=============================================================================|
Also one run out of two with lower statistics (160 k) provide the correct result. Two runs out of two with high statistics (300k) yield also the whizard-2.1.1 result.
comment:10 Changed 11 years ago by
Hi folks,
now I also had a look, together with Marco. We now have some runs with higher statistics. It is evident that the statistics (calls per iteration) in Ulrike's runs was way too low. One may argue whether the 2.1 results were correct by accident, but in any case I would suggest to run with at least 300k calls per iteration in the adaptation pass, and preferably 500k or 1M in the integration pass. Rather, less iterations since nothing seems to improve after some 10 it.
Note that Whizard's default is already 200k per iteration, and we are in a regime of extreme kinematics (14 TeV LHC) and rather weak cuts. The cross section is dominated by multiperipheral kinematics (in the same-sign lepton case), so there is no obvious phase-space channel for VAMP to select.
JR found that the WH subprocess plays a role. Maybe: the subprocess has a small cross section, and the cuts do not favor it, so we need a high number of calls per iteration in order to even find that channel, or some other subprocess. If the prepared grids miss a subprocess, the integration run will exhibit occasional upward fluctuation, with no chance (given the iteration settings) to re-adapt. This is essentially what we observe.
Finally, the 2.1 results are misleading for a large number of iterations, all errors are grossly underestimated.
In summary: this might be a better approach to get a stable result
iterations = 15:300000:"gw", 3:500000:"" accuracy_goal = 10
or even more calls per iteration, if affordable.
comment:11 Changed 11 years ago by
Severity: | major → normal |
---|
As I was mentioning in the email: we need an answer email to Ulrike and maybe a few lines of explanatory documentation in the WHIZARD manual. WK, can you do this?
comment:12 Changed 11 years ago by
Resolution: | → invalid |
---|---|
Status: | new → closed |
I wrote the mail, finally. Closing as invalid.
It would be great to have a criterion that rejects unstable results, but I fear that this is too difficult to do in general. We have to rely on manually inspecting results.
SINDARIN file for 2.1.1