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Abstract

We present a new adaptive Monte Carlo integration algorithm for
ill-behaved integrands with non-factorizable singularities. The algo-
rithm combines Vegas with multi channel sampling and performs sig-
nificantly better than Vegas for a large class of integrals appearing in
physics.

1 Introduction

Throughout physics, it is frequently necessary to evaluate the integral I(f)
of a function f on a manifold M using a measure µ

I(f) =

∫
M

dµ(p) f(p) . (1)
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More often than not, an analytical evaluation in terms of elementary or
known special functions is impossible and we have to rely on numerical meth-
ods for estimating I(f). A typical example is given by the integration of
differential cross sections on a part of phase space to obtain predictions for
event rates in scattering experiments.

In more than three dimensions, standard quadrature formulae are not
practical and Monte Carlo integration is the only option. As is well known,
I(f) is estimated by

E(f) =

〈
f

g

〉
g

=
1

N

N∑
i=1

f(pi)

g(pi)
, (2)

where g is the probability density (with respect to the measure µ) of the
randomly distributed pi, e. g. g(p) = 1/Vol(M) for uniformly distributed pi.
The error of this estimate is given by the square root of the variance

V (f) =
1

N − 1

〈(
f

g

)2
〉

g

−
〈
f

g

〉2

g

 (3)

which suggests to choose a g that minimizes V (f). If f is a wildly fluctuating
function, this optimization of g is indispensable for obtaining a useful accu-
racy. Typical causes for large fluctuations are integrable singularities of f
or µ inside of M or non-integrable singularities very close to M . Therefore,
we will use the term “singularity” for those parts of M in which there are
large fluctuations in f or µ.

Manual optimization of g is often too time consuming, in particular if
the dependence of the integral on external parameters (in the integrand and
in the boundaries) is to be studied. Adaptive numerical approaches are
more attractive in these cases. The problem of optimizing g numerically has
been solved for factorizable distributions g and measures µ by the classic
Vegas [1] algorithm long ago. Factorizable g and µ are special, because the
computational costs for optimization rise only linearly with the number of
dimensions. In all other cases, there is a prohibitive exponential rise of the
computational costs with the number of dimensions.

The property of factorization depends on the coordinate system, of course.
Consider, for example, the functions

f1(x1, x2) =
1

(x1 − a1)2 + b21
(4a)

f2(x1, x2) =
1(√

x2
1 + x2

2 − a2

)2

+ b22

(4b)
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on M = (−1, 1) ⊗ (−1, 1) with the measure dµ = dx1 ∧ dx2. Obviously,
f1 is factorizable in Cartesian coordinates, while f2 is factorizable in polar
coordinates. Vegas will sample either function efficiently for arbitrary b1,2

in suitable coordinate systems, but there is no coordinate system in which
Vegas can sample the sum f1 + f2 efficiently for small b1,2.

In this note, we present a generalization of the Vegas algorithm from
factorizable distributions to sums of factorizable distributions, where each
term may be factorizable in a different coordinate system. This larger class
includes most of the integrands appearing in particle physics and empirical
studies have shown a dramatic increase of accuracy for typical integrals.
Technically, this generalization is the combination of the Vegas algorithm
with adaptive multi channel sampling [2].

In section 2, we will discuss the coordinate transformations employed by
the algorithm and in section 3, we will describe the adaptive multi channel
algorithm. Finally, I will discuss the performance of a first implementation
of the algorithm in section 4 and conclude.

2 Maps

The problem of estimating I(f) can be divided naturally into two parts:
parametrization of M and sampling of the function f . While the estimate
will not depend on the parametrization, the error will.

In general, we need an atlas with more that one chart φ to cover the
manifold M . We can ignore this technical complication in the following,
because, for the purpose of integration, we can decompose M such that each
piece is covered by a single chart. Moreover, a single chart suffices in most
cases of practical interest, since we are at liberty to remove sets of measure
zero from M . For example, after removing a single point, the unit sphere
can be covered by a single chart.

Nevertheless, even if we are not concerned with the global properties
of M that require the use of more than one chart, the language of differential
geometry will allow us to use our geometrical intuition. Instead of pasting
together locally flat pieces, we will paste together factorizable pieces, which
can be overlapping, because integration is an additive operation.

For actual computations, it is convenient to use the same domain for the
charts of all manifolds. The obvious choice for n-dimensional manifolds is
the open n-dimensional unit hypercube

U = (0, 1)⊗n . (5)

Sometimes, it will be instructive to view the chart as a composition φ = ψ◦χ
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Figure 1: e+e− → qq̄g

with an irregularly shaped P ∈ Rn as an intermediate step

ψ

f ◦ ψ

φχ f ◦ φ
f

P R

U

M
(6)

(in all commutative diagrams, solid arrows are reserved for bijections and
dotted arrows are used for other morphisms). The integral (1) can now be
written

I(f) =

∫ 1

0

dnx

∣∣∣∣∂φ∂x
∣∣∣∣ f(φ(x)) (7)

and it remains to sample |∂φ/∂x| · (f ◦φ) on U . Below, it will be crucial that
there is more than one way to map U onto M

φ′

χ′

φ

πU

χ

ψ′

ψ

πP

U ′

U

P ′

P

M (8)

and that we are free to select the map most suitable for our purposes.
The ideal choice for φ would be a solution of the partial differential equa-

tion |∂φ/∂x| = 1/(f ◦ φ), but this is equivalent to an analytical evaluation
of I(f) and is impossible for the cases under consideration. A more realistic
goal is to find a φ such that |∂φ/∂x| · (f ◦ φ) has factorizable singularities
and is therefore sampled well by Vegas. This is still a non-trivial problem,
however.

For example, consider the phase space integration for gluon radiation
e+e− → qq̄g. From the Feynman diagrams in figure 1 it is obvious that the
squared matrix element will have singularities in the variables s1/2 = (q1/2 +

4



k)2. Thus, adaptive sampling using Vegas would benefit from a parametriza-
tion using both s1 and s2 as coordinates in the intermediate space P . Un-
fortunately, the invariant phase space measure for such a parametrization
involves the Gram determinant in the form 1/

√
∆4(p1, p2, q1, q2), which will

lead to non-factorizable singularities at the edges of phase space. Note that
the very elegant phase space parametrizations of the RAMBO [3] type are
not useful in this case, because there is no simple relation between the coordi-
nates on U and the invariants in which the squared matrix elements can have
singularities. On the other hand, it is straightforward to find parametriza-
tions that factorize the dependency on s1 or s2 separately.

Returning to the general case, consider Nc different maps φi : U → M
and probability densities gi : U → [0,∞). Then the function

g =
Nc∑
i=1

αi(gi ◦ φ−1
i )

∣∣∣∣∂φ−1
i

∂p

∣∣∣∣ (9)

is a probability density g : M → [0,∞)∫
M

dµ(p) g(p) = 1 , (10)

as long as the gi and αi are properly normalized∫ 1

0

gi(x)d
nx = 1 ,

Nc∑
i=1

αi = 1 , 0 ≤ αi ≤ 1 . (11)

From the definition (9), we have obviously

I(f) =
Nc∑
i=1

αi

∫
M

gi(φ
−1
i (p))

∣∣∣∣∂φ−1
i

∂p

∣∣∣∣ dµ(p)
f(p)

g(p)
(12)

and, after pulling back from M to U

I(f) =
Nc∑
i=1

αi

∫ 1

0

gi(x)d
nx

f(φi(x))

g(φi(x))
, (13)

we find the estimate

E(f) =
Nc∑
i=1

αi

〈
f ◦ φi

g ◦ φi

〉
gi

. (14)

The factorized gi in (12) and (14) can be optimized using the classic Vegas
algorithm [1] unchanged. However, since we have to sample with a separate
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adaptive grid for each channel, a new implementation [4] is required for
technical reasons.

Using the maps πij = φ−1
j ◦ φi : U → U introduced in (8), we can write

the g ◦ φi : U → [0,∞) from (14) as

g ◦ φi =

∣∣∣∣∂φi

∂x

∣∣∣∣−1

αigi +
Nc∑
j=1
j 6=i

αj(gj ◦ πij)

∣∣∣∣∂πij

∂x

∣∣∣∣
 . (15)

From a geometrical perspective, the maps πij are just the coordinate transfor-
mations from the coordinate systems in which the other singularities factorize
into the coordinate system in which the current singularity factorizes.

Note that the integral in (12) does not change, when we use φi : U →
Mi ⊇ M , if we extent f from M to Mi by the definition f(Mi \M) = 0.
This is useful, for instance, when we want to cover (−1, 1) ⊗ (−1, 1) by
both Cartesian and polar coordinates. This causes, however, a problem with
the π12 in (15). In the diagram

φ1χ1
π12

φ2 χ2

ψ1 ι1 ι2 ψ2

U U

P1 M1 M M2 P2

(16)

the injections ι1,2 are not onto and since π12 is not necessarily a bijection
anymore, the Jacobian |∂πij/∂x|may be ill-defined. But since f(Mi\M) = 0,
we only need the unique bijections φ′1,2 and π′12 that make the diagram

φ1χ1
φ′1

ιU1

π′12

φ′2

ιU2

φ2 χ2

ψ1 ι1 ι2 ψ2

U U1 U2 U

P1 M1 M M M2 P2

(17)

commute.
In many applications, the dependence of an integral on external param-

eters has to be studied. Often, the πij will not depend on these parameters
and we can rely on Vegas to optimize the gi for each parameter set. In the
next section, we will show how to optimize the αi numerically as well.

3 Multichannel

Up to now, we have not specified the αi, they are only subject to the condi-
tions (11). Intuitively, we expect the best results when the αi are proportional
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to the contribution of their corresponding singularities to the integral. The
option of tuning the αi manually is not attractive if the optimal values depend
on varying external parameters. Instead, we use a numerical procedure [2]
for tuning the αi.

We want to minimize the variance (3) with respect to the αi. This is
equivalent to minimizing

W (f, α) =

∫
M

g(p)dµ(p)

(
f(p)

g(p)

)2

(18)

with respect to α with the subsidiary condition
∑

i αi = 1. After adding a
Lagrange multiplier, the stationary points of the variation are given by the
solutions to the equations

∀i : Wi(f, α) = W (f, α) (19)

where

Wi(f, α) = − ∂

∂αi

W (f, α) =

∫ 1

0

gi(x)d
nx

(
f(φi(x))

g(φi(x))

)2

(20)

and

W (f, α) =
Nc∑
i=1

αiWi(f, α) . (21)

It can easily be shown [2] that the stationary points (19) correspond to local
minima. If we use

Ni = αiN (22)

to distribute N sampling points among the channels, the Wi(f, α) are just
the contributions from channel i to the total variance. Thus we recover the
familiar result from stratified sampling, that the overall variance is minimized
by spreading the variance evenly among channels.

The Wi(f, α) can be estimated with very little extra effort while sam-
pling I(f) (cf. 14)

Vi(f, α) =

〈(
f ◦ φi

g ◦ φi

)2
〉

gi

. (23)

Note that the factor of gi/g from the corresponding formula in [2] is absent
from (23), because we are already sampling with the weight gi in each channel
separately.

The equations (19) are a fixed point of the prescription

αi 7→ α′i =
αi (Vi(f, α))β∑
i αi (Vi(f, α))β

, (β > 0) (24)
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for updating the weights αi. There is no guarantee that this fixed point
will be reached from a particular starting value, such as αi = 1/Nc, through
successive applications of (24). Nevertheless, it is clear that (24) will concen-
trate on the channels with large contributions to the variance, as suggested
by stratified sampling. Furthermore, empirical studies show that (24) is suc-
cessful in practical applications. The value β = 1/2 has been proposed in [2],
but it can be beneficial in some cases to use smaller values like β = 1/4 to
dampen statistical fluctuations.

4 Performance

Both the implementation and the practical use of the algorithm proposed
in this note are more involved than the application of the original Vegas
algorithm. Therefore it is necessary to investigate whether the additional
effort pays off in terms of better performance.

A test version of an implementation of this algorithm, “VAMP”, in For-
tran [5] has been used for empirical studies. This implementation features
other improvements over “Vegas Classic”—most notably system independent
and portable support for parallel processing and support for unweighted event
generation—and will be published when the documentation [4] is finalized.
The preliminary version is available from the author upon request.

4.1 Costs

There are two main sources of additional computational costs: at each sam-
pling point the function g ◦φi has be evaluated, which requires the computa-
tion of the Nc − 1 maps πij together with their Jacobians and of the Nc − 1
probability distributions gi of the other Vegas grids (cf. (15)).

The retrieval of the current gis requires a bisection search in each dimen-
sion, i.e. a total of O((Nc − 1) · ndim · log2(ndiv)) executions of the inner loop
of the search. For simple integrands, this can indeed be a few times more
costly than the evaluation of the integrand itself.

The computation of the πij can be costly as well. However, unlike the gi,
this computation can usually be tuned manually. This can be worth the effort
if many estimations of similar integrals are to be performed. Empirically,
straightforward implementations of the πij add costs of the same order as
the evaluation of the gi.

Finally, additional iterations are needed for adapting the weights αi of the
multi channel algorithm described in (3). Their cost is negligible, however,
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because they are usually performed with far fewer sampling points than the
final iterations.

4.2 Gains

Even in cases in which the evaluation of gi increases computation costs by a
whole order of magnitude, any reduction of the error by more than a factor
of 4 will make the multi channel algorithm economical. In fact, it is easy
to construct examples in which the error will be reduced by more than two
orders of magnitude. The function

f(x) =
b

144 atan(1/2b)

(
3πΘ(r3 < 1)

r2
3((r3 − 1/2)2 + b2)

+
2πΘ(r2 < 1, |x3| < 1)

r2((r2 − 1/2)2 + b2)

+
Θ(−1 < x1, x2, x3 < 1)

x2
1 + b2

)
, (25)

with r2 =
√
x2

1 + x2
2 and r3 =

√
x2

1 + x2
2 + x2

3, is constructed such that it can
easily be normalized ∫ 1

−1

d3x f(x) = 1 (26)

and allows a check of the result. The three terms factorize in spherical, cylin-
drical and Cartesian coordinates, respectively, suggesting a three channel
approach. After five steps of weight optimization consisting four iterations
of 105 samples, we have performed three iterations of 106 samples with the
VAMP multi channel algorithm. Empirically, we found that we can perform
four iterations of 5 · 105 samples and three iterations of 5 · 106 samples with
the class Vegas algorithm during the same time period. Since the functional
form of f is almost as simple as the coordinate transformation, the fivefold
increase of computational cost is hardly surprising.

In figure 2, we compare the error estimates derived by the classic Vegas
algorithm and by the three channel VAMP algorithm. As one would expect,
the multi channel algorithm does not offer any substantial advantages for
smooth functions (i. e. b > 0.01). Instead, it is penalized by the higher
computational costs. On the other hand, the accuracy of the classic Vegas
algorithm deteriorates like a power with smaller values of b. At the same
time, the multi channel algorithm can adapt itself to the steeper functions,
leading to a much slower loss of precision.

The function f in (25) has been constructed as a showcase for the multi
channel algorithm, of course. Nevertheless, more complicated realistic ex-
amples from particle physics appear to gain about an order of magnitude in
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Figure 2: Comparison of the sampling error for the integral of f in (25) as
a function of the width parameter b for the two algorithms at comparable
computational costs.

accuracy. Furthermore, the new algorithm allows unweighted event genera-
tion. This is hardly ever possible with the original Vegas implementation,
because the remaining fluctuations typically reduce the average weight to
very small numbers.

4.3 A Cheaper Alternative

There is an alternative approach that avoids the evaluation of the gis, sacri-
ficing flexibility. Fixing the gi at unity, we have for g̃ : M → [0,∞)

g̃ =
Nc∑
i=1

αi

∣∣∣∣∂φ−1
i

∂p

∣∣∣∣ (27)

and the integral becomes

I(f) =
Nc∑
i=1

αi

∫
M

∣∣∣∣∂φ−1
i

∂p

∣∣∣∣ dµ(p)
f(p)

g̃(p)
=

Nc∑
i=1

αi

∫ 1

0

dnx
f(φi(x))

g̃(φi(x))
. (28)

Vegas can now be used to perform adaptive integrations of

Ii(f) =

∫ 1

0

dnx
f(φi(x))

g̃(φi(x))
(29)

individually. In some cases it is possible to construct a set of φi such that Ii(f)
can estimated efficiently. The optimization of the weights αi can again be
effected by the multi channel algorithm described in (3).
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The disadvantage of this approach is that the optimal φi will depend sen-
sitively on external parameters and the integration limits. In the approach
based on the g in (9) Vegas can take care of the integration limits automat-
ically.

5 Conclusions

We have presented an algorithm for adaptive Monte Carlo integration of func-
tions with non-factorizable singularities. The algorithm shows a significantly
better performance for many ill-behaved integrals than Vegas.

The applications of this algorithm are not restricted to particle physics,
but a particularly attractive application is provided by automated tools for
the calculation of scattering cross sections. While these tools can currently
calculate differential cross sections without manual intervention, the phase
space integrations still require hand tuning of mappings for importance sam-
pling for each parameter set. The present algorithm can overcome this prob-
lem, since it requires to solve the geometrical problem of calculating the
maps πij in (15) for all possible invariants only once. The selection and
optimization of the channels can then be performed algorithmically.

The application of the algorithms presented here to quasi Monte Carlo
integration forms an interesting subject for future research. Other options
include maps φi depending on external parameters, which can be optimized
as well. A simple example are rotations, which can align the coordinate
systems with the singularities, using correlation matrices [4].
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