whizard is hosted by Hepforge, IPPP Durham
Previous Up

References

[1]
T. ‍Sjöstrand, Comput. Phys. Commun. 82 (1994) 74.
[2]
A. ‍Pukhov, et al., Preprint INP MSU 98-41/542, hep-ph/9908288.
[3]
T. ‍Stelzer and W.F. ‍Long, Comput. Phys. Commun. 81 (1994) 357.
[4]
T. ‍Ohl, Proceedings of the Seventh International Workshop on Advanced Computing and Analysis Technics in Physics Research, ACAT 2000, Fermilab, October 2000, IKDA-2000-30, hep-ph/0011243; M. ‍Moretti, Th. ‍Ohl, and J. ‍Reuter, LC-TOOL-2001-040
[5]
T. ‍Ohl, Vegas revisited: Adaptive Monte Carlo integration beyond factorization, Comput. Phys. Commun. 120, 13 (1999) [arXiv:hep-ph/9806432].
[6]
T. ‍Ohl, CIRCE version 1.0: Beam spectra for simulating linear collider physics, Comput. Phys. Commun. 101, 269 (1997) [arXiv:hep-ph/9607454].
[7]
V. ‍N. ‍Gribov and L. ‍N. ‍Lipatov, e+ e- pair annihilation and deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15, 675 (1972) [Yad. Fiz. 15, 1218 (1972)].
[8]
E. ‍A. ‍Kuraev and V. ‍S. ‍Fadin, On Radiative Corrections to e+ e- Single Photon Annihilation at High-Energy, Sov. J. Nucl. Phys. 41, 466 (1985) [Yad. Fiz. 41, 733 (1985)].
[9]
M. ‍Skrzypek and S. ‍Jadach, Exact and approximate solutions for the electron nonsinglet structure function in QED, Z. Phys. C 49, 577 (1991).
[10]
D. ‍Schulte, Beam-beam simulations with Guinea-Pig, eConf C 980914, 127 (1998).
[11]
D. ‍Schulte, Beam-beam simulations with GUINEA-PIG, CERN-PS-99-014-LP.
[12]
D. ‍Schulte, M. ‍Alabau, P. ‍Bambade, O. ‍Dadoun, G. ‍Le Meur, C. ‍Rimbault and F. ‍Touze, GUINEA PIG++ : An Upgraded Version of the Linear Collider Beam Beam Interaction Simulation Code GUINEA PIG, Conf. Proc. C 070625, 2728 (2007).
[13]
T. ‍Behnke, J. ‍E. ‍Brau, B. ‍Foster, J. ‍Fuster, M. ‍Harrison, J. ‍M. ‍Paterson, M. ‍Peskin and M. ‍Stanitzki et al., The International Linear Collider Technical Design Report - Volume 1: Executive Summary, arXiv:1306.6327 [physics.acc-ph].
[14]
H. ‍Baer, T. ‍Barklow, K. ‍Fujii, Y. ‍Gao, A. ‍Hoang, S. ‍Kanemura, J. ‍List and H. ‍E. ‍Logan et al., The International Linear Collider Technical Design Report - Volume 2: Physics, arXiv:1306.6352 [hep-ph].
[15]
C. ‍Adolphsen, M. ‍Barone, B. ‍Barish, K. ‍Buesser, P. ‍Burrows, J. ‍Carwardine, J. ‍Clark and Hélèn. ‍M. ‍Durand et al., The International Linear Collider Technical Design Report - Volume 3.I: Accelerator & in the Technical Design Phase, arXiv:1306.6353 [physics.acc-ph].
[16]
C. ‍Adolphsen, M. ‍Barone, B. ‍Barish, K. ‍Buesser, P. ‍Burrows, J. ‍Carwardine, J. ‍Clark and Hélèn. ‍M. ‍Durand et al., The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design, arXiv:1306.6328 [physics.acc-ph].
[17]
T. ‍Behnke, J. ‍E. ‍Brau, P. ‍N. ‍Burrows, J. ‍Fuster, M. ‍Peskin, M. ‍Stanitzki, Y. ‍Sugimoto and S. ‍Yamada et al., arXiv:1306.6329 [physics.ins-det].
[18]
M. ‍Aicheler, P. ‍Burrows, M. ‍Draper, T. ‍Garvey, P. ‍Lebrun, K. ‍Peach and N. ‍Phinney et al., A Multi-TeV Linear Collider Based on CLIC Technology : CLIC Conceptual Design Report, CERN-2012-007.
[19]
P. ‍Lebrun, L. ‍Linssen, A. ‍Lucaci-Timoce, D. ‍Schulte, F. ‍Simon, S. ‍Stapnes, N. ‍Toge and H. ‍Weerts et al., The CLIC Programme: Towards a Staged e+e- Linear Collider Exploring the Terascale : CLIC Conceptual Design Report, arXiv:1209.2543 [physics.ins-det].
[20]
L. ‍Linssen, A. ‍Miyamoto, M. ‍Stanitzki and H. ‍Weerts, Physics and Detectors at CLIC: CLIC Conceptual Design Report, arXiv:1202.5940 [physics.ins-det].
[21]
C. ‍F. ‍von Weizsäcker, Radiation emitted in collisions of very fast electrons, Z. Phys. 88, 612 (1934).
[22]
E. ‍J. ‍Williams, Nature of the high-energy particles of penetrating radiation and status of ionization and radiation formulae, Phys. Rev. 45, 729 (1934).
[23]
V. ‍M. ‍Budnev, I. ‍F. ‍Ginzburg, G. ‍V. ‍Meledin and V. ‍G. ‍Serbo, The Two photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation, Phys. Rept. 15 (1974) 181.
[24]
I. ‍F. ‍Ginzburg, G. ‍L. ‍Kotkin, V. ‍G. ‍Serbo and V. ‍I. ‍Telnov, Colliding gamma e and gamma gamma Beams Based on the Single Pass Accelerators (of Vlepp Type), Nucl. Instrum. Meth. 205, 47 (1983).
[25]
V. ‍I. ‍Telnov, Problems of Obtaining γ γ and γ є Colliding Beams at Linear Colliders, Nucl. Instrum. Meth. A 294, 72 (1990).
[26]
V. ‍I. ‍Telnov, Principles of photon colliders, Nucl. Instrum. Meth. A 355, 3 (1995).
[27]
J. ‍A. ‍Aguilar-Saavedra et al. [ECFA/DESY LC Physics Working Group Collaboration], TESLA: The Superconducting electron positron linear collider with an integrated x-ray laser laboratory. Technical design report. Part 3. Physics at an e+ e- linear collider, hep-ph/0106315.
[28]
F. ‍Richard, J. ‍R. ‍Schneider, D. ‍Trines and A. ‍Wagner, TESLA, The Superconducting Electron Positron Linear Collider with an Integrated X-ray Laser Laboratory, Technical Design Report Part 1 : Executive Summary, hep-ph/0106314.
[29]
V. ‍V. ‍Sudakov, Sov. Phys. JETP 3, 65 (1956) [Zh. Eksp. Teor. Fiz. 30, 87 (1956)].

[30]

[30]
T. ‍Sjostrand, Phys. Lett. 157B, 321 (1985). doi:10.1016/0370-2693(85)90674-4
[31]
T. ‍Sjostrand, S. ‍Mrenna and P. ‍Z. ‍Skands, JHEP 0605, 026 (2006) doi:10.1088/1126-6708/2006/05/026 [hep-ph/0603175].
[32]
T. ‍Ohl, Vegas revisited: Adaptive Monte Carlo integration beyond factorization, Comput. Phys. Commun. 120, 13 (1999) [hep-ph/9806432].
[33]
G. ‍P. ‍Lepage, CLNS-80/447.
[34]
A. ‍Djouadi, J. ‍Kalinowski, M. ‍Spira, Comput. Phys. Commun. 108 (1998) 56-74.
[35]
M. ‍Beyer, W. ‍Kilian, P. ‍Krstonošic, K. ‍Mönig, J. ‍Reuter, E. ‍Schmidt and H. ‍Schröder, Determination of New Electroweak Parameters at the ILC - Sensitivity to New Physics, Eur. Phys. J. C 48, 353 (2006) [hep-ph/0604048].
[36]
A. ‍Alboteanu, W. ‍Kilian and J. ‍Reuter, Resonances and Unitarity in Weak Boson Scattering at the LHC, JHEP 0811, 010 (2008) [arXiv:0806.4145 [hep-ph]].
[37]
T. ‍Binoth et al., Comput. Phys. Commun. 181, 1612 (2010) doi:10.1016/j.cpc.2010.05.016 [arXiv:1001.1307 [hep-ph]].
[38]
S. ‍Alioli et al., Comput. Phys. Commun. 185, 560 (2014) doi:10.1016/j.cpc.2013.10.020 [arXiv:1308.3462 [hep-ph]].
[39]
C. ‍Speckner, LHC Phenomenology of the Three-Site Higgsless Model, PhD thesis, arXiv:1011.1851 [hep-ph].
[40]
R. ‍S. ‍Chivukula, B. ‍Coleppa, S. ‍Di Chiara, E. ‍H. ‍Simmons, H. ‍-J. ‍He, M. ‍Kurachi and M. ‍Tanabashi, A Three Site Higgsless Model, Phys. Rev. D 74, 075011 (2006) [hep-ph/0607124].
[41]
R. ‍S. ‍Chivukula, E. ‍H. ‍Simmons, H. ‍-J. ‍He, M. ‍Kurachi and M. ‍Tanabashi, Ideal fermion delocalization in Higgsless models, Phys. Rev. D 72, 015008 (2005) [hep-ph/0504114].
[42]
T. ‍Ohl and C. ‍Speckner, Production of Almost Fermiophobic Gauge Bosons in the Minimal Higgsless Model at the LHC, Phys. Rev. D 78, 095008 (2008) [arXiv:0809.0023 [hep-ph]].
[43]
T. ‍Ohl and J. ‍Reuter, Clockwork SUSY: Supersymmetric Ward and Slavnov-Taylor identities at work in Green’s functions and scattering amplitudes, Eur. Phys. J. C 30, 525 (2003) [hep-th/0212224].
[44]
J. ‍Reuter and F. ‍Braam, The NMSSM implementation in WHIZARD, AIP Conf. Proc. 1200, 470 (2010) [arXiv:0909.3059 [hep-ph]].
[45]
J. ‍Kalinowski, W. ‍Kilian, J. ‍Reuter, T. ‍Robens and K. ‍Rolbiecki, Pinning down the Invisible Sneutrino, JHEP 0810, 090 (2008) [arXiv:0809.3997 [hep-ph]].
[46]
T. ‍Robens, J. ‍Kalinowski, K. ‍Rolbiecki, W. ‍Kilian and J. ‍Reuter, (N)LO Simulation of Chargino Production and Decay, Acta Phys. Polon. B 39, 1705 (2008) [arXiv:0803.4161 [hep-ph]].
[47]
W. ‍Kilian, D. ‍Rainwater and J. ‍Reuter, Pseudo-axions in little Higgs models, Phys. Rev. D 71, 015008 (2005) [hep-ph/0411213].
[48]
W. ‍Kilian, D. ‍Rainwater and J. ‍Reuter, Distinguishing little-Higgs product and simple group models at the LHC and ILC, Phys. Rev. D 74, 095003 (2006) [Erratum-ibid. D 74, 099905 (2006)] [hep-ph/0609119].
[49]
T. ‍Ohl and J. ‍Reuter, Testing the noncommutative standard model at a future photon collider, Phys. Rev. D 70, 076007 (2004) [hep-ph/0406098].
[50]
T. ‍Ohl and C. ‍Speckner, The Noncommutative Standard Model and Polarization in Charged Gauge Boson Production at the LHC, Phys. Rev. D 82, 116011 (2010) [arXiv:1008.4710 [hep-ph]].
[51]
E. ‍Boos et al., Generic user process interface for event generators, arXiv:hep-ph/0109068.
[52]
P. ‍Z. ‍Skands et al., SUSY Les Houches Accord: Interfacing SUSY Spectrum Calculators, Decay Packages, and Event Generators, JHEP 0407, 036 (2004) [arXiv:hep-ph/0311123].
[53]
J. ‍A. ‍Aguilar-Saavedra, A. ‍Ali, B. ‍C. ‍Allanach, R. ‍L. ‍Arnowitt, H. ‍A. ‍Baer, J. ‍A. ‍Bagger, C. ‍Balazs and V. ‍D. ‍Barger et al., Supersymmetry parameter analysis: SPA convention and project, Eur. Phys. J. C 46, 43 (2006) [hep-ph/0511344].
[54]
B. ‍C. ‍Allanach, C. ‍Balazs, G. ‍Belanger, M. ‍Bernhardt, F. ‍Boudjema, D. ‍Choudhury, K. ‍Desch and U. ‍Ellwanger et al., Comput. Phys. Commun. 180, 8 (2009) [arXiv:0801.0045 [hep-ph]].
[55]
J. ‍Alwall et al., A standard format for Les Houches event files, Comput. Phys. Commun. 176, 300 (2007) [arXiv:hep-ph/0609017].
[56]
K. ‍Hagiwara et al., Supersymmetry simulations with off-shell effects for LHC and ILC, Phys. Rev. D 73, 055005 (2006) [arXiv:hep-ph/0512260].
[57]
B. ‍C. ‍Allanach et al., The Snowmass points and slopes: Benchmarks for SUSY searches, in Proc. of the APS/DPF/DPB Summer Study on the Future of Particle Physics (Snowmass 2001) ed. N. ‍Graf, Eur. Phys. J. C 25 (2002) 113 [eConf C010630 (2001) P125] [arXiv:hep-ph/0202233].
[58]
M.E. Peskin, D.V.Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley Publishing Co., 1995.
[59]
U. Klein, O. Fischer, private communications.
[60]
L. ‍Garren, StdHep, Monte Carlo Standardization at FNAL, Fermilab CS-doc-903, http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=903
[61]
S. ‍Frixione, Phys. Lett. B 429, 369 (1998) doi:10.1016/S0370-2693(98)00454-7 [hep-ph/9801442].
[62]
W. ‍Giele et al., The QCD / SM working group: Summary report, arXiv:hep-ph/0204316; M. ‍R. ‍Whalley, D. ‍Bourilkov and R. ‍C. ‍Group, The Les Houches Accord PDFs (LHAPDF) and Lhaglue, arXiv:hep-ph/0508110; D. ‍Bourilkov, R. ‍C. ‍Group and M. ‍R. ‍Whalley, LHAPDF: PDF use from the Tevatron to the LHC, arXiv:hep-ph/0605240.
[63]
M. ‍Dobbs and J. ‍B. ‍Hansen, The HepMC C++ Monte Carlo event record for High Energy Physics, Comput. Phys. Commun. 134, 41 (2001).
[64]
E. ‍Boos et al. [CompHEP Collaboration], Nucl. Instrum. Meth. A 534, 250 (2004) [hep-ph/0403113].
[65]
J. ‍Pumplin, D. ‍R. ‍Stump, J. ‍Huston et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 0207, 012 (2002). [hep-ph/0201195].
[66]
A. ‍D. ‍Martin, R. ‍G. ‍Roberts, W. ‍J. ‍Stirling et al., Parton distributions incorporating QED contributions, Eur. Phys. J. C39, 155-161 (2005). [hep-ph/0411040].
[67]
A. ‍D. ‍Martin, W. ‍J. ‍Stirling, R. ‍S. ‍Thorne et al., Parton distributions for the LHC, Eur. Phys. J. C63, 189-285 (2009). [arXiv:0901.0002 [hep-ph]].
[68]
H. ‍L. ‍Lai, M. ‍Guzzi, J. ‍Huston, Z. ‍Li, P. ‍M. ‍Nadolsky, J. ‍Pumplin and C. ‍P. ‍Yuan, New parton distributions for collider physics, Phys. Rev. D 82, 074024 (2010) [arXiv:1007.2241 [hep-ph]].
[69]
J. ‍F. ‍Owens, A. ‍Accardi and W. ‍Melnitchouk, Global parton distributions with nuclear and finite-Q2 corrections, Phys. Rev. D 87, no. 9, 094012 (2013) [arXiv:1212.1702 [hep-ph]].
[70]
A. ‍Accardi, L. ‍T. ‍Brady, W. ‍Melnitchouk, J. ‍F. ‍Owens and N. ‍Sato, arXiv:1602.03154 [hep-ph].
[71]
L. ‍A. ‍Harland-Lang, A. ‍D. ‍Martin, P. ‍Motylinski and R. ‍S. ‍Thorne, arXiv:1412.3989 [hep-ph].
[72]
S. ‍Dulat et al., arXiv:1506.07443 [hep-ph].
[73]
G. ‍P. ‍Salam and J. ‍Rojo, A Higher Order Perturbative Parton Evolution Toolkit (HOPPET), Comput. Phys. Commun. 180, 120 (2009) [arXiv:0804.3755 [hep-ph]].
[74]
W. ‍Kilian, J. ‍Reuter, S. ‍Schmidt and D. ‍Wiesler, An Analytic Initial-State Parton Shower, JHEP 1204 (2012) 013 [arXiv:1112.1039 [hep-ph]].
[75]
F. ‍Staub, Sarah, arXiv:0806.0538 [hep-ph].
[76]
F. ‍Staub, From Superpotential to Model Files for FeynArts and CalcHep/CompHep, Comput. Phys. Commun. 181, 1077 (2010) [arXiv:0909.2863 [hep-ph]].
[77]
F. ‍Staub, Automatic Calculation of supersymmetric Renormalization Group Equations and Self Energies, Comput. Phys. Commun. 182, 808 (2011) [arXiv:1002.0840 [hep-ph]].
[78]
F. ‍Staub, SARAH 3.2: Dirac Gauginos, UFO output, and more, Computer Physics Communications 184, pp. 1792 (2013) [Comput. Phys. Commun. 184, 1792 (2013)] [arXiv:1207.0906 [hep-ph]].
[79]
F. ‍Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185, 1773 (2014) [arXiv:1309.7223 [hep-ph]].
[80]
Mathematica is a registered trademark of Wolfram Research, Inc., Champain, IL, USA.
[81]
W. ‍Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+ e- colliders, Comput. Phys. Commun. 153, 275 (2003) [hep-ph/0301101].
[82]
W. ‍Porod and F. ‍Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183, 2458 (2012) [arXiv:1104.1573 [hep-ph]].
[83]
F. ‍Staub, T. ‍Ohl, W. ‍Porod and C. ‍Speckner, Comput. Phys. Commun. 183, 2165 (2012) [arXiv:1109.5147 [hep-ph]].
[84]
N. ‍D. ‍Christensen and C. ‍Duhr, FeynRules - Feynman rules made easy, Comput. Phys. Commun. 180, 1614 (2009) [arXiv:0806.4194 [hep-ph]].
[85]
N. ‍D. ‍Christensen, P. ‍de Aquino, C. ‍Degrande, C. ‍Duhr, B. ‍Fuks, M. ‍Herquet, F. ‍Maltoni and S. ‍Schumann, A Comprehensive approach to new physics simulations, Eur. Phys. J. C 71, 1541 (2011) [arXiv:0906.2474 [hep-ph]].
[86]
C. ‍Duhr and B. ‍Fuks, Comput. Phys. Commun. 182, 2404 (2011) [arXiv:1102.4191 [hep-ph]].
[87]
N. ‍D. ‍Christensen, C. ‍Duhr, B. ‍Fuks, J. ‍Reuter and C. ‍Speckner, Introducing an interface between WHIZARD and FeynRules, Eur. Phys. J. C 72, 1990 (2012) [arXiv:1010.3251 [hep-ph]].
[88]
C. ‍Degrande, C. ‍Duhr, B. ‍Fuks, D. ‍Grellscheid, O. ‍Mattelaer and T. ‍Reiter, Comput. Phys. Commun. 183, 1201 (2012) doi:10.1016/j.cpc.2012.01.022 [arXiv:1108.2040 [hep-ph]].
[89]
T. ‍Han, J. ‍D. ‍Lykken and R. ‍-J. ‍Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev. D 59, 105006 (1999) [hep-ph/9811350].
[90]
B. ‍Fuks, Beyond the Minimal Supersymmetric Standard Model: from theory to phenomenology, Int. J. Mod. Phys. A 27, 1230007 (2012) [arXiv:1202.4769 [hep-ph]].
[91]
H. ‍-J. ‍He, Y. ‍-P. ‍Kuang, Y. ‍-H. ‍Qi, B. ‍Zhang, A. ‍Belyaev, R. ‍S. ‍Chivukula, N. ‍D. ‍Christensen and A. ‍Pukhov et al., CERN LHC Signatures of New Gauge Bosons in Minimal Higgsless Model, Phys. Rev. D 78, 031701 (2008) [arXiv:0708.2588 [hep-ph]].
[92]
W. ‍Kilian, J. ‍Reuter and T. ‍Robens, NLO Event Generation for Chargino Production at the ILC, Eur. Phys. J. C 48, 389 (2006) [hep-ph/0607127].
[93]
J. ‍R. ‍Andersen et al. [SM and NLO Multileg Working Group Collaboration], Les Houches 2009: The SM and NLO Multileg Working Group: Summary report, arXiv:1003.1241 [hep-ph].
[94]
J. ‍M. ‍Butterworth, A. ‍Arbey, L. ‍Basso, S. ‍Belov, A. ‍Bharucha, F. ‍Braam, A. ‍Buckley and M. ‍Campanelli et al., Les Houches 2009: The Tools and Monte Carlo working group Summary Report, arXiv:1003.1643 [hep-ph], arXiv:1003.1643 [hep-ph].
[95]
T. ‍Binoth, N. ‍Greiner, A. ‍Guffanti, J. ‍Reuter, J.-P. ‍.Guillet and T. ‍Reiter, Next-to-leading order QCD corrections to pp –> b anti-b b anti-b + X at the LHC: the quark induced case, Phys. Lett. B 685, 293 (2010) [arXiv:0910.4379 [hep-ph]].
[96]
N. ‍Greiner, A. ‍Guffanti, T. ‍Reiter and J. ‍Reuter, NLO QCD corrections to the production of two bottom-antibottom pairs at the LHC Phys. Rev. Lett. 107, 102002 (2011) [arXiv:1105.3624 [hep-ph]].
[97]
P. ‍LéEcuyer, R. ‍Simard, E. ‍J. ‍Chen, and W. ‍D. ‍Kelton, An Object-Oriented Random-Number Package with Many Long Streams and Substreams, Operations Research, vol. 50, no. 6, pp. 1073-1075, Dec. 2002.
[98]
S. ‍Plätzer, RAMBO on diet, [arXiv:1308.2922 [hep-ph]].
[99]
R. ‍Kleiss and W. ‍J. ‍Stirling, Massive multiplicities and Monte Carlo, Nucl. Phys. B 385, 413 (1992). doi:10.1016/0550-3213(92)90107-M
[100]
R. ‍Kleiss, W. ‍J. ‍Stirling and S. ‍D. ‍Ellis, A New Monte Carlo Treatment of Multiparticle Phase Space at High-energies, Comput. Phys. Commun. 40 (1986) 359. doi:10.1016/0010-4655(86)90119-0
[101]
R. ‍Brun and F. ‍Rademakers, ROOT: An object oriented data analysis framework, Nucl. Instrum. Meth. A 389, 81-86 (1997) doi:10.1016/S0168-9002(97)00048-X
[102]
A. ‍Buckley, J. ‍Butterworth, L. ‍Lönnblad, D. ‍Grellscheid, H. ‍Hoeth, J. ‍Monk, H. ‍Schulz and F. ‍Siegert, Rivet user manual, Comput. Phys. Commun. 184, 2803-2819 (2013) doi:10.1016/j.cpc.2013.05.021 [arXiv:1003.0694 [hep-ph]].
[103]
C. ‍Bierlich, A. ‍Buckley, J. ‍Butterworth, C. ‍H. ‍Christensen, L. ‍Corpe, D. ‍Grellscheid, J. ‍F. ‍Grosse-Oetringhaus, C. ‍Gutschow, P. ‍Karczmarczyk, J. ‍Klein, L. ‍Lönnblad, C. ‍S. ‍Pollard, P. ‍Richardson, H. ‍Schulz and F. ‍Siegert, Robust Independent Validation of Experiment and Theory: Rivet version 3, SciPost Phys. 8, 026 (2020) doi:10.21468/SciPostPhys.8.2.026 [arXiv:1912.05451 [hep-ph]].
[104]
J. ‍de Favereau et al. [DELPHES 3], DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02, 057 (2014) doi:10.1007/JHEP02(2014)057 [arXiv:1307.6346 [hep-ex]]

Previous Up