| 1 | Model definition: |
| 2 | |
| 3 | {{{ |
| 4 | model = SM |
| 5 | }}} |
| 6 | |
| 7 | Neutrino and quark containers: |
| 8 | |
| 9 | {{{ |
| 10 | alias n = n1:n2:n3 |
| 11 | alias N = N1:N2:N3 |
| 12 | alias q = u:d:s:c |
| 13 | alias Q = U:D:S:C |
| 14 | }}} |
| 15 | |
| 16 | The Higgsstrahlung process |
| 17 | |
| 18 | {{{ |
| 19 | process zh = e1, E1 => Z, h |
| 20 | }}} |
| 21 | |
| 22 | The missing-energy channel |
| 23 | |
| 24 | {{{ |
| 25 | process nnbb = e1, E1 => n, N, b, B |
| 26 | }}} |
| 27 | |
| 28 | Other channels (for the 4-jet channels |
| 29 | we combine EW and QCD contributions) |
| 30 | |
| 31 | {{{ |
| 32 | process qqbb = e1, E1 => q, Q, b, B |
| 33 | process bbbb = e1, E1 => b, B, b, B |
| 34 | process eebb = e1, E1 => e1, E1, b, B |
| 35 | process qqtt = e1, E1 => q, Q, e3, E3 |
| 36 | process bbtt = e1, E1 => b, B, e3, E3 |
| 37 | }}} |
| 38 | |
| 39 | Compilation (optional) |
| 40 | |
| 41 | {{{ |
| 42 | compile |
| 43 | }}} |
| 44 | |
| 45 | The final LEP energy: |
| 46 | |
| 47 | {{{ |
| 48 | sqrts = 209 GeV |
| 49 | }}} |
| 50 | |
| 51 | Set the input parameters |
| 52 | |
| 53 | {{{ |
| 54 | mH = 115 GeV |
| 55 | wH = 3.228 MeV |
| 56 | # Running b mass |
| 57 | mb = 2.9 GeV |
| 58 | me = 0 |
| 59 | ms = 0 |
| 60 | mc = 0 |
| 61 | }}} |
| 62 | |
| 63 | |
| 64 | Soft-collinear cuts for the jets |
| 65 | |
| 66 | {{{ |
| 67 | cuts = all M >= 10 GeV [q,Q] |
| 68 | }}} |
| 69 | |
| 70 | Integrate the processes: |
| 71 | |
| 72 | {{{ |
| 73 | integrate (zh) { iterations = 5:5000} |
| 74 | |
| 75 | integrate(nnbb,qqbb,bbbb,eebb, |
| 76 | qqtt,bbtt) { iterations = 12:20000 } |
| 77 | }}} |
| 78 | |
| 79 | Define title etc. as global variables, that will be used by PLOT |
| 80 | |
| 81 | {{{ |
| 82 | $description = |
| 83 | "A WHIZARD 2.0 Example. Using weighted events to speed things up." |
| 84 | $ylabel = "$N_{\textrm{events}}$" |
| 85 | }}} |
| 86 | |
| 87 | Allocate plots |
| 88 | |
| 89 | {{{ |
| 90 | $title = "Invisible mass distribution in $e^+e^- \to \nu\bar\nu b \bar b$" |
| 91 | $xlabel = "$M_{\nu\nu}$/GeV" |
| 92 | histogram m_invisible (70 GeV, 130 GeV, 0.5 GeV) |
| 93 | |
| 94 | $title = "$bb$ invariant mass distribution in $e^+e^- \to \nu\bar\nu b \bar b$" |
| 95 | $xlabel = "$M_{b\bar b}$/GeV" |
| 96 | histogram m_bb (70 GeV, 130 GeV, 0.5 GeV) |
| 97 | }}} |
| 98 | |
| 99 | Define the analysis set-up: |
| 100 | |
| 101 | {{{ |
| 102 | analysis = record m_invisible (eval M [n,N]); |
| 103 | record m_bb (eval M [b,B]) |
| 104 | }}} |
| 105 | |
| 106 | To speed things up we use weighted events for demonstration purposes. |
| 107 | |
| 108 | {{{ |
| 109 | ?unweighted = false |
| 110 | }}} |
| 111 | |
| 112 | Luminosity and simulation: |
| 113 | |
| 114 | {{{ |
| 115 | luminosity = 100 |
| 116 | |
| 117 | simulate (nnbb) |
| 118 | }}} |
| 119 | |
| 120 | Some more plots and simulations: |
| 121 | |
| 122 | {{{ |
| 123 | $title = "Dijet invariant mass distribution in $e^+e^- \to q \bar q b \bar b$" |
| 124 | $xlabel = "$M_{q\bar q}$/GeV" |
| 125 | histogram m_jj (70 GeV, 130 GeV, 0.5 GeV) |
| 126 | |
| 127 | simulate (qqbb) { analysis = record m_jj (eval M / 1 GeV [combine [q,Q]]) } |
| 128 | }}} |
| 129 | |
| 130 | Perform the analysis: |
| 131 | |
| 132 | {{{ |
| 133 | $analysis_filename = "lep_higgs" |
| 134 | write_analysis |
| 135 | }}} |