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Abstract

. . .

1 Introduction

The problem of the parallelization of adaptive Monte Carlo integration al-
gorithms has gained some attention recently [1, 2]. Both authors present
parallel versions of the Vegas algorithm [3].

The implementations start from the classic implementation of Vegas and
add synchronization barriers, either mutexes for threads accessing shared
memory or explicit message passing. This approach results in compact code
and achieves high performance, but the implementations of threads bases
parallelism on one hand and message passing on the other are very different.
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Therefore, a close coupling of parallelization and of the integration algorithm
sacrifices flexibility. Even the move from one message passing library to
another is a non trivial exercise with many subtle failure modes. The same
is true for any improvement of the integration algorithm.

Instead, we suggest a mathematical model of parallelism for adaptive
Monte Carlo integration that is independent both of a concrete paradigm for
parallelism and of the programming language used for an implementation.
We decompose the algorithm and prove that certain parts can be executed
in any order without changing the result. As a corollary, we know that they
can be executed in parallel.

The algorithms presented below have been implemented successfully in
the library VAMP [4], along with other, independent, improvements of Ve-
gas [5].

In section 2 we discuss the features of Vegas, that are important for our
model.

2 Vegas

In this section we discuss the features of Vegas, that are important for build-
ing a model of parallelism, but are not discussed in [3].

Vegas uses two grids : an adaptive grid GA, which is used to adapt the
distribution of the sampling points and a stratification grid GS for stratified
sampling. The latter is static and depends only on the number of dimensions
and on the number of sampling points. Both grids factorize into divisions diA,S

GA = dA1 ⊗ dA2 ⊗ · · · ⊗ dAn (1a)

GS = dS1 ⊗ dS2 ⊗ · · · ⊗ dSn . (1b)

The divisions come in three kinds

dSi = ∅ (importance sampling) (2a)

dAi = dSi /m (stratified sampling) (2b)

dAi 6= dSi /m (pseudo-stratified sampling) . (2c)

In the classic implementation of Vegas [3], all divisions are of the same type.
In a more general implementation [4], this is not required and it can be useful
to use stratification only in a few dimensions.

Two-dimensional grids for the cases (2a) and (2b) are illustrated in fig-
ure 1. In case (2a), there is no stratification grid and the points are picked
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Figure 1: Vegas grid structure for importance sampling (2a) on the left and
for genuinely stratified sampling (2b) on the right. The latter is used in low
dimensions only.
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Figure 2: One-dimensional illustration of the vegas grid structure for pseudo
stratified sampling, which is used in high dimensions.

at random in the whole region according to GA. In case (2b), the adaptive
grid GA is a regular subgrid of the stratification grid GS and an equal num-
ber of points are picked at random in each cell of GS. Since dAi = dSi /m, the
points will be distributed according to GA as well.

A one-dimensional illustration of (2c) is shown in figure (2). The case (2c)
is the most complicated.

3 Parallelization

3.1 Formalization of Adaptive Sampling

In order to discuss the problems with parallelizing adaptive integration al-
gorithms and to present solutions, it helps to introduce some mathematical
notation. A sampling S is a map from the space π of point sets and the
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space F of functions to the real (or complex) numbers

S : π × F → R

(p, f) 7→ I = S(p, f)

For our purposes, we have to be more specific about the nature of the point
set. In general, the point set will be characterized by a sequence of pseudo
random numbers ρ ∈ R and by one or more grids G ∈ Γ used for importance
or stratified sampling. A simple sampling

S0 : R× Γ× A× F ×R×R→ R× Γ× A× F ×R×R

(ρ,G, a, f, µ1, µ2) 7→ (ρ′, G, a′, f, µ′1, µ
′
2) = S0(ρ,G, a, f, µ1, µ2)

(3)
estimates the n-th moments µ′n ∈ R of the function f ∈ F . The integral and
its standard deviation can be derived easily from the moments

I = µ1 (4a)

σ2 =
1

N − 1

(
µ2 − µ2

1

)
(4b)

while the latter are more convenient for the following discussion. In addition,
S0 collects auxiliary information to be used in the grid refinement, denoted
by a ∈ A. The unchanged arguments G and f have been added to the result
of S0 in (3), so that S0 has identical domain and codomain and can therefore
be iterated. Previous estimates µn may be used in the estimation of µ′n, but a
particular S0 is free to ignore them as well. Using a little notational freedom,
we augment R and A with a special value ⊥, which will always be discarded
by S0.

In an adaptive integration algorithm, there is also a refinement opera-
tion r : Γ× A→ Γ that can be extended naturally to the codomain of S0

r : R× Γ× A× F ×R×R→ R× Γ× A× F ×R×R

(ρ,G, a, f, µ1, µ2) 7→ (ρ,G′, a, f, µ1, µ2) = r(ρ,G, a, f, µ1, µ2)
(5)

so that S = rS0 is well defined and we can specify n-step adaptive sampling
as

Sn = S0(rS0)
n (6)

Since, in a typical application, only the estimate of the integral and the
standard deviation are used, a projection can be applied to the result of Sn:

P : R× Γ× A× F ×R×R→ R×R

(ρ,G, a, f, µ1, µ2) 7→ (I, σ)
(7)
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Then
(I, σ) = PS0(rS0)

n(ρ,G0,⊥, f,⊥,⊥) (8)

and a good refinement prescription r, such as Vegas, will minimize the σ.
For parallelization, it is crucial to find a division of Sn or any part of

it into independent pieces that can be evaluated in parallel. In order to
be effective, r has to be applied to all of a and therefore a sychronization
of G before and after r is appropriately. Forthermore, r usually uses only
a tiny fraction of the CPU time and it makes little sense to invest a lot of
effort into parallelizing it beyond what the Fortran compiler can infer from
array notation. On the other hand, S0 can be parallelized naturally, because
all operations are linear, including he computation of a. We only have to
make sure that the cost of communicating the results of S0 and r back and
forth during the computation of Sn do not offset any performance gain from
parallel processing.

When we construct a decomposition of S0 and proof that it does not
change the results, i.e.

S0 = ιS0φ (9)

where φ is a forking operation and ι is a joining operation, we are faced with
the technical problem of a parallel random number source ρ.

⊕N
i=1Gi

⊕N
i=1 S0−−−−−→

⊕N
i=1Gi

φ

x ι

y
G

S0−−−→ G

(10)

3.2 Weakly Commutative Diagrams

As made explicit in (3, S0 changes the state of the random number general ρ,
demanding identical results therefore imposes a strict ordering on the oper-
ations and defeats parallelization. It is possible to devise implementations
of S0 and ρ that circumvent this problem by distributing subsequences of ρ
in such a way among processes that results do not depend on the number of
parallel processes.

However, a reordering of the random number sequence will only change
the result by the statistical error, as long as the scale of the allowed reorder-
ings is bounded and much smaller than the period of the random number
generator 1 Below, we will therefore use the notation x ≈ y for “equal for an
appropriate finite reordering of the ρ used in calculating x and y”. For our

1Arbirtrary reorderings on the scale of the period of the random number generators
could select constant sequences and have to be forbidden.
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porposes, the relation x ≈ y is strong enough and allows simple and efficient
implementations.

3.3 Multilinear Structure of the Sampling Algorithm

Since S0 is essentially a summation, it is natural to expect a linear structure⊕
i

S0(ρi, Gi, ai, f, µ1,i, µ2,i) ≈ S0(ρ,G, a, f, µ1, µ2) (11a)

where

ρ =
⊕
i

ρi (11b)

G =
⊕
i

Gi (11c)

a =
⊕
i

ai (11d)

µn =
⊕
i

µn,i (11e)

for appropriate definitions of “⊕”. For the moments, we have standard ad-
dition

µn,1 ⊕ µn,2 = µn,1 + µn,2 (12)

and since we only demand equality up to reordering, we only need that the ρi
are statistically independent. This leaves us with G and a and we have to
discuss importance sampling ans stratified sampling separately.

3.3.1 Importance Sampling

In the case of naive Monte Carlo and importance sampling the natural de-
composition of G is to take j copies of the same grid G/j which is identical
to G, each with one j-th of the total sampling points. As long as the a are
linear themselves, we can add them up just like the moments

a1 ⊕ a2 = a1 + a2 (13)

and we have found a decomposition (11). In the case of Vegas, the ai are
sums of function values at the sampling points. Thus they are obviously
linear and this approach is applicable to Vegas in the importance sampling
mode.
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3.3.2 Stratified Sampling

The situation is more complicated in the case of stratified sampling. The first
complication is that in pure stratified sampling there are only two sampling
points per cell. Splitting the grid in two pieces as above provide only a very
limited amount of parallelization. The second complication is that the a are
no longer linear, since they corrspond to a sampling of the variance per cell
and no longer of function values themselves.

However, as long as the samplings contribute to disjoint bins only, we
can still “add” the variances by combining bins. The solution is therefore to
divide the grid into disjoint bins along the divisions of the stratification grid
and to assign a set of bins to each processor.

Finer decompositions will incur higher communications costs and other
resource utilization. An implementation based on PVM is described in [2],
which miminizes the overhead by running identical copies of the grid G on
each processor. Since most of the time is usually spent in function evalua-
tions, it makes sense to run a full S0 on each processor, skipping function
evaluations everywhere but in the region assigned to the processor. This is
a neat trick, which is unfortunately tied to the computational model of mes-
sage passing systems such as PVM and MPI [11]. More general paradigms
can not be supported since the separation of the state for the processors is
not explicit (it is implicit in the separated address space of the PVM or MPI
processes).

However, it is possible to implement (11) directly in an efficient manner.
This is based on the observation that the grid G used by Vegas is factorized
into divisions Dj for each dimension

G =

ndim⊗
j=1

Dj (14)

and decompositions of the Dj induce decompositions of G

G1 ⊕G2 =

(
i−1⊗
j=1

Dj ⊗Di
1 ⊗

ndim⊗
i=j+1

Dj

)
⊕

(
i−1⊗
j=1

Dj ⊗Di
2 ⊗

ndim⊗
i=j+1

Dj

)

=
i−1⊗
j=1

Dj ⊗
(
Di

1 ⊕Di
2

)
⊗

ndim⊗
j=i+1

Dj (15)

We can translate (15) directly to code that performs the decomposition Di =
Di

1 ⊕ Di
2 discussed below and simply duplicates the other divisions Dj 6=i.

A decomposition along multiple dimensions is implemented by a recursive
application of (15).
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In Vegas, the auxiliary information a inherits a factorization similar to
the grid (14)

a = (d1, . . . , dndim) (16)

but not a multilinear structure. Instead, as long as the decomposition respects
the stratification grid, we find the in place of (15)

a1 ⊕ a2 = (d11 + d12, . . . , d
i
1 ⊕ di2, . . . , d

ndim
1 + dndim

2 ) (17)

with “+” denoting the standard addition of the bin contents and “⊕” de-
noting the aggregation of disjoint bins. If the decomposition of the division
would break up cells of the stratification grid (17) would be incorrect, be-
cause, as discussed above, the variance is not linear.

Now it remains to find a decomposition

Di = Di
1 ⊕Di

2 (18)

for both the pure stratification mode and the pseudo stratification mode of
vegas (cf. figure 1). In the pure stratification mode, the stratification grid is
strictly finer than the adaptive grid and we can decompose along either of
them immediately. Technically, a decomposition along the coarser of the two
is straightforward. Since the adaptive grid already has more than 25 bins, a
decomposition along the stratification grid makes no practical sense and the
decomposition along the adaptive grid has been implemented. The sampling
algorithm S0 can be applied unchanged to the individual grids resulting from
the decomposition.

For pseudo stratified sampling (cf. figure 2), the situation is more com-
plicated, because the adaptive and the stratification grid do not share bin
boundaries. Since Vegas does not use the variance in this mode, it would be
theoretically possible to decompose along the adaptive grid and to mimic the
incomplete bins of the stratification grid in the sampling algorithm. How-
ever, this would be a technical complication, destroying the universality of S0.
Therefore, the adaptive grid is subdivided in a first step in

lcm

(
lcm(nf , ng)

nf
, nx

)
(19)

bins,2 such that the adaptive grid is strictly finer than the stratification grid.
This procedure is shown in figure 3.

2The coarsest grid covering the division of ng bins into nf forks has ng/ gcd(nf , ng) =
lcm(nf , ng)/nf bins per fork.
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Figure 3: Forking one dimension d of a grid into three parts ds(1), ds(2),
and ds(3). The picture illustrates the most complex case of pseudo stratified
sampling (cf. fig. 2).
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3.4 State and Message Passing

3.5 Random Numbers

In the parallel example sitting on top of MPI [11] takes advantage of the
ability of Knuth’s generator [12] to generate statistically independent subse-
quences. However, since the state of the random number generator is explicit
in all procedure calls, other means of obtaining subsequences can be imple-
mented in a trivial wrapper.

The results of the parallel example will depend on the number of pro-
cessors, because this effects the subsequences being used. Of course, the
variation will be compatible with the statistical error. It must be stressed
that the results are deterministic for a given number of processors and a
given set of random number generator seeds. Since parallel computing en-
vironments allow to fix the number of processors, debugging of exceptional
conditions is possible.

4 Practice

In this section we show three implementations of Sn: one serial, and two
parallel, based on HPF [9, 10] and MPI [11], respectively. From these exam-
ples, it should be obvious how to adapt VAMP to other parallel computing
paradigms.

4.1 Serial

Here is a bare bones serail version of Sn, for comparison with the parallel
versions below. The real implementation of vamp_sample_grid in the module
vamp includes some error handling, diagnostics and the projection P (cf. (7)):

subroutine vamp_sample_grid (rng, g, iterations, func)

type(tao_random_state), intent(inout) :: rng

type(vamp_grid), intent(inout) :: g

integer, intent(in) :: iterations

〈〈 Interface declaration for func 〉〉
integer :: iteration

iterate: do iteration = 1, iterations

call vamp_sample_grid0 (rng, g, func)

call vamp_refine_grid (g)

end do iterate

end subroutine vamp_sample_grid
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4.2 HPF

The HPF version of Sn is based on decomposing the grid g as described in
section 3.3 and lining up the components in an array gs. The elements of gs
can then be processed im parallel. This version can be compiled with any
Fortran compiler and a more complete version of this procedure (including
error handling, diagnostics and the projection P ) is included with VAMP as
vamp_sample_grid_parallel in the module vamp. This way, the algorithm
can be tested on a serial machine, but there will obviously be no performance
gain.

Instead of one random number generator state rng, it takes an array
consisting of one state per processor. These rng(:) are assumed to be ini-
tialized, such that the resulting sequences are statistically independent. For
this purpose, Knuth’s random number generator [12] is most convenient and
is included with VAMP (see the example on page 12). Before each S0, the
procedure vamp_distribute_work determines a good decomposition of the
grid d into size(rng) pieces. This decomposition is encoded in the ar-
ray d where d(1,:) holds the dimensions along which to split the grid and
d(2,:) holds the corrsponding number of divisions. Using this informa-
tion, the grid is decomposed by vamp_fork_grid. The HPF compiler will
then distribute the !hpf$ independent loop among the processors. Finally,
vamp_join_grid gathers the results.

subroutine vamp_sample_grid_hpf (rng, g, iterations, func)

type(tao_random_state), dimension(:), intent(inout) :: rng

type(vamp_grid), intent(inout) :: g

integer, intent(in) :: iterations

〈〈 Interface declaration for func 〉〉
type(vamp_grid), dimension(:), allocatable :: gs, gx

!hpf$ processors p(number_of_processors())

!hpf$ distribute gs(cyclic(1)) onto p

integer, dimension(:,:), pointer :: d

integer :: iteration, num_workers

iterate: do iteration = 1, iterations

call vamp_distribute_work (size (rng), vamp_rigid_divisions (g), d)

num_workers = max (1, product (d(2,:)))

if (num_workers > 1) then

allocate (gs(num_workers), gx(vamp_fork_grid_joints (d)))

call vamp_create_empty_grid (gs)

call vamp_fork_grid (g, gs, gx, d)

!hpf$ independent

do i = 1, num_workers

call vamp_sample_grid0 (rng(i), gs(i), func)

end do
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call vamp_join_grid (g, gs, gx, d)

call vamp_delete_grid (gs)

deallocate (gs, gx)

else

call vamp_sample_grid0 (rng(1), g, func)

end if

call vamp_refine_grid (g)

end do iterate

end subroutine vamp_sample_grid_hpf

Since vamp_sample_grid0 performes the bulk of the computation, an
almost linear speedup with the number of processors can be achieved, if
vamp_distribute_work finds a good decomposition of the grid. The version
of vamp_distribute_work distributed with VAMP does a good job in most
cases, but will not be able to use all processors if their number is a prime
number larger than the number of divisions in the stratification grid. There-
fore it can be beneficial to tune vamp_distribute_work to specific hardware.
Furthermore, using a finer stratification grid can improve performance.

For definiteness, here is an example of how to set up the array of random
number generators for HPF. Note that this simple seeding procedure only
guarantees statistically independent sequences with Knuth’s random number
generator [12] and will fail with other approaches.

type(tao_random_state), dimension(:), allocatable :: rngs

!hpf$ processors p(number_of_processors())

!hpf$ distribute gs(cyclic(1)) onto p

integer :: i, seed

! ...

allocate (rngs(number_of_processors()))

seed = 42 !: can be read from a file, of course ...

!hpf$ independent

do i = 1, size (rngs)

call tao_random_create (rngs(i), seed + i)

end do

! ...

call vamp_sample_grid_hpf (rngs, g, 6, func)

! ...

4.3 MPI

The MPI version is more low level, because we have to keep track of message
passing ourselves. Note that we have made this synchronization points ex-
plicit with three if ... then ... else ... end if blocks: forking, sam-
pling, and joining. These blocks could be merged (without any performance
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gain) at the expense of readability. We assume that rng has been initialized
in each process such that the sequences are again statistically independent.

subroutine vamp_sample_grid_mpi (rng, g, iterations, func)

type(tao_random_state), dimension(:), intent(inout) :: rng

type(vamp_grid), intent(inout) :: g

integer, intent(in) :: iterations

〈〈 Interface declaration for func 〉〉
type(vamp_grid), dimension(:), allocatable :: gs, gx

integer, dimension(:,:), pointer :: d

integer :: num_proc, proc_id, iteration, num_workers

call mpi90_size (num_proc)

call mpi90_rank (proc_id)

iterate: do iteration = 1, iterations

if (proc_id == 0) then

call vamp_distribute_work (num_proc, vamp_rigid_divisions (g), d)

num_workers = max (1, product (d(2,:)))

end if

call mpi90_broadcast (num_workers, 0)

if (proc_id == 0) then

allocate (gs(num_workers), gx(vamp_fork_grid_joints (d)))

call vamp_create_empty_grid (gs)

call vamp_fork_grid (g, gs, gx, d)

do i = 2, num_workers

call vamp_send_grid (gs(i), i-1, 0)

end do

else if (proc_id < num_workers) then

call vamp_receive_grid (g, 0, 0)

end if

if (proc_id == 0) then

if (num_workers > 1) then

call vamp_sample_grid0 (rng, gs(1), func)

else

call vamp_sample_grid0 (rng, g, func)

end if

else if (proc_id < num_workers) then

call vamp_sample_grid0 (rng, g, func)

end if

if (proc_id == 0) then

do i = 2, num_workers

call vamp_receive_grid (gs(i), i-1, 0)

end do

call vamp_join_grid (g, gs, gx, d)

call vamp_delete_grid (gs)
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deallocate (gs, gx)

call vamp_refine_grid (g)

else if (proc_id < num_workers) then

call vamp_send_grid (g, 0, 0)

end if

end do iterate

end subroutine vamp_sample_grid_mpi

A more complete version of this procedure is included with VAMP as
well, this time as vamp_sample_grid in the MPI support module vampi.

5 Performance

6 Conclusions
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