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ABSTRACT

WHIZARD is a program system designed for the efficient calculation of multi-
particle scattering cross sections and simulated event samples. The events
can be written to file in various formats (including STDHEP and ASCII)
or analyzed directly on the parton level using a built-in LATEX-compatible
graphics package.

Tree-level matrix elements are generated automatically for arbitrary partonic
processes by calling (in principle) external programs (O’Mega per default,
while MadGraph and CompHEP are available on demand), that are however
shipped with the main distribution. In particular, the MSSM is supported
with an interface to the SUSY Les Houches Accord input format. Matrix
elements obtained by alternative methods (e.g., including loop corrections)
may be interfaced as well. Using an adaptive multi-channel method for phase
space integration, the program is able to calculate numerically stable signal
and background cross sections and generate unweighted event samples with
reasonable efficiency for processes with up to six and more final-state par-
ticles. Polarization is treated exactly for both the initial and final states.
Quark or lepton flavors can be summed over automatically where needed.

For Linear Collider physics, beamstrahlung (CIRCE), Compton and ISR spec-
tra are included for electrons and photons. Alternatively, beam-crossing
events can be read directly from file. For hadron collider physics, the stan-
dard LHAPDF (or alternatively for backwards compatibility reasons) the
PDF library (PDFLIB) can be linked. For fragmenting and hadronizing the
final state, a PYTHIA and Herwig interface is provided which follows the Les
Houches Accord.

The WHIZARD distribution is available at

http://projects.hepforge.org/whizard

or alternatively from

http://whizard.event-generator.org
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1 General remarks and History

The increase of complexity in the scattering processes that are of interest at the next generation
of colliders calls for new tools for automatic computation and event generation. Many different
problems have to be tackled simultaneously: The program has to be versatile and necessarily
involves a large degree of automatization since the list of multi-particle processes to be consid-
ered is much longer than can be included in a hard-coded process library like PYTHIA [1]. The
precision required for the predictions makes the traditional distinction between signal and back-
ground processes obsolete, since interference effects often cannot be neglected. Thus, massive
multi-particle phase space has to be handled in the presence of many resonances and nearby
singularities. Since detector effects need to be studied, the program has to have a convenient
user interface, and it must be able to generate unweighted events with reasonable efficiency.

During the workshops of the ECFA/DESY study for a future Linear Collider it became
obvious that no single existing package was able to meet all these needs. Therefore, the initial
idea of WHIZARD was to combine known packages for generating matrix elements with a program
which is able to treat generic phase space, integrate and generate events. The included matrix
element generator is O’Mega [4] (for historic reasons and for internal compatibility and cross
checks) slightly modified late 1990s’ versions of CompHEP [2] and MadGraph [3] are also avail-
able). O’Mega covers the whole set of processes that currently can be handled automatically (at
tree level). The latter problem could be solved with the help of the VAMP [5] integration pro-
gram, which extends the VEGAS algorithm to multi-channel parameterizations and thus makes
it possible to handle the complex singularity patterns of multi-particle phase space in a uniform
way.

The task for WHIZARD was to provide the actual phase space parameterizations, Jacobians
and transformations, provide a consistent environment and to make the programs communicate
with each other by common interfaces. The user had to be given a simple setup with common
configuration and parameter definition files, commands to run all programs consistently with-
out the need for manual intervention (a simple make should suffice), and an analysis system
which allows for rapid inspection of the results as well as for interfacing hadronization and
detector simulation programs. The program had to keep full track of beam polarization and
include beamstrahlung and initial-state radiation. For hadronization, an interface to external
programs should be included. Finally, it should allow for flavor summation in the final state:
usually, many different processes contribute to a single final state that cannot be distinguished
experimentally, and thus should be covered in a single run.

These goals have to a large extent been achieved by the current release. However, there is
still room for improvement. Most prominent, for a longer time period, parts of the support
for QCD amplitudes was given by the O’Mega matrix element generator only in the leading
Nc approximation. This problem has been successfully solved with the 1.41 release in July
2005. However, the treatment of QCD effects still is (and probably will ever be) incomplete,
which always is a problem of the matrix element generators, the shower generators and the
hadronization models which e.g. do not treat interfering color structures correctly in all cases.
Furthermore, these programs obviously limit WHIZARD to the physics models they can support.

The original acronym WHIZARD stands for
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W, HIggs, Z, And Respective Decays

which is the class of processes (electroweak processes at e+e− colliders) the program was orig-
inally designed for. However, the present version has a much larger range of applicability,
especially focusing on beyond the Standard Model (BSM) physics. Not that WHIZARD had orig-
inally been working with MadGraph and CompHEP as matrix element generators, while O’Mega

joined in summer 2001. From version 1.90 on O’Mega, which had before been installed exter-
nally and its environment variables properly set within WHIZARD has been attached to WHIZARD.
From that version on, MadGraph and CompHEP are switched off per default and will only be used
for compatibility and consistency tests.

From January 2007 on, the new development branch of WHIZARD 2.0.0 has been opened
and the new version 2.0.0 has finally been released in April 2010. Many design deficiencies of
version 1 like event-dependent scales, vast support of hadron collider physics, factorized decays,
new event formats like HepMC etc. have been included in the new release. With version 1.94
released in February 2010 we decided to freeze WHIZARD version 1, meaning that there will be no
new feature developments in the version 1 branch. Further releases will only contain updated
documentation, regression and bug fixes. For a description of the features, installation and
running of WHIZARD 2 confer the abovementioned webpages and the manual and distribution
files of WHIZARD version 2 directly.
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2 Getting Started

While the full details of WHIZARD’s capabilities are explained in the later chapters, a simple
working example should give some flavor of the program.

2.1 Evaluating a total cross section

First of all, WHIZARD has to be installed on your computer. It is designed to run on UNIX
systems and has been successfully tested on several Linux OS as well as MAC OS X. While
many features it uses are standard nowadays (see Sec.3), some are not, and you should check
first:

• For the O’Mega matrix element generator you need the Objective Caml (O’Caml) language
and compiler. See p.??.

• You must have a Fortran compiler which supports the Fortran 95 standard.1

WHIZARD has been extensively tested only on Linux PC and Alpha (DEC/Compaq) systems;
feedback for other platforms is welcome.

When these conditions are met, you should switch to an empty directory, e.g. whizard, and
unpack the source there:

cd whizard

tar xzf whizard-1.xx.tgz

Next, the package has to be configured:

./configure

Inspect the output of configure and look for warnings and errors. It may happen that some
environment variables have to be set so that the configure script can find all it is looking for
(see Sec. 3.3.2). (Except for very old systems, WHIZARD compiles with the system Fortran 95
compiler, and on most operating system, O’Caml is also available as a package.)

After configuration, you have to choose the physics model and the processes you are inter-
ested in. You are free to specify an arbitrary list of scattering processes, which you write into
the configuration file conf/whizard.prc. The file conf/whizard.prc.default is intended as
a guideline: the processes listed there are just examples.

After this is done, the compilation procedure (see below) results in an executable named
whizard. This will be an integration program and Monte-Carlo event generator for exactly
those processes you have specified. So, in principle, there can be as many different WHIZARD

versions as there are possible process lists.

1WHIZARD has been checked to work with recent versions of the g95, NAG, Lahey/Fujitsu, Portland (PGF)
and Intel compilers (Intel/Linux) and the Compaq compiler (Alpha architecture). If you experience problems,
first check the compiler version, since some compiler bugs may have been fixed only very recently. For more
information about compilers confer http://projects.hepforge.org/whizard/compilers.html
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To be specific, let us consider W pair production with a four-fermion final state:

e+e− → µ−ν̄µud̄ (1)

The corresponding configuration file conf/whizard.prc reads

# The selected model

model SM

# Processes

# Tag In Out Method Option

#=====================================================

cc10 e1,E1 e2,N2,u,D omega

The lines beginning with # signs are comments, so the only relevant information are the model
definition (the Standard Model in this case) and the lines defining the processes. In the example,
there is only one process definition. The particle names follow the CompHEP convention, but
other conventions may be adopted as well. (You can find all definitions of particle properties
and names, as well as the physics parameters of the selected model, in the corresponding model
file located in the conf/models subdirectory. In the present case, this is SM.mdl.)

The keyword omega selects the O’Mega matrix element generator. Again, the current
WHIZARD version comes in principle with three different matrix element generators one can
choose from (O’Mega, MadGraph, and CompHEP). But note that the latter two would have to be
enabled with corresponding configure options to be available.

Next, the following command makes the executable and installs it in the subdirectory named
results:

make prg install

This runs fully automatically, but it will take some time: The O’Mega matrix element generator
has to be compiled, then the process matrix element has to be constructed as a Fortran program
and compiled, auxiliary programs have to be compiled as well, and so on. Finally, everything
is linked into the single program named whizard.

The subdirectory results is self-contained: Along with the executable, the make scripts
put there all necessary input files, so the contents of this directory may be moved anywhere
else without affecting the functionality of the program.

The whizard executable is now a Monte-Carlo generator for the process (1). To run it,
change into the results directory

cd results

and edit the input file whizard.in there. This file consists of several input blocks, each one
beginning with a & keyword and terminated by a slash.2 The process ID ("cc10" in our case)
and the total energy are specified in the first input block. Apart from this, we set the muon
mass to zero3 but leave everything else empty for the moment:

2This is the NAMELIST format as defined by the Fortran language standard.
3Otherwise, the matrix element would contain the unphysical decay µ+ → ν̄µud̄ since the u and d quark

masses are always zero.
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&process_input

process_id = "cc10"

sqrts = 500

/

&integration_input /

&simulation_input /

&diagnostics_input /

&parameter_input

Mmu = 0

/

&beam_input /

&beam_input /

When this is done, we can start the program:

./whizard

On screen, WHIZARD will first display a header

! WHIZARD 1.97 (May 31 2011)

! Reading process data from file whizard.in

! Wrote whizard.out

!

! Process cc10:

! e a-e -> mu a-nu_mu u a-d

! 32 16 -> 1 2 4 8

This states that, at the very beginning, an output file whizard.out is written. This file contains
the full list of input parameters you have specified along with the default values chosen for the
other parameters. Next, the process is listed. The codes below the particle names are binary
codes which will become useful when cuts for kinematical variables are specified.

There follow several informational lines which you may ignore since the program takes care
of all necessary steps by itself. Nevertheless, some explanation might be in order:

Before starting integration, WHIZARD constructs a phase-space setup. The program uses
an adaptive multi-channel integration method. This involves the simultaneous use of multiple
phase-space parameterizations (channels), which roughly correspond to dominant Feynman
diagrams of the selected process. (Note that the absence of a channel only means that it is not
taken into account for a specific phase space mapping, but the corresponding Feynman diagrams
are nevertheless contained in the evaluated O’Mega amplitude.) Therefore, the physics model
is taken into account:

! Reading vertices from file whizard.mdl ...

! Model file: 54 trilinear vertices found.

! Model file: 54 vertices usable for phase space setup.
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The model file whizard.mdl is a copy of the original SM.mdl before; it contains a list of all
vertices relevant for constructing phase space integration channels. Next, these channels are
constructed:

! Generating phase space channels for process cc10...

! Phase space: 8 phase space channels generated.

! Scanning phase space channels for equivalences ...

! Phase space: 8 equivalence relations found.

! Note: This cross section may be infinite without cuts.

! Wrote default cut configuration file whizard.cc10.cut0

! Wrote phase space configurations to file whizard.phx

The resulting set of channels is written to a file whizard.phx which is in plain ASCII for-
mat. Furthermore, when constructing the phase space the program has found some indication
that cuts might be needed, because the final state contains two massless quark jets. (Strictly
speaking, in the present case of unequal quark flavors, this is unnecessary, but it is a stan-
dard choice.) The corresponding default cut on the dijet invariant mass is written into the file
whizard.cc10.cut0 for informational purposes, and it will be used in the integration.

The weights of the channels will be adapted iteratively. Furthermore, each integration
dimension is binned, and the location of bins (the grid) will also be iteratively adapted for each
channel. In the present case, this amounts to

! Created grids: 8 channels, 8 dimensions with 20 bins

After these preliminaries, the program starts integration. It chooses 20,000 calls for each
iteration of the adaptive iteration procedure, which takes some time to evaluate. Finally, the
output looks like this:

! WHIZARD run for process cc10:

!=============================================================================

! It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It]

!-----------------------------------------------------------------------------

! Reading cut configuration data from file whizard.cut1

! No cut data found for process cc10

! Using default cuts.

cut M of 12 within 1.00000E+01 1.00000E+99

! Preparing (fixed weights): 1 sample of 20000 calls ...

1 20000 2.8867607E+02 1.17E+01 4.05 5.73* 1.59 0.00 1

!-----------------------------------------------------------------------------

! Adapting (variable wgts.): 10 samples of 20000 calls ...

2 20000 2.7061501E+02 1.03E+01 3.82 5.40* 1.69

3 20000 2.7528866E+02 1.99E+00 0.72 1.02* 6.88

4 20000 2.7296493E+02 1.55E+00 0.57 0.80* 12.27

5 20000 2.7147754E+02 1.34E+00 0.49 0.70* 16.73

6 20000 2.7038028E+02 1.29E+00 0.48 0.67* 16.04

7 20000 2.7298452E+02 1.27E+00 0.46 0.66* 14.17

8 20000 2.7065951E+02 1.26E+00 0.47 0.66 14.94
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9 20000 2.7150651E+02 1.25E+00 0.46 0.65* 14.46

10 20000 2.6996907E+02 1.28E+00 0.47 0.67 11.30

11 20000 2.6978351E+02 1.26E+00 0.47 0.66 13.35

!-----------------------------------------------------------------------------

! Integrating (fixed wgts.): 3 samples of 20000 calls ...

12 60000 2.7082438E+02 7.23E-01 0.27 0.65 12.12 0.26 3

!-----------------------------------------------------------------------------

At the beginning of each integration pass, the kinematical cuts are read, which are either
specified by the user in a cut definition file or, if this information is absent as in the present
case, the default set of cuts is used. (The letter M stands for the invariant mass, while the code
12 stands for the quark pair – add the binary codes 4 [u] and 8 [d̄] to get 12.)

The next lines allow the user to follow the convergence of the integral during the adaptation
procedure. For each iteration, the display shows the iteration index, the number of phase space
points sampled, the total cross section estimate, and the error estimate: the absolute value, the
relative percentage, and the relative error multiplied by the square root of the number of calls.
The latter number should be of order one; in our example it is slightly below one in the final
iterations.

During this procedure, the currently best result is always marked by an asterisk. Note that
each integral estimate is independent of each other; no accumulated integrals are shown. In
some iterations the accuracy apparently does not improve, but after 12 iterations the grid and
weight adaptation has nevertheless reduced the error estimate for a single sample by a factor 5.
The last column shows an estimate for the reweighting efficiency when generating actual Monte-
Carlo events. Since we have not yet enabled event generation, it is for informational purpose
only. Note that this number tends to be less stable than the integration error, but adapting
the grids has nevertheless considerably improved this value.

The final result in the last row is evaluated by averaging three further iterations of 20,000
events each. The preceding results are discarded since (at early stages of the adaptation) they
may be systematically off the correct result. The total cross section is thus estimated as

σtot = 270.82(72) fb (2)

There is also a χ2 value given which results from comparing the three independent samplings
which make up the final integration step. If this value is much larger than 1, we should mistrust
the error estimate. Here, the value 0.26 indicates a well-behaved result.

There are a few more lines in the output:

!

! Time estimate for generating 10000 unweighted events: 0h 00m 04s

!=============================================================================

! Summary (all processes):

!-----------------------------------------------------------------------------

! Process ID Integral[fb] Error[fb] Err[%] Frac[%]

!-----------------------------------------------------------------------------

cc10 2.7082438E+02 7.23E-01 0.27 100.00
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!-----------------------------------------------------------------------------

sum 2.7082438E+02 7.23E-01 0.27 100.00

!=============================================================================

! Wrote whizard.out

! Integration complete.

! No event generation requested

The time estimate for event generation (see below) may be taken as a rough guideline, based on
the previous reweighting efficiency estimate. Then, the result is repeated – if we had selected
more than one process for integration, the individual cross sections would be summarized
here. Finally, we get reminded that the input and output data have been saved in the file
whizard.out. Actually, this file contains only the summary. The process-specific data are
collected in the process-specific output file whizard.cc10.out.

2.2 Generating events

The results we have obtained can be used for event generation. Apart from the total cross
section which is displayed on screen, the adaptive integration procedure produces a set of
sampling grids, tailored to the given process and parameter set, which are written on disk and
allow the generation of true Monte-Carlo events.

To this end, we restart the program (of course, we could have done it in a single step).
We do not like to repeat the lengthy adaptation procedure, therefore we tell WHIZARD to reuse
the grids. Furthermore, we specify a certain luminosity, say, 10 fb−1. The modified input file
whizard.in looks like

&process_input

process_id = "cc10"

sqrts = 500

luminosity = 10

/

&integration_input

read_grids = T

/

&simulation_input /

&diagnostics_input /

&parameter_input

Mmu = 0

/

&beam_input /

&beam_input /

The output looks as before (recall that the results are now read from file), but after display-
ing the integral the program continues and generates the appropriate number of Monte-Carlo
events:
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! Reading analysis configuration data from file whizard.cut5

! No analysis data found for process cc10

! Event sample corresponds to luminosity [fb-1] = 9.999

! Event sample corresponds to 22344 weighted events

! Generating 2708 unweighted events ...

When this is finished, the program displays a summary:

! Event generation finished.

!=============================================================================

! Analysis results for process cc10:

! It Events Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It]

!-----------------------------------------------------------------------------

13 2708 2.7082438E+02 5.20E+00 1.92 1.00 100.00

!-----------------------------------------------------------------------------

! Warning: Excess events: 5.1 ( 0.19% ) | Maximal weight: 1.95

The integral is unchanged (by definition), but the given error is now the statistical error which
corresponds to the size of the event sample (2708 events). The 100 % efficiency just tells us
that there were no additional cuts in the event generation pass; if there were some, it would be
the percentage of events that passed the cuts.

The excess events (the sum of all weights exceeding 1) are few enough that they can be
safely ignored. Actually, the largest event weight was 1.95 which tells us that the reweighting
efficiency estimate – the ratio of the average and the highest weight – has been slightly too
optimistic. (In a Monte-Carlo approach of this complexity, it is impossible to calculate the
highest possible event weight; it can only be approximated, and there is always a chance for
fluctuations.)

2.3 Analyzing events

Clearly, such a run is not very useful without doing anything with the generated events. For-
tunately, they have been written to file (in a compressed machine-dependent format) and can
be reread in a subsequent run (again, we could also have done it in a single run).

We might like to investigate the distributions of the hadronic invariant mass near the W
pole and of the muon energy in our event sample. To achieve this, we set up a file named
whizard.cut5 (the file defining cuts – and histograms – for the 5th pass of the program). It
could read

# Analysis configuration file for the process ee -> mu nu u d

process cc10

histogram M of 12 within 70 90 nbin 20

and

histogram E of 1 within 0 500 nbin 25
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Again, the binary codes of the particles come into play. Recall that they are in the present
example

e− e+ → µ− ν̄µ u d̄
32 16 1 2 4 8

The muon is thus assigned the number 1, and the combination ud̄ is assigned the number
12 = 4 + 8.

We have still to tell the program to reuse the previous event sample. In the input file, we
change the block

&simulation_input /

to

&simulation_input

read_events = T

/

and restart the program. In the output, the program now says

! Found 2 analysis configuration datasets

and shows two identical summaries, one for each dataset. However, it has also generated the
required distributions. Those are in the file whizard.cc10.dat and can be inspected there:

!=============================================================================

! WHIZARD 1.97 (May 31 2011)

! Process cc10:

! e a-e -> mu a-nu_mu u a-d

! 32 16 -> 1 2 4 8

! Analysis results for process cc10:

!

! Histograms:

!

histogram M of 12 within 7.00000E+01 9.00000E+01 nbin 20

70.5000000 5.00000000 2.23606798 0.00000000

71.5000000 13.0000000 3.60555128 0.00000000

72.5000000 10.0000000 3.16227766 0.00000000

73.5000000 17.0000000 4.12310563 0.00000000

...

The first column shows the bin midpoints, the second column the number of events, and the
third column the statistical error

√
nevt. The fourth column shows excess events if there are

any.
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The contents of this file can be displayed graphically by standard analysis packages. For
convenience, WHIZARD is able to do this by itself, using a macro package for the MetaPost
drawing program4. The simple command 5

make plots

will execute all necessary steps automatically. The result is a PostScript file called whizard-plots.ps.
For the case at hand, the plots are shown here:
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As expected, the hadronic invariant mass concentrates around the W mass, while the muon
energy shows a smooth distribution.

2.4 Further options

The above example covers only basic features of WHIZARD. Some further possibilities, which are
explained in the subsequent chapters of this manual, are:

• Evaluate and sum over arbitrary processes.

• Change physical parameters (masses, couplings)

• Calculate processes in the MSSM (or other BSM models)

• Reweight matrix elements by user-defined functions.

• Insert parton structure functions (hadron collider) from the LHAPDF (or alternatively
PDFLIB), beamstrahlung/ISR (e+e− collider), or the Weizsäcker-Williams approximation
for photons.

4The macro package is called gamelan and is included in the distribution. MetaPost must be available on
the system; this is determined by configure when WHIZARD is installed.

5Doing this the first time, this make, or make gml has to be issued in the main directory, so gamelan is
compiled. Later, it also works in the results subdirectory where the files reside.
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• Choose polarized beams.

• Insert user-defined cuts.

• Analyze the final-state polarization.

• Mix several processes in event generation.

• Fragment the full system including beam remnants using PYTHIA.

• Fragment the final-state particles using JETSET.

• Write events to file in ASCII or STDHEP format and analyze them by external programs.

•
[

For historical reasons and cross-checks: use different matrix-element generators (CompHEP
and MadGraph besides O’Mega).

]
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3 Installation

3.1 Sources

WHIZARD is Free Software (under the GPL Gnu Public License) and the sources can be obtained
from

http://projects.hepforge.org/whizard

or alternatively from

http://whizard.event-generator.org

The command

tar xzf whizard-1.xx.tgz

will unpack the sources in the current working directory (note that the tarball does not generate
a new directory). After unpacking, the following subdirectories will exist:

doc contains the manual

conf contains the configuration file and default input files

kinds-src contains the definition of the Fortran REAL kinds

omega-src contains the O’Mega distribution, the default matrix element generator of WHIZARD

circe-src contains the CIRCE beamstrahlung library

circe2-src contains the CIRCE2 library

vamp-src contains the VAMP integration library

gml-src contains the gamelan sources which allow a graphical representation of WHIZARD results

whizard-src contains the actual WHIZARD sources

bin contains the scripts needed for running WHIZARD and, after compilation, the WHIZARD exe-
cutable

lib is created during compilation and holds the resulting program libraries which when linked
make up the WHIZARD executable.

include contains after compilation the Fortran include files and files containing the parameters
of the model in use

processes-src is created during compilation and holds the source code for the generated
matrix elements and corresponding Feynman graph pictures
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results contains the WHIZARD executable and input files after installation

fmf-src contains the LATEX macros for drawing Feynman diagrams

config.scripts contains maintenance scripts
[

chep-src contains the CompHEP sources
]

[

mad-src contains the MadGraph sources
]

[

helas-src contains the HELAS library which is used by MadGraph
]

3.2 Prerequisites

3.2.1 Necessary

The following programs must be available on the host system in order to successfully compile
and run WHIZARD6 :

• GNU Make: Required for compiling WHIZARD. The scripts in WHIZARD also make use of
standard UNIX tools such as grep, sed, etc.

• PERL 5: Matrix element generation is controlled by PERL scripts.

• Fortran 95: The programming language of the actual WHIZARD code. Be aware that
some Fortran compilers, unfortunately, still have internal bugs that prevent successful
compilation of WHIZARD. Meanwhile, the gfortran shipped with the gcc bundle compiles
WHIZARDfrom version 4.3 on (which is the oldest compiler version still supported by gcc).

• Fortran 77: This is required only for interoperability with pre-compiled Fortran 77 li-
braries such as the CERNLIB. If this is not needed, a symlink to the Fortran 95 compiler
should suffice.

• O’Caml Objective Caml programming language: this is needed for the compilation of
O’Mega in a recent version (3.04 or newer). This has become part of of most (if not all)
Linux distributions. Otherwise, you can get it from

http://pauillac.inria.fr/ocaml/

3.2.2 Optional

The following programs are not needed for compiling and running WHIZARD, but only for some
additional features:

6A C compiler is needed by CompHEP. The compiler and compiler flags are set in chep-src/unix com/CC.
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• The LHAPDF library for parton distribution functions. The package can be found here
http://projects.hepforge.org/lhapdf. Although it is not mandatory, it is highly recom-
mended to compile LHAPDF with the same Fortran95 compiler as WHIZARD, because
otherwise you might need to link compiler libraries into the WHIZARD binary.

• The STDHEP library for writing events in STDHEP format. This library is contained in
the CERN library in pre-compiled version only. (Using it may require the corresponding
Fortran77 runtime library, which is determined automatically by configure.) Alterna-
tively, if you do not want to rely on the CERNLIB, you could get the STDHEP library
from here http://cepa.fnal.gov/psm/stdhep/getStdHep.shtml.

• The PDFLIB library from the CERN library (CERNLIB) which accounts for parton dis-
tribution functions. (Using it may require the corresponding Fortran77 runtime library,
which is determined automatically by configure.) Although this is still supported within
WHIZARD 1, it is considered to be deprecated, and one should use LHAPDF instead.

When you still want to use this feature, and there is a precompiled version on your system
(e.g. compiled with f77 or g77), then you probably need to include FCFLAGS=-lg2c. Fur-
thermore, you might need to compile the file f77 files.f in the whizard-src directory
with the command <your f95 compiler> -c f77_files.f and include the object file
in the following line in the file bin/whizard.ld:
OBJ="$* processes-src/*.o whizard-src/f77_files.o".

• PYTHIA can be used for decaying and hadronizing the events generated by WHIZARD.
If the PYTHIA library is present on the host system, it will be called for that purpose
from inside WHIZARD, so no external interface is needed. The library is contained in the
CERN library in pre-compiled version. (Using it may require the corresponding Fortran77
runtime library, which is determined automatically by configure.) Important: Note
that the WHIZARD 1 configure setup only supports the PYTHIA library as it is contained
in the CERNLIB, using a version compiled by yourself might lead to the need to modify
several configure options or Makefiles.

• LATEX for typesetting the documentation (including this manual) Note that the cleanest
and most complete way to get LATEXis to install the TeXLive bundle.

• HEVEA for making the HTML version of the manual

• MetaPost for on-line generation of histogram and data plots. This is again contained in
the TeXLive bundle.

• noweb for weaving the program sources.

• autoconf for creating a configure script in the restricted bundle.

17



3.2.3 Independent components

WHIZARD contains the following four sub-programs which are basically independent programs by
themselves, but have been agreed upon by their authors to be merged into the WHIZARD bundle
from version 1.90 on. This has been done in WHIZARD version 1.90 and the 1.9x distribution
series by just attaching the code of these tools to the WHIZARD main core, while in WHIZARD

2 the sub-components have been recovered as completely, self-configurable and independently
maintainable tools.

The four tools discussed above are

• O’Mega the matrix element generator. This program is now steered also via the WHIZARD

HepForge page http://www.hepforge.org/downloads/whizard. Note that only the O’Mega
versions up to 0.xx are compatible with WHIZARD 1.xx. The newer versions carrying the
same version number as WHIZARD 2.x.x have been designed and modified to work with
WHIZARD 2 only. Again, only for WHIZARD up to version 1.51 a separate download of O’Mega
is necessary, from 1.90 on the matrix element generator is included in the WHIZARD tarball.

• CIRCE and CIRCE2 (for lepton collider beam spectra and photon collider spectra) are now
steered from the WHIZARD HepForge page as well, http://www.hepforge.org/downloads/whizard.
They have been re-named there as CIRCE1 and CIRCE2, respectively. CIRCE itself has been
included into WHIZARD from the very beginning, while CIRCE2 is part of the distribution
since version 1.28. Both programs have been attached with an additional WHIZARD inter-
face, which has been modernized and updated in WHIZARD 2.

• VAMP is the multi-channel adaptive integration routine of WHIZARD which has been part
of the WHIZARD core since the very beginning of the program. It is now as well steered via
the WHIZARD HepForge page http://www.hepforge.org/downloads/whizard.

3.2.4 Alternative matrix element generators

The following two matrix element generators in modified versions are included in the WHIZARD

distribution and need not be obtained separately.
The URLs below should be inspected for the documentation, references, and license condi-

tions:

• CompHEP:

http://comphep.sinp.msu.ru

The CompHEP version which is included in WHIZARD is completely out-of-date (version
3.2.18), but has an additional Fortran 95 interface. It is kept mainly for the possibility of
generating spin-summed matrix element for simple processes, which the other methods
(which use helicity amplitudes) cannot provide as efficiently. Furthermore, with CompHEP

the definition of new models is straightforward and does not require programming.

• MadGraph/HELAS:
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http://madgraph.physics.uiuc.edu

Again, only a very old version from the MadGraph 3 release series with a modified Fortran
95 interface is supported by WHIZARD. Especially, the version attached to the WHIZARD

distribution does not contain any Higgs self couplings.

It should be stressed that the current CompHEP and MadGraph versions are much more
powerful than the versions included within the WHIZARD distribution and are full-fledged event
generators by themselves.

3.3 Configuration

Running the configure script

./configure

will check the availability of programs and utilities and generate the Makefiles appropriate for
the host system. At the end of the configuration, a summary of the available/enabled and
unavailable/disabled features is printed.

If desired, configure can be re-run. This is useful if you change environment variables
or configure options (see below). If you would like to make the changes active and you have
already made or run the WHIZARD executable, it may be necessary to do a make clean before
you redo make prg or similar.

If you only wish to re-generate the Makefiles without changing anything else, you can run
config.status. You may also use the command

make distclean

in order to remove everything including the files whizard.prc and whizard.in and thus restore
the original status of the package. 7

3.3.1 Configure options

According to the standard, the available options to configure can be viewed by typing

./configure --help

However, although this prints a long list of standard options, none of them are relevant except
for the ones which enable or disable parts of the WHIZARD package. If you wish to disable a
module, type

./configure --disable-MODULE

7Note that when you have noweb installed on your system, make distcleanwill erase all Fortran90 files in the
directory whizard-src including user.f90. This will lead after re-configuration and doing make prg install

again to the error message make[1]: *** No rule to make target ‘user.f90’,needed by ‘.depend’.

Stop.. In that case, just copy user.f90.default to user.f90 and repeat make prg install.
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where MODULE is the tag of one of the modules in the list below. There can be multiple disable
options in the command line. Conversely, the command

./configure --enable-MODULE

will configure WHIZARD with module MODULE enabled.
Here is the list of modules that can be switched on or off in this way:

Module Tag Purpose Enabled by default
O’Mega omega Matrix elements yes
CompHEP chep Matrix elements no
MadGraph mad Matrix elements no
CIRCE circe Beamstrahlung yes
CIRCE2 circe2 Beamstrahlung yes
LHAPDF lhapdf Parton structure functions yes
PDFLIB pdflib Parton structure functions yes
PYTHIA pythia Fragmentation and hadronization yes
STDHEP stdhep Binary event files for further processing yes
MetaPost metapost PostScript Histograms yes

There are a few more configure options that might be relevant, but are not sub-packages to
be disabled or enabled. The most interesting option for the user, --enable-quadruple allows
to use quadruple precision, if the compiler supports this (like e.g. the standard gfortram). As
a default it is switched off. Note that in some earlier WHIZARD versions this was set by means of
an environment flag (cf. next subsection), but has been changed into a configure option lately.
The option --enable-fc-profiling is only intended for profiling monitoring for developpers,
while the option —--enable-fc-impure would trigger a compilation of the O’Mega libraries
with non-pure and non-elemental functions. This allows to use print statements in the matrix
elements for debugging.

3.3.2 Configure environment

The following environment variables are recognized by configure. They need to be set only
if configure cannot find a program or library, or if a choice different from the default one
is desired. Path and program names should be specified absolute, not relative to the working
directory.

GMAKE: GNU Make.

FC: The Fortran 90/95 compiler. (The aliases F95,F90 also work.)

FCFLAGS: Flags to be passed to the Fortran 90/95 compiler. (The aliases F95FLAGS,
F90FLAGS also work.)

F77: The Fortran 77 compiler. This is needed for correctly linking precompiled Fortran 77
libraries (see below). It is highly recommended to use whenever possible the same compiler
for the Fortran 95 and Fortran 77 code.
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FFLAGS: Flags to be passed to the Fortran 77 compiler.

PERL: The PERL executable.

LIBS: Libraries to pass to the linker, e.g. -l<library>.

USERLIBS: To link additional libraries before the default ones.

SYSTEMLIBS: To link additional libraries after the default ones.

LDFLAGS: linker flags, e.g. -L<lib dir> if you have libraries in a nonstandard directory
<lib dir>.

TMPDIR: Directory where temporary files are stored. By default, /tmp is used.

LHAPDF DIR: The directory where the LHAPDF library resides. We strongly advice to
compile LHAPDF with the same Fortran 90/95 compiler used for the compilation of
WHIZARD.

CERNLIB DIR: The directory where the precompiled (F77) CERN libraries reside (op-
tional). This includes the STDHEP, PDFLIB and PYTHIA libraries together with auxiliary
libraries. If necessary, individual environment variables STDHEP DIR, PDFLIB DIR and
PYTHIA DIR can be used to override the setting of CERNLIB DIR. If CERNLIB DIR
is not set, /cern/pro/lib is assumed.

NOWEB DIR: Directory where the notangle, noweave, cpif executables reside (optional).
With these programs the Fortran 95 sources and a documented program listing can be
(re-)generated from the ultimate source whizard.nw.

GTAR: GNU tar (optional).

Instead of specifying configure options and environment variables on the command line,
they may be defined in the script config.site which is executed each time configure is run.

There are a few more environment variables like CC, CFLAGS, CPP, CPPFLAGS concerning the
C compiler, precompiler and their corresponding flags. As this is only relevant for compiling
CompHEP we do not mention these flags here any further8.

3.3.3 Test runs

After configuration is complete, one can test if the whole system works by executing

make test

8There is also CHEP MAXDIAG, the maximum number of diagrams contained in one CompHEP-generated
file. If there are more diagrams, files will be split. A value too large may lead to memory overflow for particular
compilers. Default value: 100.
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This will set up a Standard Model standard candle process using all activated matrix element
generators, i.e. per default O’Mega, compile the whole package and start the program for the
process e+e− → ν̄eνeH in the Standard Model (in up to three versions of the same process, but
compiled by different generators if CompHEP or MadGraph are enabled.). With the parameter
set taken from the default input file, this should result in equal cross sections for all activated
matrix elements, about 85 fb each.9 Finally, a small sample of 100 events is generated and, if
the PYTHIA module is activated, fragmented by JETSET.

While the above test is more like a demo, there are actually self-tests provided that check
whether the results obtained with the three different matrix-element generators actually agree.
Currently, the possibilities are

make test-QED

make test-QCD

make test-SM

make test-MSSM

Note that the selftests compare the string expressions of the program output for the three
different matrix element generators. As the numerical routines are slightly different, the results
may deviate from each other and hence produce a fake failure of the self test. Just have a
look at the numbers. Only the SM test should report a few real disagreements. These come
from the fact that currently O’Mega does not couple the Higgs to muons or strange quarks,
while Madgraph does not treat Higgs pairs correctly. The MSSM test currently has just O’Mega
matrix elements, since the built-in CompHEP and MadGraph versions do not support the MSSM.
However, the results can be compared with the numbers in the appendix of [12].

3.3.4 Cleanup

Unnecessary intermediate files will be removed if you say

make clean

If the process configuration file is modified to hold a new list of processes for the same or
a different physics model, new make calls will remake the system as needed, so under normal
circumstances no files have to be deleted explicitly. If you are not sure about the current status,
you may remove the process-dependent files by

make proclean

To do a thorough cleanup, type

make realclean

This will also remove the CompHEP and MadGraph executables used for generating matrix ele-
ments, recovering the state just after configuration.

Finally,

9If, for the selected Fortran compiler, command-line arguments are not supported, the program will just
display the list of processes and exit.
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make distclean

removes also the files resulting from configuration, thus recovering the initial state of the package
as it comes in the distribution. Note that this also deletes some files which you may have edited
yourself: whizard.prc and whizard.in in the conf directory, the input files in the results

directory, and the file user.f90 in the whizard-src directory, so save them elsewhere if you
do not want to lose their contents. After make distclean has been executed, you have to run
configure before any further make command can be executed.

For further options, see the comments in the header of the master Makefile.
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4 Running WHIZARD

4.1 Setting up the process list

WHIZARD is able to cope with arbitrary scattering processes allowed by the selected physical
model. The program is not a library of processes, but the user can compile a list of processes
he is interested in, write a file whizard.prc and put it in the subdirectory conf. If no file is
provided by the user, the file whizard.prc.default (Fig. 1) will be used. Note that as per
default CompHEP and MadGraph are disabled all processes by these generators will be skipped.
Only O’Mega and trivial test matrix elements will be produced. The user may take this file as
a template, insert or delete processes as desired, and save the new version as whizard.prc.10

4.1.1 Model selection

WHIZARD is not restricted to the Standard Model. The physics model is selected in the header
of whizard.prc, respectively.

For each model, all particles, parameters, and the vertices which go into the phase space
setup are defined in a single file with extension .mdl. The vertex definitions include the com-
plete specification of Feynman rules for MadGraph and CompHEP, while the O’Mega vertices
are currently hard-coded in the corresponding executable. The model files can be found in
the conf/models subdirectory. Along with the master files SM.mdl, MSSM.mdl, etc., for each
model XXX there is also a file parameters.XXX.omega.f90 which contains the translation to
the parameter definitions used internally by O’Mega.

The distribution contains the following models (see Tab. 2):

QED: QED with three lepton generations.

QCD: QCD with three quark generations.

SM: The Standard Model with e, sin θW and MZ as independent parameters in the electroweak
sector. Some remarks are in order11:

– The u and d masses are zero, all other masses are non-zero by default and user-
definable.

– All fermions, except for the top quark, have zero width.

– By default, the CKM matrix is the unit matrix, but for each model where it matters,
a variant with nontrivial CKM matrix is available. Keep in mind that keeping the
full CKM matrix may result in less efficient calculations.

10A better method is to give the user-created file a different name and use a symbolic link to whizard.prc

instead. The same applies to whizard.in.
11 The MadGraph version implemented in WHIZARD does not treat multi-scalar vertices correctly. Don’t use it if

you are interested in double (or triple) Higgs production. CompHEP uses Feynman gauge (i.e., includes ghosts as
external states) for a more efficient evaluation of electroweak processes, while the other generators use unitarity
gauge. This should not be visible to the user. Note also that CompHEP provides polarization-averaged matrix
elements only. There is a CompHEP model using unitarity gauge, SM ug, which turns out to be less efficient in
many cases).
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# WHIZARD configuration file

# The selected model

model SM

# Processes

# Methods: chep=CompHEP, mad=MadGraph, omega=O’Mega, test=trivial)

# Options: s selected diagrams (CompHEP/MadGraph)

# r restricted intermediate state (O’Mega)

# c apply exact color algebra (O’Mega)

# n:XXX coupling order (MadGraph)

# w:XXX width scheme (O’Mega)

# p transfer polarization (test)

# u unit matrix element (test)

#

# Tag In Out Method Option

#=====================================================

ee_c e1,E1 e1,E1 chep

ee_m e1,E1 e1,E1 mad

ee_o e1,E1 e1,E1 omega

ww_c e1,E1 W+,W- chep

ww_m e1,E1 W+,W- mad

ww_o e1,E1 W+,W- omega

zh_c e1,E1 Z,H chep

zh_m e1,E1 Z,H mad

zh_o e1,E1 Z,H omega

nnh_c e1,E1 n1,N1,H chep

nnh_m e1,E1 n1,N1,H mad

nnh_o e1,E1 n1,N1,H omega

nnbb_m e1,E1 n1,N1,b,B mad

nnbb_o e1,E1 n1,N1,b,B omega

Figure 1: Default process configuration file. Only O’Mega processes will be generated per default,
the others will be skipped.

– The Higgs boson is coupled to all massive fermions, with one exception: O’Mega has
no Higgs couplings to the strange quark.

SM ac: The Standard Model with anomalous couplings. This is usually considered in the context
of dynamical electroweak symmetry breaking, hence, by default, the Higgs mass is set to
a large value. O’Mega supports anomalous trilinear and quartic gauge couplings12.

SM km: This model has been included in version 1.90. It is intended for LHC or CLIC physics of
Higgsless models or models without unitarizing UV completion. A K-matrix unitarization
guarantees a physically sane description for LHC and CLIC energies. More details can

12The CompHEP version currently has only the anomalous quartic couplings. The MadGraph version is just the
Standard Model.
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be found in [13].

MSSM: The Minimal Supersymmetric Standard Model (MSSM)13. The input data may be pro-
vided in the SUSY Les Houches Accord format (see Sec. 4.4.7). Typically, such a file is
generated by automatic SUSY spectrum and decay packages.

For convenience, there are two MSSM input files provided in the conf directory: sps1a.in
implements the mass spectrum of the standard SUSY point SPS1a [14] with zero particle
widths; this file has been used for generating the comparison results of Ref. [12]. The
file sps1ap.in corresponds to the reference point SPS1a’ as it has been defined for the
SPA convention [15]; this file includes width values for all particles that are computed, in
some cases, with higher-order corrections and running couplings incorporated. Be aware
that, for a consistent tree-level calculation, it may be necessary to compute widths in a
different convention. This caveat is discussed further in Ref. [12].

MSSM Grav: This variant of the MSSM has been included in version 1.93. It contains the MSSM with
an additional gravitino and is intended for the studies of GMSB models.

NMSSM: This is the Next-to-Minimal Supersymmetric SM, which has been contributed to WHIZARD

by Felix Braam [16].

PSSSM: A non-minimal MSSM version motivated by an E6 → Pati-Salam GUT group. This is a
very extended model which has been implemented by Daniel Wiesler.

There are more BSM models, whose inclusion into WHIZARD started from version 1.51 on:

Littlest: The Littlest Higgs model, which contains in addition to the SM a B′ (or γ′), a W ′/Z ′

triplet, a complex isospin-2 scalar multiplet ψ, and a t′.

Littlest Eta: The variant of the Littlest Higgs model which contains a pseudoscalar η instead of the B′

vector boson.

Simplest: A different Little Higgs model which has recurrences of all SM fermions and new isodoublet
gauge bosons.

Simplest univ: A variant of the previous model with universal, but not anomaly-free, fermion assign-
ments.

Xdim: The SM augmented by a spin-2 graviton as a toy model

GravTest: The SM augmented by a photino and a gravitino as a toy model.

UED: Universal Extra Dimensions.

Zprime: The SM with a completely generic Z ′ resonance.

13The MSSM is supported only by the O’Mega matrix element generator, while the included MadGraph and
CompHEP versions will fall back to the Standard Model.
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Model type with CKM matrix trivial CKM
QED with e, µ, τ, γ – QED

QCD with d, u, s, c, b, t, g – QCD

Standard Model SM CKM SM

SM with anomalous couplings – SM ac

SM with K matrix – SM km

MSSM MSSM CKM MSSM

MSSM with gravitino – MSSM Grav

NMSSM NMSSM CKM NMSSM

E6 SSM – PSSSM

Littlest Higgs model – Littlest

Littlest Higgs model (ungauged U(1)) – Littlest Eta

Simplest Little Higgs model – Simplest

Simplest Little Higgs (universal coupl.) – Simplest univ

UED – UED

SM with Z ′ – Zprime

SM with graviton resonance – Xdim

SUSY toy model with gravitino – GravTest

SM as template – Template
[

SM, all unitary gauge, CompHEP model – SM ug
]

Figure 2: Summary of models currently supported by WHIZARD.

Template: This is just a copy of the SM. It might serve as a template if the user wants to implement
his/her own model.

The user might wonder whether this list can be extended. Actually, it is trivial to set
up, e.g., a SM version with a different input parameter scheme or different particle naming
conventions, etc.: Copy SM.mdl to, e.g., SM_new.mdl, make the changes in that file, and provide
copies of the corresponding files for use of the matrix element generators14. There is a model
Template as described above, which is just the SM and might serve as a template to implement
the user’s own model. However, for this task one needs to modify the module Template

in omega-src/bundle/src/models5.ml (which requires programming in O’Caml) and then
the corresponding files Template.mdl and parameters.Template.omega.f90 in conf/models.
This is a rather cumbersome task. There is fortunately an easier way: using the interface
of WHIZARD to the program FeynRules [17]. Here, one can write down a Mathematica file
containing a Lagrangian in a very intuitive language, and then FeynRules derives the mass
eigenstates, mixing and Feynman rules and imports the model into WHIZARD. Although this has
been developped already for WHIZARD version 1 and is fully supported and functional for that

14Furthermore, by writing the Feynman rules into a Lagrangian file, one may easily modify or set up a new
model for CompHEP, which then can be used by WHIZARD. Modifying the model for O’Mega requires changing
program sources, however. The same holds for MadGraph, if you are interested in Lorentz or Dirac structures
that are not present in the SM.
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version, we refer to the manual of version 2 for more information, or alternatively the WHIZARD

Wiki page http://projects.hepforge.org/whizard/trac/wiki.

4.1.2 Process list

WHIZARD is capable of computing 2 → n scattering processes and 1 → n decay processes. In the
former case, the overall result (the integral) displayed by the program will be the total cross
section in fb. In the latter case, it will be the partical decay width in GeV.

For scattering processes, n = 1 (single-particle production) is allowed1516. Obviously, this
requires at least one beam to be structured, such that a energy spectrum is available for the
initial state.

Each process is defined by a single line in whizard.prc, for instance:

h_production e1,E1 n1,N1,H omega

z_decay Z e1,E1 omega

z_production e1,E1 Z omega

(see Fig. 1). The meaning of the entries within a line is as follows:
The first entry is a unique alphanumeric tag which will be used to identify the process. It

can be arbitrarily chosen, but should be a valid Fortran 95 token, lower case only. In particular,
one may use lower-case characters and digits as well as the underscore, where the first character
is not a digit.

The second entry defines the (partonic) initial state. It consists of two particle names,
separated by a comma, with no space in between. The particle names are those given in
the model file mentioned above, where typically for each particle several possible names are
listed. As an example, in Fig. 3, the Standard Model particles are displayed as they appear
in SM.mdl. This file also contains alternative names, quantum number assignments, and the
physical parameters of the model.

The third entry defines the final state. It consists of one, two or more particle names,
separated by commas, with no space in between.

Flavor sums17 are defined by particle names separated by colons. For instance, the line

eeqq e1,E1 u:d:s,U:D:S omega

will create a sum of all processes e−e+ → qq̄, with q being any of the light quarks. Similarly,

qqmm u:d:s,U:D:S e2,E2 omega

15It does not work for CompHEP matrix elements, however.
16The current implementation is not well suited for single-particle processes if the initial-state energy distri-

butions are strongly peaked. A similar caveat holds for processes with an s-channel resonance, for instance,
e+e− → µ+µ− with a continuous beamstrahlung/ISR spectrum for the incoming electrons, integrated over the
whole energy range. Nevertheless, with large statistics reasonable results can be obtained. Some improvement
has been achieved by using a specific mapping for s-channel like topologies.

17Not available for CompHEP or MadGraph matrix elements)
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Particle Name Antiparticle Mass Width
d-quark d D

u-quark u U

s-quark s S ms

c-quark c C mc

b-quark b B mb

t-quark t T mtop wtop

electron e1 E1 me

muon e2 E2 mmu

tau-lepton e3 E3 mtau

e-neutrino n1 N1

µ-neutrino n2 N2

τ -neutrino n3 N3

gluon G

photon A

Z-boson Z mZ wZ

W -boson W+ W- mW wW

Higgs H mH wH

Figure 3: Particle names (CompHEP naming scheme) and parameters for the Standard Model.

creates a sum of all processes qq̄ → µ−µ+. This is especially suitable for hadronic collisions.
One should note that the mirror process q̄q → µ−µ+ is not automatically included. To get the
correct results for a hadron collider, one can either double cross section values and symmetrize
final-state distributions18 (for a symmetric initial state, e.g. pp) or define the process as19

qqmm u:d:s:U:D:S,u:d:s:U:D:S e2,E2 omega

Note that in the diagnostics messages at runtime, only a single flavor assignment will be shown,
which is used as a template for generating phase space parameterizations. For the matrix
element evaluation and event generation, however, all valid flavor assignments are used.

To make this more readable, there is the possibility to specify aliases: The above definition
is equivalent to

alias q u:d:s:U:D:S

qqmm q,q e2,E2 omega

18Naively summing over identical particles in the final state may result in double-counting, and becomes very
inefficient if many combinations are allowed. The ‘c’ option takes care of both issues (see below).

19If the list of flavor sums or the number of particles in the process becomes very long, it may happen that
the compiler complains for the number of continuation lines becoming too large. This problem is easily fixed by
increasing the number of continuation lines accepted by the compiler. You should consult your Fortran compiler
documentation for the appropriate flag which may then be set in the config.site file. Don’t forget to clean
up and configure before restarting the compilation.
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Alias definitions can be arbitrarily mixed with process definitions. They are applied consecu-
tively to all in- and out-state specifications below their definition.

The particles to be summed over must have identical spin, mass and color representation;
otherwise the summation will not work. This feature is therefore useful mainly for summing
over fermions with identical quantum numbers (quarks or leptons).

The order of particles in the final state can matter if PYTHIA/JETSET is used for fragmenting
events. If no information on color connections is available in simulated events (for O’Mega matrix
elements if the ’c’ option is not set 20), the (dominant) color configuration has to be inferred
from the particle ordering, if at all possible 21. To transfer the color connections to JETSET,
particles that make up a color-singlet string should be put together, beginning with the quark,
possibly intermediate gluons, and ending with the antiquark. This suffices for well-defined
flavor states. If flavor sums are used and more than one quark pair is present, all possible
orders of particles will show up in the final state.

The fourth entry selects the method for the generation of the matrix element, while the
fifth entry is either absent or consists of a string of code letters separated by commas (blanks
in between are allowed). Some code letters are followed by a colon ’:’ that indicates a value.
As a default there are two options for matrix elements, either the method omega using the
intrinsic generator O’Mega or the method test which produces dummy matrix elements for
certain consistency tests described below.

For cross checks and debugging there are also (when enabled during the configuration
of WHIZARD) the methods chep and mad for using matrix elements generated by CompHEP or
MadGraph, respectively. These features have become obsolete for the user at latest with version
1.50 or 1.90, when O’Mega become the main or default generator WHIZARD. For completeness
reasons the details and options for these two generators will be described at the end of this
subsection.

O’Mega can generate matrix elements with an arbitrary number of final-state particles,
limited only by the host resources (WHIZARD has extensively been tested only for processes up
to 2 → 6, some very special cases of 2 → 7 or 2 → 8 have been studied). For multiparticle
processes, code generated by O’Mega is expected to be the fastest, since more redundancies are
eliminated from the matrix element evaluation.

There are several options (entries in the fifth column) for the O’Mega matrix element gen-
erator:

r: The letter r indicates restrictions on intermediate states for the amplitude. Effectively,
this also selects classes of Feynman diagrams. Example:

nnh e1,E1 n1,N1,H omega

nnh_zh e1,E1 n1,N1,H omega r: 3+4~Z

For more details, see Sec. 5.2.

20And also for CompHEP.
21CompHEP, unfortunately, reorders particles according its own conventions.
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w: The letter w modifies the width treatment for unstable particles. The default behavior
is the expected one: the width is inserted only for s-channel propagators. This may
lead to gauge-invariance issues. The option w:fudged (or abbreviated w:f) applies the
’fudge-factor’ prescription for unstable particles where all terms are collected over the
respective propagator denominators (in contrast to the usual fixed-width prescription).
This prescription is useful if the process includes the exchange of photons and W bosons
in the t-channel, for instance:

enw e1,E1 n1,E1,W- omega w:fudged

A fixed-width option can be enforced by specifying w:constant (or w:c). Finally, all
widths can be forced to zero both in the s- and t-channel by the option w:zero (or w:z).

• O’Mega comes in two versions: By default, only the leading-1/Nc color factor is generated,
and no color-flow information is available. If the option flag c is given, WHIZARD uses the
tensor-product feature for process definitions of O’Mega originally intended for flavor
summation to treat color exactly and to generate color-flow information. Example:

uudd_leading u,U d,D omega

uudd_full u,U d,D omega c

The modified version also eliminates some redundancies in summing over flavor.

In the current implementation, the default (leading-color) version can be more efficient
(unless many flavor states need to be summed over), so it is still useful if color is not an
issue. This is the reason why we decided to keep the leading-color version as the default.
Note that the O’Mega generator within WHIZARD 2 takes care of the color-flow information
completely by itself and delivers matrix elements that contain the full color correlations
as a default.

The test method generates a constant matrix element, independent of the particles supplied
for the process. There are two choices for the normalization:

1. If the option ’u’ is given, the matrix element is unity. With zero masses and no cuts, the
integral should be exactly

σn(s) =
(2π)4

2s
Φn(s) =

1

16πs

Φn(s)

Φ2(s)
, (3)

where the volume of the massless n-particle phase space is given by

Φn(s) =
1

4(2π)5

( s

16π2

)n−2 1

(n− 1)!(n− 2)!
. (4)

For n 6= 2 the phase space volume is dimensionful, so the units of the integral are fb ×
GeV2(n−2).
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2. Without option (default), the result of the integration is not a cross section, but the phase
space volume, normalized by the massless phase space volume (4). Thus, if all final-state
particles are massless and no cuts are specified, the integral is unity regardless of the
number of particles.

Cuts and nonvanishing masses will affect the result accordingly. If events are generated, the
final-state particles are distributed uniformly in phase space.

Note that the phase-space integration for the test matrix element is organized in the same
way as it would be for the real 2 → n process. Since such a phase space parameterization is
not optimized for the constant matrix element that is supplied instead, good convergence is not
guaranteed. (Setting stratified = F may be helpful here.)

The possibility to call a dummy matrix element in this way allows to histogram spectra or
structure functions: Choose a trivial process such as uu→ dd, select the test method, switch
on structure functions for one (or both) beams, and generate events. The distribution of the
final-state mass squared reflects the x dependence of the selected structure function.

For the test method there are two more options:

p: : The letter p indicates that beam polarization should be transferred to the final state
unchanged. (Otherwise, it would be ignored.) This is only possible if initial and final
state coincide, e.g, e+e− → e+e−. The option is useful for testing polarized spectra and
structure functions.

ee_test_pol e1,E1 e1,E1 test p

u: : The letter u indicates that the matrix element is not just constant, but unity. Such
code may serve as the initial setup for inserting some nontrivial matrix element by hand.

For historical and completeness reasons we mention here the technical details and available options when
using CompHEP or MadGraph matrix elements.

The CompHEP version included in WHIZARD can only generate matrix elements for up to four particles in the
final state. No polarization or flavor summation is possible (in contrast to the official CompHEP version), and
color-flow information is not explicitly generated in the version used by WHIZARD. However, arbitrary models
can be defined and the predefined models can be modified to include anomalous couplings etc. CompHEP matrix
elements, evaluated by the trace method, are most efficient for simple 2 → 2 or 2 → 3 processes, while for 2 → 4
processes the other two packages typically generate faster code.

The MadGraph version inside WHIZARD has the Standard Model implemented with the exception of the trilin-
ear or quartic Higgs couplings. The user may choose the maximal order of the strong (QCD), electromagnetic
(QED), or weak (QFD) coupling for the matrix element evaluation. The implementation included in WHIZARD

can generate matrix elements with up to six final-state particles. No flavor summation is possible.
There are several options in the fifth entry of the input file for the two generators: The letter s indicates

that only a selection of particular Feynman diagrams is taken. Example:

nnh e1,E1 n1,N1,H chep

nnh_zh e1,E1 n1,N1,H chep s
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The setup of the necessary diagram selection file is described in Sec. 5.1.
For MadGraphonly it is possible to define the maximal order in each of the coupling constants: ‘QCD’

counts powers of gs (gluon couplings), ‘QED’ counts powers of e (photon couplings), and ‘QFD’ counts powers
of the remaining electroweak couplings. As an example, the following specifications generate the QCD and the
electroweak contribution to uū → dd̄ separately:

uudd_qcd u,U d,D mad n:QED<=0, n:QFD<=0

uudd_ew u,U d,D mad n:QCD<=0

There is only an upper bound on the number of couplings of a given species supported, so <= is the only available
relation.

MadGraph always uses a fixed-width prescription, both in the s- and the t-channel, so there is no option.
The “fudged” width option mentioned above can be activated for CompHEP by setting the flag gwidth. However,
this is a runtime flag that enters the input file whizard.in in the block parameter_input.

4.2 Compilation, installation, and bundles

After the processes have been selected, the matrix elements and executable code are compiled
and linked by the simple command

make prg

This will generate an executable named whizard in the bin subdirectory.
An alternative is

make bundle-src

make bundle

which will create a restricted bundle containing the Fortran 95 source code of the selected matrix
elements and the libraries which have not been explicitly disabled.22 This bundle will be put as
a gzipped tar file in the main directory under the name whizard-bundle-yymmdd-hhmm.tgz,
where yymmdd-hhmm specifies the current date and time. The bundle can be unpacked on
a different platform. There, it can be configured, compiled and run without the need for
a working O’Mega (i.e. O’Caml) installation. Important: In the bundle, you have to use
the commands make prg bundle install bundle instead of make prg install, otherwise it
won’t work. (The necessary O’Mega library will be contained in the bundle, of course.) The
configuration and input files (whizard.prc, whizard.in, etc.) will be copied from the conf

directory of the distribution (not from the results directory). The site-specific configuration
config.site will not be copied (precisely because it is site-specific). The restricted bundle
has all capabilities of the WHIZARD system except for the possibility to re-generate the matrix
elements.

If only the source code for the process list should be generated, say

make proc-src

22Those that are part of the WHIZARD system. Precompiled libraries such as the LHAPDF have to be present
on the target system and can be enabled there if they are needed.
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The files can be found in the subdirectory processes-src. If desired, the source code can be
modified before a further make call compiles and links them together.

A run of the Monte Carlo generator requires, apart from the executable, the following input
and configuration files. In their initial form they are found in the conf subdirectory:

• whizard.in containing all input data and parameters.

• whizard.mdl containing vertex definitions used in phase space setup. If an appropriate
phase space configuration file whizard.phs exists, the model file is not necessary.

• whizard.cut1 containing a-priori cut definitions. This file may be empty.

• whizard.cut5 containing cut and histogram definitions for the data analysis step (the
5th pass of the program). This file may be empty.

When the command

make install

is issued, all necessary configuration files, together with the whizard executable, are copied
into the results subdirectory. If no user-defined files are found, default ones will be used. The
contents of the results directory may be copied anywhere without affecting the functionality
of the whizard executable within, leaving room for the simultaneous use of multiple WHIZARD

copies with different process content. (’make install’ implies ’make prg’, so the latter is in
fact redundant.)

Alternatively, one can omit the install step and copy the WHIZARD executable to any place
in the system, or just leave it in the bin subdirectory. For a successful run of WHIZARD, one
needs, of course, copies of the input files in the working directory.

Dealing with compilation problems

Although the authors have tried to make the program compile and run in various environments,
it may happen that something goes wrong. The following problems are, at least, known:

• The O’Caml compiler is missing on the host computer. This is not a fatal problem
since the compiler is part of most Linux distributions and available via MAC OS X
port. Furthermore, it is easily available via http://pauillac.inria.fr/ocaml. Note that the
O’Caml programming language can be installed on virtually any UNIX and MAC OS X
system, and that it is perfectly possible to do this on a user account without superuser
access.

• One of the PERL scripts which organize matrix element generation fails. This may be
due to inconsistent shell return codes on some systems (IRIX, for instance). Since the
OS world seems to converge towards Linux, this problem rarely occurs in reality. (Please
notify the author if you really need a fix for a different OS. However, for WHIZARD 1 we
basically consider Linux, MAC OS X and ALPHA as supported architectures.)
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• A matrix element generator (O’Mega, CompHEP, MadGraph) fails. The reason is probably
an attempt to generate a process that is not supported or which is physically impossible.
23 If this happens, there could be some trace in the temporary directory that has been
created (in /tmp if TMPDIR has not been set). Note that you should remove this directory
by hand if the program terminates abnormally during process creation.

• The Fortran 95 compiler fails. You may have found an actual WHIZARD bug, or you
may have discovered a bug in the Fortran 95 compiler (this has happened more than
once during the development of WHIZARD!). Make sure that you have the most recent
compiler version and complain to the compiler vendor, if nothing else helps. Note however,
that WHIZARD 1 explores no Fortran 03 features and most Fortran 95 are very mature
nowadays).

• The linker fails due to incompatible object file formats. The reason could be that the
WHIZARD configuration has chosen a Fortran 77 compiler different from the one used in
generating the precompiled Fortran 77 libraries (PYTHIA, for instance). Set the correct
compiler using the environment variable F77, reconfigure and recompile.

• The program crashes with a runtime error. This can be due to an incorrect input syntax,
e.g., in a NAMELIST block. A frequent error is the specification of parameters that are
misspelled or unknown to the current model. Another source of runtime errors can be
incompatible external library formats (PYTHIA etc.). Otherwise, in particular if there is
no reasonable error message, it may be a WHIZARD bug. Please report this to one of the
email addresses below.

• Floating underflow messages after successful program execution are usually harmless.

• CompHEP cannot be compiled, so the executable x comphep is missing when WHIZARD tries to generate

matrix elements. This is likely due to missing C libraries needed by CompHEP. In particular, although

WHIZARD will call CompHEP in command-line mode, the CompHEP executable needs the X libraries and

include files installed on the host system. Note that CompHEP is just for self-testing purposes and is

considered to be no longer maintained by us.

In any case, whether you could not solve a configuration or compilation problem or you found
a workaround, please contact the author

kilian@physik.uni-siegen.de

ohl@physik.uni-wuerzburg.de

juergen.reuter@desy.de

christian.speckner@physik.uni-freiburg.de

so that the issue can be dealt with in a future release. (Please make sure that you are running
the most recent version of WHIZARD, or at least look in the current CHANGES file whether a
bug has been fixed in the meantime.)

23For MadGraph in particular, if there is an ambiguity you may have to set the QCD order as an option.

35



4.3 Process selection

For running WHIZARD, the user can freely choose among the processes he has defined in the
configuration file and compiled in the executable. The parameter process_id in the main
input file (see below) is a string which contains the list of process tags, e.g.

process_id = "zh, zz, zw"

If there is more than one process, integration of the cross sections will be performed in sequence.
If a subsequent simulation step is requested, the events will be mixed according to their relative
total cross sections. If fragmentation is enabled, one can even mix WHIZARD processes with
processes generated by PYTHIA (see Sec. 4.8).

Since the integration grids are written to separate files, they can be reused later if events are
to be simulated for the same or a different collection of processes, provided the input parameters
and cuts are identical. This may save a lot of adaptation and integration time.

If the parameter process_id is left empty, WHIZARD will just print the list of processes,
write a logfile containing the complete parameter list (including user settings), and exit.

4.4 Input data

When the whizard executable is started, it will use the parameters from the copy of the file
whizard.in in the working directory. In this file, the physical input parameters and runtime
switches are set. There are very many parameters, and all of them are optional. WHIZARD will
try to insert sensible default values if the user has not specified a value. Of course, if no process
tag is given, WHIZARD can do nothing, so it will just display the list of processes and exit.

The file whizard.in is written using the Fortran 95 NAMELIST conventions. It consists of
several blocks marked by a keyword beginning with the & character and closed by a slash /. Each
block contains a list of assignments of the form variable = value. Variables left out are assigned
their default value. The assignments are separated by commas or newlines. Whitespace can be
inserted anywhere. Comments can be inserted in this file; they begin with ! and extend up to
the end of the line.

An example for the input file is shown in Fig. 4. In many cases, it suffices to fill the
process input block and leave all others empty. If polarization, beamstrahlung etc. are in-
tended, the beam input blocks must also be considered.

As an alternative to the NAMELIST format, WHIZARD supports the SUSY Les Houches
Accord format for its input file. See Sec. 4.4.7 for details.

4.4.1 Files

The process input block allows to specify a generic filename. This can be used to organize
WHIZARD run data by giving specific filenames. For instance, to indicate the process energy in
the filename for all output files, one may write

&process_input

process_id = "nnh"
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&process_input

process_id = "nnh"

sqrts = 500

luminosity = 100

/

&integration_input

calls =

1 10000

5 10000

2 20000

/

&simulation_input

write_events = T

/

&diagnostics_input /

&parameter_input

Me = 0

Ms = 0

Mc = 0

MH = 115

wH = 0.3228E-02

/

&beam_input

/

&beam_input

/

Figure 4: Sample input file.

sqrts = 800

filename = "whizard_800"

/

Then, the output files will be whizard_800.out and whizard.800.nnh.out, etc. You do not
need to write a separate file whizard_800.in, however: if a specific file is not found, the
program will always look for the default one, in this case whizard.in.

Similarly, the working directory can be specified by the directory parameter. Of course,
the first input file to be read must reside in the initial directory, otherwise it cannot be found
(unless you define it on the command line, see Sec. 5.6).

The filename setting is overridden by specific filenames such as input_file, or e.g. in the
block integration input the variables read_phase_space_file or write_phase_space_file
(cf. below). Such filenames will be interpreted relative to the chosen directory (if set), unless
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they begin with a slash, e.g. for read_model_file within the integration input block 24,

read_model_file = "/home/whizard/standard_model/whizard"

or with “./”, e.g.,

read_model_file = "./whizard"

The latter form refers to the initial working directory. Note that in all cases the filename
extension (here, .mdl) will be appended to the filename you specify.

It is possible to specify an additional input_file name in the process_input block. This
input file will be read after the current one. New settings of parameters override old ones. In
principle, any number of input files can be read consecutively and merged in this way. Reading
input is finished when an input file does not exist, or neither directory nor input_file is
changed in the last reading. Obviously, one should avoid loops in file reading.

All external file names used by WHIZARD can be similarly redefined. As a special rule, the
filename for reading something (cuts, grids, events etc.) will automatically be set equal to the
corresponding filename for writing, unless it is specified explicitly. The reason is that those files
will be rewritten if the corresponding input file is not found, which could lead to accidentally
overwriting files which is not intended.

4.4.2 The process input block

These parameters should always be inspected.

Parameter Value Default Description
process_id string empty Process tag(s) as defined in

whizard.prc. It should con-
tain the list of processes to activate,
separated by commas or blanks,
enclosed in quotes.

cm_frame T/F T If true, the c.m. frame is the lab
frame, the beams are in ± z di-
rections, and the total c.m. energy
is given by sqrts. If false, the
beam energies and directions must
be specified below in the blocks
beam_input.

24Note that if WHIZARD does not find the corresponding file it takes its default file.
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Parameter Value Default Description
sqrts number 0 If this number is greater than the

sum of the incoming particle masses,
it specifies the c.m. energy of the
initial state in GeV. Applies only if
cm_frame is true, and is ignored for
decay processes.

luminosity number 0 Integrated luminosity in fb−1. A
nonzero value will activate event
generation. (Alternatively, the num-
ber of events can be specified below
in the block simulation_input.)
The luminosity value is ignored for
decay processes.

polarized_beams T/F F If true, the helicity content of the
beams must be specified below in the
blocks beam_input.

structured_beams T/F F If true, the nature of the incoming
beams must be specified below in the
blocks beam_input.

beam_recoil T/F F If true, and if structure functions
(e.g., ISR) are selected, the recoil of
the partons against the beam rem-
nant (e.g., the emitted photons) is
taken into account. The pT distri-
bution is computed within the ap-
proximation valid for the emission,
hence it will be accurate at low pT .

recoil_conserve_momentum T/F F Applies only if beam_recoil is set:
if true, keep momentum balance be-
tween parton and recoil momenta at
the expense of energy balance. If
false, keep energy balance at the ex-
pense of momentum balance.
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Parameter Value Default Description
filename string empty Base filename (w/o extension) to be

used for all input/output files in-
stead of the string "whizard".

directory string empty Working directory for all further
reading/writing of files.

input_file string empty If nonempty, read the specified in-
put file after the current one. The
extension .in will be appended to
the filename.

input_slha_format T/F F If true, assume that the next input
file is in SUSY Les Houches Accord
format (see Sec. 4.4.7). If false, de-
termine the format from the first
line.

4.4.3 The integration input block

These parameters will not affect the cross section value (with the possible exception of the
default cut parameters) but can improve or disprove the running time, the stability and accuracy
of the result, and the efficiency of event generation.

Parameter Value Default Description
calls 6 numbers (yes) Array describing the number of iter-

ations and number of calls per inte-
gration pass. Default values depend
on the selected process. See below
in subsection 4.6 for details.

seed integer undefined Random number generator seed (in-
teger). When omitted, the time
counter will be used, resulting in a
different value each run.

reset_seed_each_process T/F F Reset the random number genera-
tor seed to seed not just once, but
each time a process is integrated.
This is useful for comparing matrix
elements which should be identical,
but, e.g., have been generated by dif-
ferent programs.
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Parameter Value Default Description
accuracy_goal number 0 Goal for the accuracy estimate (6th

column in the output). When this
goal is reached and the efficiency
goal is either also reached or un-
set, further grid adaptation itera-
tions will be skipped (Sec. 4.9).

efficiency_goal percentage 100 Goal for the reweighting efficiency
estimate (7th column in the output).
When this goal is reached and the
accuracy goal is either also reached
or unset, further grid adaptation it-
erations will be skipped (Sec. 4.9).

time_limit_adaptation integer 0 If nonzero, grid adaptation for the
current process will be stopped af-
ter the specified number of minutes,
and the final integration pass started
(Sec. 4.9).

stratified T/F T Use stratified (T) / importance (F)
sampling.

use_efficiency T/F F Use efficiency (T) / accuracy (F) as
the criterion for adapting the chan-
nel weights.

weights_power number 0.25 Power used for adapting the chan-
nel weights. Lower value means
slower adaptation (to suppress fluc-
tuations).

min_bins integer 3 Minimal number of bins per integra-
tion dimension.

max_bins integer 20 Maximal number of bins per integra-
tion dimension. This number will
be used as long as there are enough
sampling points, otherwise the num-
ber of bins will be decreased.

min_calls_per_bin integer 10 Minimal number of points per bin,
integration dimension, and integra-
tion channel. If this limit cannot be
satisfied, the total number of points
will be increased.
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Parameter Value Default Description
min_calls_per_channel integer 0 All integration channel will get at

least (approximately) this number of
points. Prevents channels from be-
ing dropped during adaptation.

write_grids T/F T Write grids to files whizard.grb

(best grid) and whizard.grc (cur-
rent grid), to be reused later.

write_grids_raw T/F F Use binary format for writing grids.
Saves memory at the expense of
portability.

write_grids_file string empty If nonempty, use the specified file-
name for writing grids instead of the
default. The file extensions are ap-
pended to string.

write_all_grids T/F F Write, in addition, after each it-
eration the current grid to file
whizard.grXXX, where XXX is the it-
eration number.

write_all_grids_file string empty If nonempty, use the specified file-
name for writing the extra grids in-
stead of the default. The file exten-
sions are appended to string.

read_grids T/F F Read existing grids whizard.grb

and whizard.grc if they have been
written by a previous run. This
avoids the time-consuming adapta-
tion step. Makes sense only if
no physical parameters have been
changed.

read_grids_raw T/F F If true, search first for binary grid
files, then for ASCII grids. If false,
do search first for ASCII..

read_grids_force T/F F Set this to T if you want to read the
grids from file even if some param-
eters have changed. Use with care!
This may result in a program crash if
the grid structures are incompatible.
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Parameter Value Default Description
read_grids_file string empty If nonempty, use the specified file-

name for reading grids instead of the
default. The file extensions are ap-
pended to string.

generate_phase_space T/F T Generate a phase space configura-
tion appropriate for the current pro-
cess and write it to whizard.phx.

read_model_file string empty If nonempty, read vertex defini-
tions for phase space setup from
string.mdl instead of the default
whizard.mdl.

write_phase_space_file string empty Write phase space configuration to
string.phx instead of the default.

read_phase_space T/F T Read phase space configuration from
whizard.phs or a previously gener-
ated file whizard.phx if possible.

read_phase_space_file string empty Read phase space configuration from
string.phs or string.phx instead of
the default.

phase_space_only T/F F Stop the program after phase space
generation.

use_equivalences T/F T If true, use permutation symmetry
when updating grids to improve the
quality of the results.

azimuthal_dependence T/F F If false, it is assumed that the scat-
tering does not depend on the overall
azimuthal angle. This will be auto-
matically T if general beam polar-
ization is switched on, therefore the
user need only access this parameter
in the case of azimuthal-dependent
cuts.
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Parameter Value Default Description
write_phase_space_channels_file string empty Show phase space channels in

string.ps instead of the default
file whizard-channels.ps. Note
that you need to call CHANNELS=

string make -e channels in order
to generate string.ps

The following parameters affect the details of the algorithm by which WHIZARD generates
the phase space setup. Under normal circumstances, there should be no need to change them.

Parameter Value Default Description
off_shell_lines integer 1 Maximum number of off-shell-lines

allowed for Feynman graphs which
are initially taken into account for
the phase space configuration. Log-
enhanced (massless) propagators are
not counted as off-shell.

extra_off_shell_lines integer 1 Use configurations with more off-
shell lines, if they happen to be max-
imally resonant.

splitting_depth integer 1 Up to this number of branchings, a
(massless) propagator will be con-
sidered as log-enhanced and mapped
like a photon propagator.

exchange_lines integer 3 Up to this number of t-channel prop-
agators, a multiperipheral graph will
be taken into account.

show_deleted_channels T/F F With extra_off_shell_lines, ex-
tra channels will be generated which
are deleted if they do not contain
enough resonances. With this flag,
they are just commented out, so
they could be manually activated.

single_off_shell_decays T/F T Whether single-off-shell decays are
relevant for the phase space configu-
ration.

double_off_shell_decays T/F F Whether double-off-shell decays are
relevant for the phase space configu-
ration.
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Parameter Value Default Description
single_off_shell_branchings T/F T Whether single-off-shell branchings

are relevant for the phase space con-
figuration.

double_off_shell_branchings T/F T Whether double-off-shell branchings
are relevant for the phase space con-
figuration.

massive_fsr T/F T Whether the radiation of a massive
particle in the final state is relevant
for the phase space configuration.

threshold_mass number 50 A particle with a mass up to this
value will be considered as massless
for the purpose of phase-space setup.
(But the true mass is taken into ac-
count when the particle appears as
a resonant intermediate state.)

threshold_mass_t number 200 A particle with a mass up to this
value will be considered as massless
for the purpose of phase-space setup,
when it appears as a t-channel prop-
agator.

initial_decays_fatal T/F T As the phase space maps cannot de-
scribe on-shell decays of beam par-
ticles properly, WHIZARD normally
gives a fatal error when such config-
urations are encountered. This op-
tion changes this to a warning at the
price of a potentially screwed phase
space setup.

The following parameters affect the setup of kinematical cuts. Note that the default cuts
are taken into account only if there is no appropriate entry in the user cut file whizard.cut1.
However, even if such an entry exists, the cut parameters below affect the phase-space mappings,
so adjusting them to order-of-magnitude may improve the convergence of the result.

Parameter Value Default Description
default_jet_cut number 10 The default invariant mass cut in

GeV applied to pairs of massless col-
ored particles.

default_mass_cut number 10 The default invariant mass cut in
GeV applied to pair production of
massless colorless charged particles
and to photon emission.
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Parameter Value Default Description
default_energy_cut number 10 The default energy cut in GeV ap-

plied to photon and gluon emission.
default_q_cut number 10 The default Q cut in GeV applied to

photon and gluon exchange.
write_default_cuts_file string file If nonempty, write the list of default

cuts to this file (augmented by the
file extension) instead of the default.
Note that the settings in this file
are overwritten by a user-defined cut
configuration, if present.

read_cuts_file string empty Look for user-defined cut configu-
rations in string.cut1 instead of
whizard.cut1.

user_cut_mode integer 0 Set this nonzero to activate a user-
defined cut function (Sec. 5.4).

user_weight_mode integer 0 Set this nonzero to activate a user-
defined weight function (Sec. 5.5).

4.4.4 The simulation input block

These parameters control event generation, hadronization and output. If the luminosity (above)
is left undefined or zero, one may still generate a fixed number of events by setting n_events

nonzero. By default, the events are written to file in raw format and can be reused in that way.
Writing events in another format (which uses up more disk space) must be requested explicitly.
However, if this has not been done, one may use WHIZARD afterwards as a translator to any file
format by reading pre-generated events and immediately writing them in another format:

&integration_input read_grids = T /

&simulation_input read_events = T write_events = T /

WHIZARD also contains an experimental version of a kT -ordered parton shower, written by Se-
bastian Schmidt. In the version it is implemented here, it is highly experimental and does work
only for LHEF event formats (cf. below, this is the only one which allows for a varying number
of particles in the event). A much more advanced version can be found in WHIZARD 2. For more
details about the shower confer the WHIZARD 2 manual. The shower can be switched on with
the shower flag.

Parameter Value Default Description
n_events integer 0 Number of (unweighted) events to

generate at least, irrespective of the
luminosity setting.
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Parameter Value Default Description
n_calls integer 0 Number of matrix-element calls

(weighted events) to execute at least,
irrespective of the luminosity set-
ting.

n_events_warmup integer 0 Number of extra warmup events (see
below, Sec. 4.7).

unweighted T/F T Reweight events to generate an un-
weighted event sample.

normalize_weight T/F T If true, normalize the event weight
to unity. If false, normalize to the
total cross section.

write_weights T/F F If unweighted=F, write weight dis-
tribution data to whizard.wgt.

write_weights_file string empty Write weight distribution to
string.wgt instead.

safety_factor number 1 Multiply the estimate for the highest
weight by this factor before starting
event generation.

write_events T/F F Write generated events to file
whizard.evt to be used by an ex-
ternal analysis package.

write_events_format integer 1 The format to be used for writing
events, where the file extension de-
pends on the format (.evt for for-
mat = 1, see Sec. 4.7).

write_events_file string empty If nonempty, use string as filename
for writing events, where the file ex-
tension will be appended.

events_per_file integer 0 If positive, begin a new event file
once the number of entries exceeds
this number. The event file counter
is appended to each event file name,
separated with a dot (before the file
extension). This feature applies only
to non-binary event formats.
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Parameter Value Default Description
bytes_per_file integer 0 If positive, begin a new event file

once the number of bytes in the file
exceeds this number. The event file
counter is appended to each event
file name, separated with a dot (be-
fore the file extension). This feature
applies only to non-binary event for-
mats. See Sec. 4.7.1.

min_file_count integer 1 If event files are split, use this in-
dex for the first event file. Increase
the counter by one for each succes-
sive event file.

max_file_count integer 999 Limit for the event file counter; if
this limit is exceeded, event gener-
ation is terminated. (For weighted
events only, this is an error condi-
tion since the event sample must be
complete for being usable.)

write_events_raw T/F T Write events to whizard.evx in con-
densed binary format, so they can be
internally reused in another run.

write_events_raw_file string empty Write raw events to string.evx in-
stead.

read_events T/F F Read events from file whizard.evx

(raw format) instead of generat-
ing them. This is equivalent to
read_events_raw.

read_events_force T/F T This was intended to force WHIZARD

to read in events from file even
if some parameters have changed.
However, the MD5 checksum im-
plemented to check for parame-
ter changes has some deficiencies.
Hence, we always enforce to read
in events, because this feature could
otherwise not be used at all. Use
with great care! (Note that this
problem has been solved in WHIZARD

2.)
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Parameter Value Default Description
read_events_raw_file string empty Read raw events from string.evx in-

stead.
keep_beam_remnants T/F F Keep the beam remnants in the

event record when applying struc-
ture functions. See Sec. 4.4.8.

keep_initials T/F F Keep the beam particles and the
partons which initiate the hard scat-
tering in the event record. See
Sec. 4.4.8.

guess_color_flow T/F F Infer the color flow for hadronization
from the particle ordering, if it is
nontrivial and not available directly.

recalculate T/F F Recalculate the matrix element
value for each event of a previously
generated sample. Setting this flag
automatically turns on reading grids
and events from file.

fragment T/F F Fragment the events depending on
the value of fragmentation_method
(see Sec. 4.8).

fragmentation_method integer 1 Method used for fragmentation if
fragment is true: 0=no fragmenta-
tion; 1=JETSET; 2=PYTHIA; 3=user.

user_fragmentation_mode integer 0 When user-defined fragmentation
routines are called, this parameter
may select different modes.

pythia_parameters string empty String to be given to PYTHIA’s
pygive call before starting event
generation. This allows to modify
PYTHIA/JETSET properties, set par-
ticle masses, etc. The string is also
available within user-defined frag-
mentation routines and can there be
abused for different purposes.
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Parameter Value Default Description
pythia_processes string empty PYTHIA background processes to be

simulated in addition to the WHIZARD
processes: A list of integers sepa-
rated by blanks, enclosed in quota-
tion marks. Refer to the PYTHIA

manual for the list of processes.
shower T/F F Switches the internal shower on or

off. As a default it is off. Note
that the shower only works with
LHEF event format (foramt type
6). This shower is highly experimen-
tal. Mainly intended for testing pur-
poses.

shower_nf integer 5 Number of light flavors in the
shower.

shower_running_alpha_s T/F F Whether to use a running strong
coupling αs or not in the shower. As
a default it is fixed.

shower_alpha_s number 0.2 The value of the strong coupling
constant αs as used by the internal
shower. The default is 0.2.

shower_lambda number 0.29 The value of the QCD scale ΛQCD

as used by the internal shower. The
default is 0.29 GeV.

shower_t_min number 1.0 The infrared cutoff for the evolution
parameter tmin as used by the inter-
nal shower. The default is 1 GeV.

shower_md number 0.330 The constituent d quark mass md as
used by the internal shower. The de-
fault is 0.330 GeV.

shower_mu number 0.330 The constituent u quark mass mu as
used by the internal shower. The de-
fault is 0.330 GeV.

shower_ms number 0.500 The constituent s quark mass ms as
used by the internal shower. The de-
fault is 0.5 GeV.

shower_mc number 1.5 The constituent c quark mass mc as
used by the internal shower. The de-
fault is 1.5 GeV.
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Parameter Value Default Description
shower_mb number 4.8 The constituent b quark mass mb as

used by the internal shower. The de-
fault is 4.8 GeV.

4.4.5 The diagnostics input block

These parameters do not affect the result, but the information displayed on screen and stored
in files.

Parameter Value Default Description
chattiness integer 4 How much information to show on

screen: (0) only fatal errors, (1) and
non-fatal errors, (2) and warnings,
(3) and messages, (4) and results, (5)
and debugging messages (if any).

catch_signals T/F T If the compiler supports it, try to
catch external signals such as SIG-
INT and SIGXCPU and exit grace-
fully, closing files first.

time_limit integer 0 If nonzero, exit gracefully after the
given number of minutes has passed.
This is useful to prevent an external
kill within a batch environment.

warn_empty_channel T/F F Issue a warning whenever the inte-
gral within a phase space channel is
zero.

screen_events T/F F Whether to show generated events
on screen.

screen_histograms T/F F Whether to show histograms on
screen.

screen_diagnostics T/F F Whether to repeat the input param-
eters on screen.

show_pythia_banner T/F T Whether to display the PYTHIA ban-
ner page if fragmentation is enabled.

show_pythia_initialization T/F T Whether to display the PYTHIA ini-
tialization messages if fragmentation
is enabled.

show_pythia_statistics T/F T Whether to display the PYTHIA

statistics summary after event gen-
eration is completed.
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Parameter Value Default Description
write_logfile T/F T Whether to write the

(process-specific) output file(s)
whizard.XXX.out.

write_logfile_file string empty Use this as the filename for the log-
file.

show_input T/F T Whether to repeat the input param-
eters in the logfile.

show_results T/F T Whether to show the integration re-
sults in namelist format in the log-
file.

show_phase_space T/F F Whether to show the phase space
configuration in the logfile.

show_cuts T/F T Whether to show the cut configura-
tion in the logfile.

show_histories T/F F Whether to show the individual
VAMP channel histories in the logfile.

show_history T/F T Whether to show the overall VAMP

history in the logfile.
show_weights T/F T Whether to show the weight adapta-

tion in the logfile.
show_event T/F F Whether to show the last event in

the logfile.
show_histograms T/F F Whether to show histograms in the

logfile.
show_overflow T/F F Whether to show events beyond the

first or last bin in histogram listings.
show_excess T/F T Whether to show a summary of

events with weight exceeding one.
read_analysis_file string empty Use this (string.cut5 ) as the file-

name for the analysis setup instead
of whizard.cut5

plot_width number 130 The width in mm of the plots if on-
line analysis is enabled.

plot_height number 90 The height in mm of the plots if on-
line analysis is enabled.

plot_excess T/F T In the plots, display excess events in
red.

plot_history T/F T If this is enabled, write a graphics
driver file for displaying the integra-
tion history, i.e., the integral with er-
ror bars for each iteration. Use make
history to generate the graphics file
whizard-history.ps.
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Parameter Value Default Description
plot_grids_channels string empty The string is a list of phase-space

channels (integers) for which the bin
distribution will be histogrammed.
Use make grids to generate the
graphics file whizard-grids.ps.

plot_grids_logscale number 10 Use logarithmic scale for the grid
plots if the bin width varies over
more than this ratio.

slha_rewrite_input T/F T If SUSY Les Houches Accord data
have been used, whether to repeat
this input in the process-specific
logfiles (including comments) or to
rewrite it there using the data which
have actually been used.

slha_ignore_errors T/F F If this is false, an error signaled
in the SLHA input file (in the
SPINFO or DCINFO block) will
cause WHIZARD to stop before calcu-
lating anything. If true, such errors
will be displayed, but the run con-
tinues.

4.4.6 The parameter input block

These are the physical constants used in evaluating the matrix elements. If this block is left
empty, default values (see below) will be inserted.

Which constants are actually present, and which ones are dependent or derived, depends on
the physical model. Consult the model files in conf/models for the corresponding parameters.
For example, the constants relevant for the Standard Model SM_CKM are shown below together
with their default values:

Parameter Value Default Description
GF number 1.16639 × 10−5 Fermi constant
mZ number 91.1882 Z-boson mass
mW number 80.419 W -boson mass
mH number 200 Higgs mass
alphas number 0.1178 Strong coupling constant αs(MZ)
me number 0.000511 electron mass
mmu number 0.1057 muon mass
mtau number 1.777 τ -lepton mass
ms number 0.12 s-quark mass
mc number 1.25 c-quark mass
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Parameter Value Default Description
mb number 4.2 b-quark mass
mtop number 174 t-quark mass
wtop number 1.523 t-quark width
wZ number 2.443 Z-boson width
wW number 2.049 W -boson width
wH number 1.419 Higgs width
vckm11 number 0.97383 Vud
vckm12 number 0.2272 Vus
vckm13 number 0.00396 Vub
vckm21 number -0.2271 Vcd
vckm22 number 0.97296 Vcs
vckm23 number 0.04221 Vcb
vckm31 number 0.00814 Vtd
vckm32 number -0.04161 Vts
vckm33 number 0.99910 Vtb
khgaz number 1.000 anomaly Higgs coupling K factors
khgaga number 1.000 anomaly Higgs coupling K factors
khgg number 1.000 anomaly Higgs coupling K factors

The dependent parameters (such as e, sin θW , Vcb etc.) will be shown in the output file
whizard.out, but one should not try to reset them in the input file. The dependencies take
into account the tree approximation only, such that gauge invariance is automatically respected.
This may lead to unwanted side-effects in particular cases, e.g., the Higgs coupling to b quarks
is proportional to the b mass, so setting mb = 0 removes all H → bb̄ subprocesses.

Setting fermion masses to zero will considerably speed up the matrix element evaluation
since certain helicity combinations vanish identically (with O’Mega and MadGraph). In that
case, cuts may be needed for a finite answer. However, if necessary, finite masses can be kept
for all particles except the light quarks u and d.

Concerning quark masses in particular, they depend in fact on the chosen scale. The default
values for the parameters include the strong coupling constant defined at the scale µ = MZ ,
but the quark masses evaluated at the low scale µ = 2 GeV. These default values are taken
from the PDG 2000 compilation 25. For a consistent scheme, running quark masses should be
inserted instead wherever this is of importance. For instance, the b mass is only about 2.9 GeV
at µ = MZ , thus affecting the Higgs coupling to b quarks.

Although they can be calculated from the other parameters in principle, the particle widths
are retained as independent input parameters. Thus, the branching ratio of a particular reso-
nance decay can be tuned by modifying the resonance width. When the Higgs mass is changed,
the Higgs width has to be changed accordingly if Higgs decays are considered. The default
values for the particle widths are given by the sum of the tree-level 1 → 2 decay channels,
using the default masses and couplings as input. This choice is questionable as well. Since

25Note that we do not keep this updated. The parameter file of version 2, however, contain the most recent
PDG values
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O’Mega(MadGraph and CompHEP, too) can only calculate cross sections at tree level, this is at
least consistent; however, for each particular problem one should re-investigate the underlying
assumption that 2-particle decays are dominant, and recalculate the widths accordingly. This
cannot be done automatically by WHIZARD 1.

Finally, even if a parameter is defined and appears in the output, this does not necessarily
mean that its value is used by all three programs CompHEP, MadGraph and O’Mega. For instance,
the CKM matrix is not taken into account by the MadGraph version of the Standard Model.

For using CompHEP, there are two switches within the parameter input block:

Parameter Value Default Description
gwidth T/F F Use the gauge-invariant width prescription

for unstable particles in CompHEPmatrix el-
ements. This is the so-called overall factor
scheme. For O’Mega, the corresponding ’f’
option has to be specified in the process
configuration file already.

rwidth T/F F Use a running-width prescription for un-
stable particles in CompHEP matrix ele-
ments.

4.4.7 Input in SUSY Les Houches Accord format

The SUSY Les Houches Accord (SLHA) [10,11] describes a format to pass MSSM/NMSSM
physics data between computer programs. WHIZARD accepts its input file in SLHA format. This
requires that either

• The first line of the input file begins with the string

# SUSY Les Houches Accord

• or the parameter input_slha_format in the process_input block (see above) is .true.
This flag can be set on the command line, or in an input file which is read before the
SLHA data.

It is possible to

• read SLHA input after the usual input file: In the process_input block of the standard
input file, set input_file to the name of the SLHA file (without the extension .in which
each input file must have).

• embed standard WHIZARD input within the SLHA file: Enclose it in a block WHIZARD_INPUT.
The text of this block is read by WHIZARD only and copied verbatim into an internal file
which is read after the SLHA data. Note that, according to the SLHA standard, the first
character of each line within this block has to be blank.

In this way, several input files in both formats may be read consecutively, which could be
useful to set defaults and override some parameters computed by a SUSY spectrum calculator.
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However, the recommended procedure is to supply a standard whizard.in file where the process
selection, collider information, and WHIZARD switches and runtime parameters are set, while
containing all physical data in a separate file written in SLHA format which is read afterwards.
The latter may be produced by an automatic spectrum and decay calculator.

In the output, if SLHA data have been used, the data will be repeated. WHIZARD re-
orders the blocks, where the blocks that actually have been used (which may include MODSEL,
SMINPUTS, MINPAR, MASS, and mixing data) come first. The parameter slha_rewrite_input in
the diagnostics_input block controls whether the input data are just copied into the output
(preserving all comments, but not necessarily the ordering of blocks) or rewritten by WHIZARD.
In the latter case, the relevant parameters in the output are made consistent between the stan-
dard WHIZARD format and the SLHA format, where applicable. Furthermore, for each process
a block PROCESS will be appended which contains the integration results in a format which fol-
lows the SLHA conventions. The block CSINFO (cross section calculator information) is added,
analogous to the SPINFO and DCINFO blocks described in the standard (see Fig. 5).

WHIZARD will use the MASS and DECAY information in the SLHA file to set the physical masses
and widths of the particles it recognizes. Branching ratio information is not used. Note that
the masses of some SM particles (Z, t, b, and τ) are defined in SMINPUTS. For completeness,
they may also be set in the MASS block (where the W mass is located). If the values disagree,
the MASS information takes precedence for WHIZARD’s needs. The widths of Z, W , and t may be
set using the DECAY format. In all cases, default values (which may have been set in a previous
input file) will be taken without warning where data are missing.

While the SLHA is intended for the MSSM and its extensions, it is possible to use this
format to pass physical parameters for a SM calculation, too. If the SM is chosen when
configuring WHIZARD, only the blocks MODSEL, SMINPUTS, MASS and DECAY information will be
used. By convention, we define the model parameter (in the MODSEL block) to be negative for
a non-SUSY model.

4.4.8 The beam input blocks

The input file is finished by two blocks which describe the properties of the first and second
incoming particle beam, respectively. It depends on the master flags in the process_input

block above whether particular information within these blocks is actually used:

• If cm_frame is false, the beam_input blocks specify information on the beam energies and
directions. If cm_frame is true (default), this information is discarded, the beam energies
are given by the sqrts value, and the beam directions are assumed along the positive
and negative z axis, respectively.

• If polarized_beams is true, the beam_input blocks specify information on the beam
polarization. If polarized_beams is false (default), this information is discarded and the
beams are assumed to be unpolarized.

• If structured_beams is true, the beam_input blocks specify information on the beam
particle types, beam energy spectra and/or structure functions. If structured_beams is
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false (default), the beam particles are assumed to be the incoming particles of the hard
process, and the partonic energies are set equal to the beam energies.

If all of the master flags are kept at their default values, the content of the beam_input blocks
is completely discarded, so they may be left empty.

For decay processes, there are some obvious restrictions: There is only one “beam”, so the
second block is ignored. While cm_frame and polarized_beams retain their meaning (i.e., one
can simulate the decay of a moving and/or polarized particle), structured_beams is ignored,
and no structure functions can be selected.

Energy and direction If the master flag cm_frame is false, the beam energies and directions
are set by

Parameter Value Default Description
energy number 0 If greater than the beam particle

mass, this specifies the beam energy
in the lab frame. Otherwise, the
beam energy is set equal to the par-
ticle mass (fixed target).

angle number 0 If direction is not set, this speci-
fies a rotation of the beam axis in the
lab frame around the positive y axis.
(By default, the beam directions are
along the positive/negative z axis, so
a rotation by the angle π/2 turns
them into the positive/negative x
axis.) If direction is set, this pa-
rameter is ignored.

direction three numbers 0 0 0 If any component is nonzero, this
vector explicitly specifies the direc-
tion of the given beam in the lab
frame.

Polarization If the master flag polarized_beams is true, the polarization is set for each
beam by

Parameter Value Default Description
vector_polarization T/F F If false (default), use the standard

helicity basis (left-/right-handed).
Set this flag if you need another ba-
sis, in particular transversal polar-
ization.
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Parameter Value Default Description
polarization two (three) numbers 0 0 0 Fraction of left/right polarization

(fermions, photons, gluons), resp.
left/longitudinal/right polarization
(massive vector bosons). If the vec-
tor polarization model is selected,
the three numbers denote the polar-
ization vector.

For fermions, the default (helicity basis) polarization model describes longitudinally polarized
beams with the specified fraction of left- and right-handed particles. In the case of massless
vector bosons, this corresponds to left and right circular polarization along the beam axis.
Massive vector bosons have three entries, where the middle entry specifies the fraction of
longitudinal polarization. If the numbers sum up to less than 1, the remainder is filled with
unpolarized particles. For instance, .5 0 and .75 .25 both stand for 50 % left-handed polarized
electrons.

The quantization axis of a polarized particle is the momentum vector in the lab frame. For
particles at rest, the quantization axis is the positive z axis.

The vector polarization model currently applies to fermions only. The three numbers denote
the components of a three-vector ~P with length less or equal to 1. The helicity density matrix
for fermions is given by

ρ = 1
2
(1 + ~P · ~σ), (5)

where the polarization vector has components (Px, Py, Pz). For antifermions this is replaced by

ρ = 1
2
(1 + ~P · ~σ∗), (6)

so the y component changes sign.
While the z component of ~P describes longitudinal polarization, the x and y components

correspond to transversal polarization. Longitudinally polarized states can therefore be speci-
fied in both polarization models, while transversal polarization requires the vector model.

Spectra and structure functions If the master flag structured_beams is true, WHIZARD
will check if any of the structure functions defined below is applicable for this beam. For each
beam, the beam particle is defined by either one of

Parameter Value Default Description
particle_code integer 0 PDG code of the incoming beam

particle.
particle_name string "UNKNOWN" Name of the incoming beam particle.

If both entries are specified, the given PDG code takes precedence.
The further parameters specify which structure functions are used for each beam and fix

structure function parameters where necessary. Structure functions are applied consecutively
(Tab. 1), choosing a sensible chain of beam particle splittings: For instance, if the beam particle
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Structure function in-particle out-particle user beam pol.
File events any = in keep
User spectrum (Sec. 5.3) any any keep/ignore
CIRCE (beamstrahlung) e± e± keep

e± γ ignore
CIRCE2 (beamstr.,γ spectra) e±/γ e±/γ ignore
ISR (photon radiation) charged particle unchanged keep
EPA (effective photon approximation) charged particle γ ignore
EWA (effective W approximation) weak doublet weak doublet ignore
LHAPDF (parton distribution functions) p, p̄ or γ q or g ignore
PDF (parton distribution functions) p, p̄ or γ q or g ignore
User structure function (Sec. 5.3) any any keep/ignore

Table 1: Available structure functions. Each transforms an in-particle into a collinear out
particle with a certain momentum fraction. They may be concatenated in the order given in
the table. In the present implementation, the user-specified beam polarization is either kept
unchanged for all events, or is overwritten.

is an electron and the process is initiated by a quark, switching on both EPA and PDF will take
the quark content of a photon which is emitted (in the Weizsäcker-Williams approximation)
by the incoming electron. WHIZARD will not check whether the selected combination makes
physically sense.

If it is desired to have the beam remnants in the event record, one should set the parame-
ter keep_beam_remnants in the simulation_input block. The beam remnants will be photons
(beamstrahlung, ISR), charged particles (EPA) or undefined hadron remnants (LHAPDF,PDF).
A beam remnant is always massless, regardless which mass the particle has been assigned some-
where else, and it will have no transverse momentum. There will be exactly one beam remnant
per structure function even though the number of photons radiated in beamstrahlung and ISR
is not well-defined in reality. Beam remnants cannot be used for the built-in analysis since
they are assigned no binary codes. Their main virtue is to make possible a reconstruction of
individual splittings in the initial state in an external analysis.

Furthermore, one can set keep_initials. In that case, the beam particles and the par-
tons which initiate the hard scattering are kept in the beam record. Together with the beam
remnants, this allows for full mother-daughter relationships to be displayed. For fixed-energy
beams, there are no beam remnants, and the initial partons are identical with the beam parti-
cles.

Events from file WHIZARD is able to read a sample of events from file and use it for integration
and event generation. If both beams are read from file in this way and the filename is identical
for both beams, the program expects a pair of real numbers in each line of the file. (Otherwise,
it expects separate files with a single real number per line.) Each number corresponds to the
energy carried by the beam particle. Empty lines and comment lines (marked by # or !) are
skipped.
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When the end of the beam event file is reached, a warning is issued and the file is reread from
the beginning. Note that reusing the event sample in this way leads to systematic errors in the
calculation. For instance, the fluctuations of the computed cross section between subsequent
iterations can exceed the error estimate by orders of magnitude. In the final integration step,
this could be visible as a χ2 value which is anomalously large. To avoid this problem, it is
recommended to use an event sample which is statistically distributed and contains a sufficient
number of events so that no rewinding is necessary.

Parameter Value Default Description
FILE_events_on T/F F Whether to read the beam events

from file.
FILE_events_file string empty File name. The directory prefix

(as specified by directory above,
if any) will be prepended and the
extension .bev will be appended to
this string. If this file does not ex-
ist, the default file whizard.bev is
searched instead.

FILE_events_energies T/F T Whether the numbers in the file
should be interpreted as absolute en-
ergies (T) or as energy fractions with
respect to the nominal beam energy,
i.e.,

√
s/2 in the c.m. frame (F).

Parton distribution functions There are two possibilities two access parton distribution
functions inside hadrons: either via the LHAPDF library or via the PDFLIB inside the CERNLIB.
Meanwhile we consider LHAPDF to be the default option, while we mention the PDFLIB setup
just for backwards compatiblity and completeness. Distribution functions exist for all quarks
and for the gluon. For LHAPDF, the parameters LHAPDF_on, PDF_scale (if PDF_running_scale
is false) and LHAPDF_file for the PDF set are mandatory. For an overview over available sets
and parameters confer the LHAPDF manual.

Parameter Value Default Description
LHAPDF_on T/F F Whether to use PDFs from

LHAPDF.
LHAPDF_file string empty File name for PDF set, e.g.

cteq6ll.LHpdf

LHAPDF_set integer 0 Number of the structure function set
within the given file. Usually, 0
is the central value, if values other
than zero are available they corre-
spond to error sets.
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Parameter Value Default Description
PDF_running_scale T/F F Whether to use a running scale (the

total partonic invariant mass) for the
structure function evaluation.

PDF_scale number 0 If PDF_running_scale is false, this
parameter must be set to a fixed en-
ergy scale for the structure function
evaluation.

For PDFLIB inside the CERNLIB setup, the parameters are listed below (for a more detailed
description, refer to the PDFLIB manual). For the numerical parameters, a zero value will cause
the PDFLIB default value to be taken, so only PDF_on and PDF_scale (if PDF_running_scale
is false) are mandatory.

Parameter Value Default Description
PDF_on T/F F Whether to use PDFs.
PDF_ngroup integer 0 Number of author group. If left 0,

the PDFLIB default value (MRS) will
be used.

PDF_nset integer 0 Number of the structure function set
by the given group. If left 0, the
PDFLIB default value will be used.

PDF_nfl integer 0 Number of active flavors.
PDF_lo integer 0 Order of αs calculation.
PDF_running_scale T/F F Whether to use a running scale (the

total partonic invariant mass) for the
structure function evaluation.

PDF_scale number 0 If PDF_running_scale is false, this
parameter must be set to a fixed en-
ergy scale for the structure function
evaluation.

PDF_QCDL4 number 0 QCD scale in GeV for four active fla-
vors.

Beamstrahlung (CIRCE1) For beamstrahlung, the accelerator type should always be de-
fined, and it is not recommended to use an energy different from the values for which valid
CIRCE [6] parameterizations exist. There is the option to either use the generator mode of CIRCE,
or to accept the distributions calculated by CIRCE as analytical spectra. For efficiency reasons,
the generator mode is typically preferred. An example input file whizard.in.circe isr for
the default process ee o can be found the conf directory.

Parameter Value Default Description
CIRCE_on T/F F Whether to apply beamstrahlung

(electron, positron or photon beam).
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Parameter Value Default Description
CIRCE_generate T/F T Whether to use the CIRCE event

generator or the analytical beam-
strahlung spectra.

CIRCE_map T/F T Whether to apply a mapping to im-
prove convergence (relevant for ana-
lytical spectra only).

CIRCE_sqrts number
√
s The reference energy. Note that

CIRCE spectra are defined only for
the discrete energy values (cf. the
CIRCE write-up for more info) .

CIRCE_ver integer 0 The CIRCE version number required.
CIRCE_rev integer 0 The CIRCE revision number re-

quired.
CIRCE_acc integer 0 The accelerator type as needed by

CIRCE.
CIRCE_chat integer 0 The level of CIRCE diagnostics.

In general, more information can be found in the CIRCE manual on the HepForge page:

http://projects.hepforge.org/whizard/circe1.pdf

Photon spectra (CIRCE2) CIRCE2 is intended as a replacement for CIRCE1. While the
previous implementation provided smooth spectra, the new version, which has to be used for
photon collider spectra where no CIRCE1 version is available, provides histogrammed spectra
which are read from a data file. These data files are partially contained in the WHIZARD distri-
bution, in the subdirectory circe2-src/data. For more information on the CIRCE2 generator
and possible updates on the spectra confer the manual/documented source code available from
the HepForge page:

http://projects.hepforge.org/whizard/circe2.pdf

There is the option to either use the generator mode of CIRCE2, or to accept the distributions
calculated by CIRCE2 as (histogrammed) spectra. For efficiency reasons, the generator mode is
typically preferred.

The following parameters can be defined (identical for both beams):

Parameter Value Default Description
CIRCE2_on T/F F Whether to use CIRCE2 for simulat-

ing spectra.
CIRCE2_generate T/F T Whether to use the CIRCE2 genera-

tor or the (histogrammed) spectra.
CIRCE2_verbose T/F T Whether to print CIRCE2 messages

on screen.
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Parameter Value Default Description
CIRCE2_file string empty The data file to read by CIRCE2.
CIRCE2_design string ”∗” The accelerator design for CIRCE2.
CIRCE2_polarized T/F T Use a polarized (T) or polarization-

averaged (F) spectrum in the
datafile.

CIRCE2_map -1/0/1 -1 Apply a power mapping for a sin-
gularity at x = 0 or x = 1, or
no mapping (-1). Relevant only for
histogrammed spectra, irrelevant for
the CIRCE2 generator mode.

CIRCE2_power number 2 Parameter for the mapping, if any.

If CIRCE2 is switched on, the CIRCE2_file parameter must always be given. The filename
will be interpreted relative to the current working directory. The accelerator design should be
specified if the data file contains more than one dataset. (The default matches the last dataset
within the data file.)

It is important to note that polarization treatment is different from the standard WHIZARD

conventions when CIRCE2 is used. The CIRCE2 data files introduce fixed polarization distribu-
tions of the beams which originate from realistic simulations. Therefore, the polarized_beams
switch and the polarization settings should not be used together with CIRCE2 under nor-
mal circumstances. Instead, the appropriate data file with polarization should be taken and
CIRCE2_polarized switched on. This will generate the appropriate polarized spectra, properly
normalized.

On the other hand, if a polarization-averaged dataset is specified, CIRCE2_polarized should
also be switched off.

Despite the fact that the polarization distributions are a fixed property of any given dataset,
one can reweight the polarization contributions by hand. To this effect one can set the param-
eters polarized_beams and polarization. For instance, by switching on only one helicity
combination, the properties of the corresponding cross section component can be studied. This
feature should be used with care, since the results may be unphysical.

In the spectra mode (CIRCE2_generate=false), if no mapping is specified by the user, the
program inserts a mapping at x = 0 (power = 3) for photons, and a mapping at x = 1 (power
= 12) for electrons. This assumes that all particles originate from an incident e− beam, where
for electrons there is a strong singularity (in fact, a smeared-out delta function) at x = 1. For
a different setup, e.g., a positron beam, the mapping parameters have to be adjusted by hand.
Note that without the x = 1 mapping, the delta-function singularity for electrons will almost
certainly be missed by the adaptive integration, and the result may stabilize for a wrong cross
section.

A sample input file, whizard.in.photoncollider, for the assumed hard process γγ → e−e+

can be found in the conf subdirectory.

ISR spectrum The ISR spectrum for charged particles accounts for the leading-logarithmic
effect of multiple photon emission. In the leading-logarithmic approximation, universal terms
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of order ǫn with ǫ = α
π

ln s
m2 can be absorbed in a structure function. The leading singularity

at x = 1 can be calculated exactly, while the other terms of the structure function are known
only to finite order.

The implementation in WHIZARD takes into account the LLA structure function ([7]),
including terms up to order ǫn, where n = 0, 1, 2, 3, depending on the value of ISR_LLA_order.
The default value is n = 3. The scale which enters the ISR spectrum is given by ISR_Q_max;
the default is to take the collider c.m. energy.

Since αQED is usually calculated from GF as far as the hard scattering is concerned, it makes
sense to reset it to 1

137
here. The incoming particle mass (e.g, me) must be defined here only if

it has been set to zero in the parameter input block (e.g., to speed up the calculation).

Parameter Value Default Description
ISR_on T/F F Whether to apply ISR (electron or

positron beam).
ISR_alpha number e2/4π The value of αQED to be used for the

spectrum.
ISR_m_in number m The mass of the incoming particle.
ISR_Q_max number

√
s The hard scale which cuts off photon

radiation.
ISR_LLA_order 0/1/2/3 3 The order of the leading-logarithmic

approximation.
ISR_map T/F T Whether to use a mapping of the

singularity at x = 1 when eval-
uating the structure function (rec-
ommended; note that switching this
off might even lead to an uncaught
arithmetic exception).

You can find an example, whizard.in.circe isr for the sample process ee o in the conf

subdirectory.

EPA spectrum The EPA spectrum is the Weizsäcker-Williams approximation for a real
photon radiated off the incoming beam. Here, Qmax and mX must be supplied, the other
parameters are optional. (If the produced system is massive, mX should be set equal or less to
the mass sum of all produced particles.)

Parameter Value Default Description
EPA_on T/F F Whether to use the EPA spectrum

(photon beam).
EPA_map T/F T Whether to apply a mapping to im-

prove convergence.
EPA_alpha number e2/4π The value of αQED to be used for the

spectrum.
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Parameter Value Default Description
EPA_m_in number m The mass of the incoming beam par-

ticle.
EPA_mX number 0 The lower cutoff for the produced in-

variant mass.
EPA_Q_max number 0 The upper cutoff on the virtuality of

the photon (Qmax > 0).
EPA_x0 number 0 The lower cutoff on the energy frac-

tion of the incoming photon
EPA_x1 number 1 The upper cutoff on the energy frac-

tion of the incoming photon

Again, an example, whizard.in.epa for the sample process γγ → e−e+ named aaee can
be found in the conf subdirectory.

EWA spectrum The EWA spectrum is equivalent of the Weizsäcker-Williams approximation
for massive W and Z bosons radiated off the incoming beam. For details about the EWA and
its implementation into WHIZARD confer [13].

Parameter Value Default Description
EWA_on T/F F Whether to use the EWA spectrum

(W/Z beam).
EWA_map T/F T Whether to apply a mapping to im-

prove convergence.
EWA_pT_max number 0 The upper cutoff on the pT of the

W/Z (pT,max > 0).
EWA_x0 number 0 The lower cutoff on the energy frac-

tion of the incoming W/Z
EWA_x1 number 1 The upper cutoff on the energy frac-

tion of the incoming W/Z

Again, an example, whizard.in.ewa for the sample process W+W− → ZZ named wwzz in
the leptonic setup of a 3 TeV CLIC collider can be found in the conf subdirectory.

4.5 Cuts

WHIZARD allows for cuts in some standard kinematical variables. Cuts may be necessary in
case the matrix element is infinite without them (which happens if massless particles are either
exchanged or produced). In this case, WHIZARD will apply default cuts on the invariant mass
of colored or charged particle pairs, on the energy of emitted photons or gluons, and on the
momentum transfer to exchanged photons or gluons. The values of those cuts are controlled
by parameters in the input file (see above).

Alternatively, the user may specify his own set of cuts by supplying an entry in the file
whizard.cut1. If such an entry exists, the program will ignore the default cuts, and the user
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is responsible for setting up his cuts in such a way that the cross section is still finite. The
format of such an entry for the process e−e+ → e−e+γ is shown in Fig. 6. The contents
of whizard.cut0, where the default cuts are logged by WHIZARD (if any), may be used as a
template.

The entry is begun by the keyword process followed by the process tag (eeg in this case).
If the same set of cuts should be applied to several processes, one may specify more than one
tag per entry, e.g.

process uudd uuss uucc

cut ...

The cut configuration file may contain any number of process entries. Comments are marked
by the letter ! or #.

For a given process, each cut is indicated by the keyword cut, followed by a code letter,
the keyword of, one or two binary codes, and cut window specifications. The code letters are
listed in Table 2. The binary codes indicate the combination of particle momenta to which the
cut should be applied. As the comment lines in Fig. 6 suggest, the outgoing particles are given
codes 1, 2, 4, . . .. Two additional codes are assigned to the incoming particles, where the first
incoming particle has the highest number. Momentum sums (particle combinations) are defined
by adding binary codes, such that the code 5, for instance, stands for the sum of momenta of
particles 1 and 4.

The initial momenta are always counted negative, such that (in Fig. 6) the number 17 stands
for the difference of the momenta of particle 1 (outgoing) and 16 (incoming). The same applies
to angles: The polar angle between 1 and 16 is not A of 1 16 but A of 1 8 since the initial
particle 16 goes into the direction of −p(8).

By default, the inserted momenta are those of the elementary partonic process. Thus, one
can assume momentum conservation. For instance, in a 2 → 2 scattering process, the invariant
mass of 1 + 2 = 3 (the outgoing particles) is the same as the invariant mass of 4 + 8 = 12
(the incoming particles). In some circumstances, one may need the incoming beam momenta
instead. To insert those in place of the incoming parton momenta, use a negative number. In
the previous example, the invariant mass of −12 would be the invariant mass of the incoming
beams which is equal to the nominal c.m. energy. Of course, there is no difference unless the
process is a 2 → n scattering process with structure functions enabled.

Cut window specifications consist of the keyword within and two real numbers, optionally
followed by additional specifications like

cut PT of 4 within 0 150

cut M of 3 within 80 100 or 180 200 or 500 99999

The absence of an upper bound should be marked by a number outside the kinematical range.

4.6 Integration

4.6.1 Running WHIZARD

After the input parameters and cuts have been specified, the integration can be started by
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Code Alternative code(s) # Args Description
- 0 − 2 No cut

M Q 1 (Signed) invariant mass M = sgn(p2)
√

|p2|
LM LQ 1 log10 |M |
MSQ QSQ S T U 1 Squared invariant mass M2 = p2

E 1 Energy in the lab frame
LE 1 log10 E
PT 1 Transverse momentum p⊥
LPT 1 log10 p⊥
PL 1 Longitudinal momentum pL

P 1 Absolute value of momentum |~p|
Y RAP RAPIDITY 1 Rapidity y
ETA 1 Pseudorapidity η
DETA DELTA-ETA 2 Pseudorapidity distance ∆η
PH PHI 1 Azimuthal angle φ (lab frame) in radians
PHD PHID PHI(DEG) 1 Azimuthal angle φ (lab frame) in degrees
DPH DPHI DELTA-PHI 2 Azimuthal distance ∆φ (lab frame) in radi-

ans
DPHD DPHID DELTA-PHI(DEG) 2 Azimuthal distance ∆φ (lab frame) in de-

grees
AA ANGLE-ABS TH-ABS THETA-ABS 1 Absolute polar angle θabs (lab frame) in ra-

dians. Reference axis is the z-axis.
AAD ANGLE-ABS(DEG)

TH-ABS(DEG) THETA-ABS(DEG) 1 Absolute polar angle θabs (lab frame) in de-
grees

CTA COS(TH-ABS) COS(THETA-ABS) 1 cos θabs

A ANGLE TH THETA 2 Relative polar angle θ (lab frame) in radians
AD ANGLE(DEG)

TH(DEG) THETA(DEG) 2 Relative polar angle θ (lab frame) in degrees
CT COS(TH) COS(THETA) 2 cos θ
A* ANGLE* TH* THETA* 2 Relative polar angle θ∗ (rest frame of

part.#2) in radians
AD* ANGLE*(DEG)

TH*(DEG) THETA*(DEG) 2 Relative polar angle θ∗ (rest frame of
part.#2) in degrees

CT* COS(TH*) COS(THETA*) 2 cos θ∗

DR DELTA-R CONE 2 Distance in η-φ space, i.e.
√

∆η2 + ∆φ2

LDR LOG-DELTA-R LOG-CONE 2 log10

√

∆η2 + ∆φ2

VBF VBF ETA HEMI HEMISPHERE 2 η1 × η2

Table 2: Cut and histogram code letters. Masses, energies and momenta are measured in GeV.
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make run

or, if we are in the working directory (results),

./whizard

After each iteration, the result will be displayed on screen and logged in the file whizard.XXX.out,
where XXX is the process tag. An example is shown in Fig. 7. As it is expected, the integration
converges towards a stable result, and at the same time the estimated reweighting efficiency
increases (allowing for some fluctuations).

The number of iterations and the number of calls per iterations are as given in the input
file whizard.in (see Fig. 4). Adaptation proceeds in three passes which are separated by a
horizontal line in the output:

In the first integration pass, the grids are adapted after each iteration, but the relative
weight of the integration channels is kept fixed. In the example of Fig. 7, this pass consists
of two iterations with 10, 000 calls each. This pass is useful in particular for many-particle
processes, where it takes some time before VAMP has found the physical region in each channel.

In the second pass, the grids within each phase space channel and the relative weights of
the phase space channels are adapted after each iteration. The example of Fig. 7 shows how
the integral converges, the error estimate improves, and the estimated reweighting efficiency
increases, until some saturation is reached. Here, the sixth column is of main interest, which
is given by the estimator for the relative error multiplied by the square root of the number of
calls. One expects a number of the order of unity (or smaller) here for a well-adapted grid,
independent of the number of calls. Each time this number improves, it is marked by an
asterisk. The best grid will be used later for the final integration and event generation steps.

In the third pass, the relative weights are fixed again, and the remaining iterations are
averaged for the final cross-section result.

4.6.2 The phase space configuration

The critical point for the integration is the phase space configuration. This is set up automat-
ically by WHIZARD before starting the integration. When integrating a given process for the
first time, a phase space configuration is generated and written to the file whizard.phx. In
subsequent runs for the same process, this file is reused. If you would like to edit and modify
this file or if you want to set up your own configuration, the new configuration should be stored
in the file whizard.phs which takes precedence over whizard.phx and will not get overwritten.
The automatically generated file whizard.phx will be deleted when the process list changes or,
in any case, by a make clean command.

For each process, WHIZARD phase space consists of a set of channels which formally cor-
respond to Feynman diagrams. In the automatically generated phase space configuration file
whizard.phx, these channels are listed in order, using binary codes for the internal lines. The
channels that have been generated can be drawn and viewed on screen or printed:

make channels
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This generates a LATEX file whizard-channels.tex which uses the FeynMF package for drawing
Feynman graphs, and transforms it into a PostScript file whizard-channels.ps. These files are
located in the results directory. Note that this is currently available only for the automatically
generated phase space, not for a phase space setup supplied by the user. (Note further that the
Feynman diagrams drawn are only sample diagrams for the corresponding phase space channels.
Especially if the user edits phase space by removing channels from the file whizard.phx by hand,
still the full matrix element is taken into account!)

Similarly, the bin distributions of the grids as they have been adapted during the WHIZARD

run can be converted into histograms by

make grids

and viewed as the file whizard-grids.ps (note that this only works if the user has set the
variable plot_grids_channels in the diagnostics_input block).

Again, it should be kept in mind that the choice of phase space channels does not influence
the integration results (all Feynman graphs are included in the cross section calculation and
event generation, but for the phase space setup only some of them are used — and some are
even used twice). However, the accuracy and the speed of convergence depend on this choice.
In many cases it will not be necessary to modify anything, but if you are not satisfied with the
results of the default configuration, the following remarks may help.

• The channels are grouped in groves: Sets of channels that are equivalent in some sense
and therefore should get equal weight. All channels within a grove are sampled with
the same number of points per iteration which may increase or decrease during the
adaptation procedure. To prevent channels from being dropped altogether, one may
set min_calls_per_channel to a positive value, e.g. 100.

• When a Feynman graph is interpreted as a phase-space parameterization channel, the
internal lines are considered either as resonant, log-enhanced, or off-shell. A resonant
line either corresponds to a resonance which is kinematically allowed to go on-shell. A
log-enhanced line is an (approximately) massless propagator, either in the s-channel (e.g.,
a photon which splits into massless quarks), or in the t channel (e.g., a Coulomb photon
which is exchanged between the initial particles).

• The first criterion for selecting a channel is the number of off-shell lines. The default value
is off_shell_lines=1. Since in dominant graphs most internal lines are either resonant
or log-enhanced, this already covers many cases.

• By this criterion, some important graphs are missed, e.g., the Higgs radiation off a top
quark in e+e− annihiliation, which has two off-shell lines. The rule is that additional chan-
nels are selected with extra_off_shell_lines (default 1). For those, the log-enhanced
lines count as off-shell. It turns out that this rule is sufficient for essentially all physically
relevant cases. However, it may fail in more obscure cases (e.g., if non-resonant regions
of phase space are selected by cuts), so increasing these parameters manually, which adds
more Feynman diagram classes to the phase-space setup, is a possible option for the user.
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• At high energies, multiperipheral graphs with particle exchange become important even
though they may be subleading according to the former rules. This fact is accounted
for by setting a threshold_mass_t value equal to 200 GeV, so W and Z bosons in the
t-channel are considered light, and W/Z exchange graphs counted log-enhanced. For the
s-channel, the threshold_mass value is 50 GeV, so W and Z are considered heavy. Of
course, these values may be adjusted if the kinematics is completely different.

• If no phase space channels are found which satisfy all criteria, WHIZARD will give it another
try with off_shell_lines increased.

• Five additional flags give finer control: single_off_shell_branchings, double_off

_shell_branchings, single_off_shell_decays, double_off_shell_decays, massive
_fsr. With the exception of the second flag, all are .true. by default, so switching them
off will remove phase space channels.

• In particularly complicated situations you might wish to have full control and write your
own configuration in whizard.phs, taking the pre-generated configuration whizard.phx

as the starting point. To make this easier, for nonzero extra_off_shell_lines you will
find extra channels in the output which are commented out. Instead of finding the binary
coding of Feynman graphs yourself, you may just remove the comment characters for a
inactive set of phase space channels.

The number of channels in the default configuration tends to be somewhat too large. Many
channels turn out to be irrelevant and will be dropped during the self-adaptation procedure.
If you can guess which ones those are, you may use the available parameters and options
for manual intervention to optimize the channel selection. As an example, the effective Zee
coupling is almost zero because of sin2 θw ∼ 1/4, so graphs with Z emission from electron lines
are suppressed. You could remove such graphs, either manually, or by removing the Zee vertex
from the whizard.mdl file before starting the program. (You have to be careful not to drop
resonant Z → ee decays, then.) However, in most cases, while this may save some running
time for the adaptation, it is not worth the effort.

On the other hand, it may happen that important channels are missed by the default
configuration. In this case, the restrictions should be weakened.

4.6.3 What if it does not converge?

Although WHIZARD is able to produce stable results with the default settings for a large variety
of scattering processes, it is not possible to guarantee fast convergence of the cross section
estimate in all circumstances. There is no simple rule for the achievable accuracy and event
generation efficiency for a given process; the examples in Sec. 6 should provide some guideline.
In any case the screen output of the adaptation procedure should be inspected, and questionable
results should not be used for simulation.

Experience shows that in well-behaved 2 → 4 processes an accuracy (Err/Exp in the output)
below 1 and an estimated reweighting efficiency above 10 % is reasonable. Due to the increased
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dimensionality of phase space, for 2 → 6 processes the numbers are typically worse by a factor
2 to 4.

If convergence is apparently not reached, i.e., there are sizable fluctuations in the result,
this may be due to one of the following causes:

• The integral is actually infinite. One should check the cuts if they are sufficient for a finite
result. Note that a singularity with a small coefficient is likely to produce an instability
rather than an obvious divergence, if the number of calls per iteration is finite.

A notorious example are processes where the final state contains µ+e−ν̄eνµ or µ+ūdν̄µ:
For zero muon mass, there is no problem, but if the muon mass is given the physical
value, this final state can result from µ+µ− production and muon decay. The muon width
is zero, which is reasonable since the muon decay occurs outside the interaction point,
but with cuts on visible particles only, real muon decay makes the integral divergent.

• The number of iterations is insufficient. For simple 2 → 3 processes, one reaches a stable
result after 2−5 iterations, but in complicated cases (many particles with photon emission
with weak cuts, etc.) 20 − 30 iterations may be needed. WHIZARD will make a guess, but
this may be not sufficient in some cases.

• The number of calls per iteration is insufficient. With increasing dimension and complex-
ity of the phase space, this number should be increased as well.

• The phase space parameterization is inadequate (see above). One may try to include or
remove channels by modifying parameters such as the number of off-shell lines allowed in
generating parameterizations.

• The parameterization is adequate in principle, but some subdominant (but still impor-
tant) channels got dropped during the adaptation procedure. This may be prevented by
setting min_calls_per_channel. The channel weight history can be inspected in the
process-specific output file.

• The matrix element is numerically unstable. This is probably not an issue for O’Mega or
MadGraph matrix elements with realistic kinematics, but cannot be excluded. CompHEP

matrix elements, which result from squared amplitudes, are susceptible for numerical
instabilities which occur for extreme kinematics. Actually, if the compiler supports it,
one may switch to quadruple precision (configure with --enable-quadruple) in order to
ameliorate this problem.

• One should be careful to avoid the effects of QED gauge invariance violation, which
can be large if unstable particles and photons are around (e.g., single W production in
e+e− collisions). With CompHEP matrix elements, the gwidth switch should be set in
such cases, while O’Mega matrix elements should be generated with the ‘f’ option. This
enables the overall factor scheme, where the resonant contributions to the matrix element
are evaluated for zero width of charged particles, and the Breit-Wigner correction factor is
applied to the complete matrix element at the end. Another gauge-invariant prescription
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(the complex-mass scheme) is foreseen to be implemented in a future version of O’Mega
within the context of WHIZARD 2.

4.6.4 Output files

All results are logged in a generic file whizard.out and in process-specific files whizard.XXX.out,
where XXX is the process tag. The output files are rewritten after each iteration. Depending
on the settings of the diagnostics parameters, they will contain additional information: The
contents of the input file are repeated, including also the default values which have been in-
serted by the program. Furthermore, it shows the detailed history of the individual integration
channels and of their relative weights.

After each iteration, the current VAMP grids are written to file as well: whizard.XXX.grc

for the current grid and whizard.XXX.grb for the best grid. These may be reused in another
run.
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! Begin SLHA data

# SUSY Les Houches Accord Version 1.0

Block MODSEL # Select model

1 1 # mSugra

Block SMINPUTS # Standard Model inputs

1 1.279340000e+02 # alpha_em^(-1)(MZ)

2 1.166370000e-05 # G_Fermi

3 1.172000000e-01 # alpha_s(MZ)MSbar

4 9.118760000e+01 # MZ(pole)

5 4.250000000e+00 # Mb(mb)

6 1.743000000e+02 # Mtop(pole)

7 1.777000000e+00 # Mtau(pole)

...

# WHIZARD: The following blocks have not been used:

Block EXTPAR # non-universal SUSY breaking parameters

...

# WHIZARD: The following blocks have been added:

BLOCK PROCESS # Result of cross section calculation

1 2 # Number of incoming particles

2 11 # Incoming particle: e

2 -11 # Incoming particle: a-e

11 2 # Number of outgoing particles

12 1000024 # Outgoing particle: ch1+

12 -1000024 # Outgoing particle: a-ch1+

21 1.62815594E+02 # Cross section in fb

22 8.00542154E-02 # Cross section error in fb

23 1.56582525E+00 # Chi-squared value

#

BLOCK CSINFO # Cross section calculator information

1 WHIZARD # Calculator name

2 1.97 # Calculator version

#

! End SLHA data

Figure 5: Sample output in SLHA format

73



! e- e+ -> e- e+ gamma

! 16 8 1 2 4

process eeg

cut Q of 10 within -99999 -1

cut Q of 17 within -99999 -1

cut M of 3 within 10 99999

cut E of 4 within 5 99999

cut PT of 4 within 19 99999

cut THETA(DEG) of 4 1 within 5 180

cut THETA(DEG) of 4 2 within 5 180

Figure 6: Cut configuration file

! WHIZARD 1.97 (May 31 2011)

! Reading process data from file whizard.in

! Wrote whizard.out

!

! Process nnbb:

! e a-e -> nu_e a-nu_e b a-b

! 32 16 -> 1 2 4 8

....

! WHIZARD run for process nnbb:

!=============================================================================

! It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It]

!-----------------------------------------------------------------------------

! Reading cut configuration data from file whizard.cut1

! No cut data found for process nnbb

! Preparing (fixed weights): 2 samples of 10000 calls ...

1 20000 5.6761132E+01 1.07E+00 1.88 2.65* 1.45 1.52 2

!-----------------------------------------------------------------------------

! Adapting (variable wgts.): 10 samples of 20000 calls ...

2 20000 5.9620359E+01 8.15E-01 1.37 1.93* 6.58

3 20000 5.8344071E+01 4.62E-01 0.79 1.12* 8.99

4 20000 5.8023577E+01 4.17E-01 0.72 1.02* 9.04

5 20000 5.7938879E+01 3.83E-01 0.66 0.94* 11.95

6 20000 5.8152958E+01 3.73E-01 0.64 0.91* 11.85

7 20000 5.8132996E+01 3.66E-01 0.63 0.89* 12.02

8 20000 5.8252891E+01 3.50E-01 0.60 0.85* 13.61

9 20000 5.8296069E+01 3.42E-01 0.59 0.83* 12.74

10 20000 5.8391405E+01 3.32E-01 0.57 0.81* 15.93

11 20000 5.8168510E+01 3.19E-01 0.55 0.78* 16.66

!-----------------------------------------------------------------------------

! Integrating (fixed wgts.): 3 samples of 50000 calls ...

12 150000 5.8232347E+01 1.17E-01 0.20 0.78 10.11 0.49 3

!-----------------------------------------------------------------------------

Figure 7: Sample output of running WHIZARD.

74



4.7 Event generation

4.7.1 Unweighted events

Event generation is activated in the input file, either by specifying a nonzero luminosity

&process_input

...

luminosity = 100

/

or by a nonzero number of events

&simulation_input

n_events = 10000

/

In the former case, the actual number of generated events depends on the calculated cross
section. If both numbers are given, the one leading to the larger event sample will be used. It
is also possible to specify n_calls, which is the number of matrix element calls. However, this
is more useful for weighted event samples (see below).

The simulation makes sense only if WHIZARD could find a stable result for the cross sec-
tion. This should be judged from inspecting the results displayed on screen and in the log file
whizard.out.

With event generation activated, WHIZARD will not stop after the integration step, but start
event generation. By default, WHIZARD will generate unweighted events, which result from
reweighting the events produced by the VAMP sampling algorithm. In the event generation step,
importance sampling is used, such that the events are random and have the proper distribution
as required for a realistic simulation.

WHIZARD is able to write events to file in various formats (note that the manual of WHIZARD 2,
http://projects.hepforge.org/whizard/manual.pdf), does contain examples for all the different
event formats presented here, though the debug format does look different there):

• The file whizard.evx contains the events in a binary machine-dependent format. By set-
ting read_events=T they can be re-read, bypassing the time-consuming event generation.
Writing this file is suppressed if write_events_raw=F.

• The file whizard.evt (or, alternatively, whizard.pythia or whizard.stdhep, depending
on the format) is written if write_events=T. The event file format is controlled by the
parameter write_events_format. The supported formats are:

0 Verbose format (ASCII), useful mainly for debugging.

1 HEPEVT format (ASCII). The format corresponds to the HEPEVT standard, such
as if the contents of a HEPEVT common block were written in their natural order
(Fig. 8, 9). As an extension, the helicity (−1, 0, or 1) is written for each particle in
the same line after JDAHEP. For unfragmented events, the first line will contain further
information: the number of beam remnants and outgoing partons listed separately,
and the event weight.
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2 SHORT format (ASCII). This is similar to HEPEVT, but unnecessary entries are
suppressed (Fig. 10).

3 LONG format (ASCII). The same as SHORT, but there is an additional line per
record which contains the value of the integrand and the integrand ratio (Fig. 10).
In a normal run (recalculate=F), the ratio is unity (see Sec.5.5).

4 ATHENA format (ASCII). This is the input format used by the ATHENA software
(ATLAS). A slight variation of the HEPEVT format above. (cf. Fig. 12)

5 Les Houches Accord format LHA (ASCII). This format implements the Les Houches
Accord as in the original MadGraph implementation for transferring parton-level
events to hadronization packages. To use it, you must set fragment=T, and you
may set fragmentation_method=0 since any built-in fragmentation is irrelevant for
the output. (cf. Fig. 13)

6 Les Houches Accord format LHEF (ASCII). The new version containing XML head-
ers [18], cf. Fig. 14. For more details cf. the WHIZARD 2 manual,
http://projects.hepforge.org/whizard/manual.pdf.

11/12/13 PYLIST formats 1,2,3 (ASCII). This is useful in particular for fully fragmented
events, but can be used as well if fragmentation is turned off (see the PYTHIA man-
ual [1] for details).26

20 STDHEP format for writing the HEPEVT common block (binary, machine-indepen-
dent)

21 STDHEP UP format for writing the HEPRUP/HEPEUP common blocks (binary,
machine-independent)

Note that the formats that require external libraries (PYTHIA, STDHEP) do not work if the
corresponding libraries have not been linked to the main program.

Within each event, the particles will appear in the order determined by the process defini-
tion /footnotefor O’Mega and MadGraph; CompHEP may reorder them.. Hadronization packages
such as JETSET require a particular order of colored particles to properly assign showers, be
may necessary for the user to rearrange them before feeding them into the hadronization step.
In general, if color-flow information is absent 27, one may set guess_color_flow to tell the
program that the particles are to be combined as singlets in the order in which they appear in
the event record.

Reweighting Monte-Carlo events requires the knowledge of the highest weight. This can
never be known with certainty in advance, so there may be some fraction of events with weight
greater than one. By default, WHIZARD will sum up the excess weight of those events and show
the induced error in the total cross section, which should be small compared to the statistical

26This works only if PYTHIA has been linked. Also it does not work (properly) if WHIZARD and the CERN
library containing PYTHIA have been compiled by different compilers, because PYTHIA or JETSET cannot connect
the proper output unit in that case. So then a file like fort.<unit> will appear containing the PYTHIA/JETSET
events.

27For CompHEP matrix elements, and for O’Mega without the ’c’ option.
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integer, parameter :: nmxhep = 4000

integer :: nevhep, nhep

integer, dimension(nmxhep) :: isthep, idhep

integer, dimension(2, nmxhep) :: jmohep, jdahep

real(kind=double), dimension(5, nmxhep) :: phep

real(kind=double), dimension(4, nmxhep) :: vhep

common /HEPEVT/ nevhep, nhep, isthep, idhep, &

& jmohep, jdahep, phep, vhep

Figure 8: Definition of the HEPEVT common block in Fortran 95 format

error of event generation. If desired, the excess events can be further analyzed by WHIZARD’s
own analysis capabilities (see below), to make sure that they have no significant impact on final
results. By setting the safety_factor in the simulation_input block to a number greater
than one, the amount and weight of excess events (if any) will be reduced. However, the time
needed for event generation will be increased by the same factor.

WHIZARD will use the adaptation step to determine the highest weight beforehand. This
requires sufficient statistics in the adaptation procedure. If many events have to be generated,
the default choice for the number of calls per iteration may be too low, and too many excess
events are produced. As a rule of thumb, the number of calls per adaptation iteration should
be of the order of the number of unweighted events divided by the estimated efficiency.

Alternatively, a “test” run can be made by specifying a nonzero value of n_events_warmup
in the input file. For instance, one may generate 200, 000 (weighted) events to determine the
highest weight before generating the actual sample to be used for the reweighting procedure:

&simulation_input

n_events = 10000

n_events_warmup = 200000

/

Fortunately, this is not necessary in most cases since the pre-determined highest weight is
usually quite accurate.

4.7.2 Weighted events

The default setup will generate unweighted events, which is the proper way of simulating actual
physics runs. The cross section error of the simulation run is equal to the square root of the
number of events, as it should be.

This requires an unweighting step where, depending on the ratio of the current event’s
weight and the maximum weight, a large fraction of the generated event sample is thrown
away. Clearly, information is lost in this step. To keep all available information, one can use
weighted events instead:

&simulation_input

unweighted = F
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write(u, 11) nhep

do i=1, nhep

write (u,13) isthep(I), idhep(I), &

& (jmohep(j,i), j=1,2), (jdahep(j,i), j=1,2)

write (u,12) (phep(j,i), j=1,5)

write (u,12) (vhep(j,i), j=1,min(5,ubound(vhep,1)))

end do

11 format(10I5)

12 format(10F17.10)

13 format(I9,I9,5I5)

Figure 9: Output routine which would produce the event file whizard.evt from the contents of
a HEPEVT common block. u is an output unit.

write(u,15) evt%n_out + evt%n_beam_remnants, &

& evt%n_out, evt%n_beam_remnants, weight

do i=1, evt%n_out

p = array(particle_momentum(evt%prt(i)))

write (u,13) particle_code(evt%prt(i)), evt%hel_out(i)

write (u,12) p(1:3), p(0), particle_mass(evt%prt(i))

end do

12 format(10F17.10)

13 format(I9,I9,5I5)

15 format(3I5,1X,F17.10)

Figure 10: Output routine for the SHORT event file format. Note that the number of beam
remnants and the event weight are not part of the HEPEVT standard. (We here and in the
sequel do not include the code for the beam remnants and/or initials.)

write(u,15) evt%n_out + evt%n_beam_remnants, &

& evt%n_out, evt%n_beam_remnants, weight

do i=1, evt%n_out

p = array(particle_momentum(evt%prt(i)))

write(u,13) particle_code(evt%prt(i)), evt%hel_out(i)

write(u,12) p(1:3), p(0), particle_mass(evt%prt(i))

end do

write(u, 14) evt%mc_function_value, evt%mc_function_ratio

12 format(10F17.10)

13 format(I9,I9,5I5)

14 format(ES17.10,F17.10)

15 format(3I5,1X,F17.10)

Figure 11: Output routine for the LONG event file format. Note that the number of beam
remnants and the event weight are not part of the HEPEVT standard.
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write(u,11) evt%count, event_n_entries (evt)

k = 0

do i=1, evt%n_out

k = k + 1

p = array(particle_momentum(evt%prt(i)))

write (u,13) k, 1, particle_code(evt%prt(i)), &

& evt%n_in+1, 2*evt%n_in, (0, j=1,2)

write (u,12) p(1:3), p(0), particle_mass(evt%prt(i))

write (u,12) (0._default, j=1,4)

end do

11 format(10I5)

12 format(10F17.10)

13 format(I9,I9,5I5)

Figure 12: Output routine for the ATHENA event file format. (If the initial particles and/or
the beam remnants are to be kept, these are written before the outgoing particles.)

write (u,16) nup, idprup, xwgtup, scalup, aqedup, aqcdup

write (u,17) idup(:nup)

write (u,17) mothup(1,:nup)

write (u,17) mothup(2,:nup)

write (u,17) icolup(1,:nup)

write (u,17) icolup(2,:nup)

write (u,17) istup(:nup)

write (u,17) ispinup(:nup)

do i=1, nup

write (u,18) i, pup((/4,1,2,3/),i)

end do

16 format(2(1x,I5),1x,F17.10,3(1x,F13.6))

17 format(500(1x,I5))

18 format(1x,I5,4(1x,F17.10))

Figure 13: Output routine for the (old) Les Houches Accord (LHA) event file format.

...

/

The number of weighted events is calculated such that (approximately) the same unweighted
event sample would result from unweighting them afterwards, as it would from directly gen-
erating unweighting events. If luminosity or n_events do not require a higher number, the
total number of weighted events generated is approximately equal to n_calls.

If there is more than one process, the luminosity is distributed among them proportional
to the individual cross sections. In contrast to unweighted generation, the events are ordered,
such that all events belonging to the first process are generated first, then the next one, and
so on. The exact number of weighted events for a given process depends on both the cross
section and the efficiency. For a process with low efficiency, a larger number of weighted events
is needed for the same cross section than for a high-efficiency process. (In unweighted event
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samples, the individual event numbers depend only on the cross sections.)
These events can also be written to file and analyzed by an external program. For each

event, the event weight is a number between zero and one (if no excess events are present),
and it is printed as the last number in the first line of the output. Hence, in this definition
the weight is the probability with which the event would have been kept in the sample if an
unweighting step had taken place. As a result, differential (binned) distributions should be
identical for weighted and unweighted event samples, apart from fluctuations.

Unfortunately, the HEPEVT standard does not allow for event weights. Therefore, the
PYLIST and STDHEP output formats which read out the HEPEVT common block cannot be
used for weighted events. By contrast, event weights can be transferred using the HEPEUP
common block, so the STDHEP UP format does work for weighted events. Keep in mind that
weighted events are ordered, so files containing those must not be truncated or extended.

4.7.3 Built-in analysis

WHIZARD has capabilities to analyze the events without reference to external packages. To
this end, a configuration file whizard.cut5 should be set up which has a similar format as
whizard.cut1. For instance, in Fig. 15 a configuration file is shown which tells WHIZARD

to analyze the generated event sample in three different ways: to calculate the cross section
within a window 80 < M(e+e−) < 100 GeV, then within 180 < M(e+e−) < 200 GeV with an
additional cut on p⊥(γ), and finally to generate a histogram of p⊥(e−) with a cut on the photon
energy.

The histogram specification may take either one of the form

histogram PT of 1 within 0 500

histogram PT of 1 within 0 500 nbin 50

histogram PT of 1 within 0 500 step 10

Instead of the number of bins (20 by default), the bin width can be specified by the keyword
step.

The cross section results are displayed on screen. In addition, they are written together
with the histogram data to the file whizard-plots.dat. If show_excess=T has been set in the
input file, the summary and the histograms will contain also information about any events with
weight greater than one, such that their properties can be examined.

Clearly, for a quick analysis it is not necessary to simulate proper unweighted events. There-
fore, one may set unweighted=F in order to analyze a sample of weighted events, which saves
a lot of execution time.

The contents of whizard-plots.dat can be visualized directly by means of the gamelan

graphical analysis package which is contained in the distribution. This requires the existence of
the MetaPost program, which is part of standard LATEX distributions. Plots can then be made
by typing

make plots

This will result in a Postscript file whizard-plots.ps which can be viewed and printed. Note
that this works only if you have generated events, otherwise WHIZARD might fail with the message
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No rule to make target plots.

The event sample can further be analyzed in terms of color flow, helicity and flavor content.
Example

! e- e+ -> q qbar b bbar

! 16 8 1 2 4 8

process qqbb

cut M of 3 within 85 95

color 0 0 4 0 6 0

helicity 1 -1 -1 1

helicity -1 1 -1 1

flavor 2 -2 5 -5

histogram M of 12 within 0 500

This would plot a histogram of the invariant mass of the bb̄ pair with the additional requirement
that the other quark pair must be uū, that the b (anti)quarks must be left- resp. right-handed,
and that the uū and bb̄ pairs are each in a color-singlet state.

Color flow is defined in a natural way: The particles are numbered consecutively beginning
from the initial ones (do not confuse this with the binary codes used for specifying cuts and
histograms). For an incoming quark or gluon, the index of the particle its color flows to is given,
while for an outgoing quark or gluon it is the index of the particle its color comes from. (This
differs from WHIZARD’s internal convention where incoming and outgoing particles are equally
treated, but it is easier to use.) For colorless particles and for antiquarks, the entry is zero. So,
in the above example, the q color comes from the q̄, and the b color from the b̄.

Helicities and flavors are indicated as usual: Fermions and massless vector bosons have
helicity ±1, massive vector bosons can come with helicity 0 in addition, and for scalars the
helicity is always zero. Flavor is denoted by standard PDG codes.

The order should be as in the above example: first cut specifications (the event must pass
all cuts), then color, helicity and flavor specifications (the event must match any of the given
helicity combinations and any of the given flavor combinations), finally histogram specifications.
Any of these may be absent; an empty entry will just display the total cross section again.
More analysis configurations can be added for the same process, they must be separated by the
keyword and.

4.8 Fragmentation

The Les Houches standard [9] for transferring events together with weight and color informa-
tion allows for a consistent interface of partonic event generators and programs that account
for showering, fragmentation, and hadronization. In order to use such an external program,
WHIZARD has to write events to file in a format that supports this information. Currently, there
is the LHA format (code: 5) that writes, for each event, the contents of the HEPEUP block
in ASCII format, and the STDHEP UP format (code: 21) that writes this information into a
portable binary STDHEP file. The first record of this file will contain the HEPRUP common
block; then, for each event, the HEPEUP common block is written.
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Alternatively, WHIZARD provides an internal interface to routines for fragmentation, decays
and hadronization. For each event, WHIZARD calls the corresponding external program that fills
the HEPEVT common block and writes this to file. To activate this, the parameter fragment
in the simulation_input block must be set to true. Of course, the corresponding library has to
be properly linked. Only unweighted events can be fragmented. (This is because the HEPEVT
standard does not allow for the event weight to be transferred.)

Once fragment is set, various options are available, depending on the value of the parameter
fragmentation_method:

(0) No fragmentation within WHIZARD (for completeness).

(1) JETSET fragmentation. The final state is fragmented and hadronized by a call to the
PYEXEC fragmentation routine inside PYTHIA, i.e., by the former JETSET program. If
available, color flow information is used. Otherwise, i.e. for CompHEP matrix elements
and O’Mega without the ’c’ option, the color connection properties of the final state are
guessed by JETSET from the particle ordering, which must therefore carefully be chosen
by the user when defining the process. Note that even for processes like e+e− → jj where
O’Mega without the option ’c’ gives the correct color factors, it only gives the correct
color flows for (JETSET) fragmentation when using the ’c’ option.

(2) PYTHIA fragmentation. The final state is fragmented and hadronized by making the pro-
cess generated by WHIZARD an external process within PYTHIA. If possible and depending
on the PYTHIA parameter settings, beam remnants are constructed, multiple interactions
and pile-up events are added, and more.

(3) This parameter value is intended to transfer control to fragmentation routines written
by the user and included in the user module. Of course, such code can make use of
the HEPRUP and HEPEUP common block contents. For additional flexibility, there is
also a parameter user_fragmentation_mode (integer) that allows for selecting different
versions of user fragmentation.

Full color information is available when using the ’c’ option for O’Mega matrix elements (or
for MadGraph matrix elements). However, in the other cases, for PYTHIA fragmentation WHIZARD

will provide missing color information if can be uniquely determined. Otherwise, it tries to guess
color connections from the particle ordering in the event record (just as JETSET does). If color
connection information cannot be determined, colored states cannot be fragmented in this way.
If fragmentation is nevertheless desired (even though the results may not be accurate), one has
to revert to JETSET fragmentation.

No effort is done to streamline WHIZARD and PYTHIA parameters, so changing a value in the
WHIZARD input file will have no effect on the fragmentation step. However, PYTHIA parameters
can be explicitly set by an interface to PYTHIA’s pygive routine. For instance, the line

pythia_parameters = "MSTP(41)=0; MSTP(81)=0"

in the simulation_input block disables resonance decays and multiple interactions within
PYTHIA. Similarly, the Higgs mass may be set by a call like
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pythia_parameters = "PMAS(25,1)=115"

The detailed list of parameters available is described in the PYTHIA manual [1].
The internal analysis routines described in Sec. 4.7.3 always refer to the event before frag-

mentation. To analyze the fragmented event, the user must use an external package. Note that
WHIZARD 2 meanwhile allows for analyzing fragmented events with the internal analysis tools,
however.

4.8.1 Parton showers and matching

In WHIZARD there is a version of a kT -ordered parton shower included written by Sebastian
Schmidt. This is, however, a highly experimental version mainly intended for testing pur-
poses. It is quite similar to the PYTHIA parton shower [1], but does contain only very basic
tunes to LEP Run 2 jet observables. Furthermore, it is only a shower for final state radia-
tion (FSR); there is no implementation of an initial state shower in WHIZARD 1. The internal
shower has been improved a lot and augmented by a different (so-called analytical) parton
shower within WHIZARD 2. For more details about the shower algorithm confer the WHIZARD 2
manual http://projects.hepforge.org/whizard/manual.pdf. The internal parton shower can be
switched on for event generation in the simulation_input block. Note that the only event
format which supports showered events from the WHIZARD-internal parton shower is the (new)
Les Houches event format (LHEF, event format 6) as this is the only format that allows for a
variable number of particles.

There is, of course, also the possibility to use showering (and hadronization) using the
PYTHIA interface. In the default settings, PYTHIA events are constructed with parton showers
developing along colored and charged partons. In WHIZARD, fixed-order matrix elements are
evaluated. The matching of both is nontrivial. For this reason, PYTHIA parton showers are
disabled in the current WHIZARD version. In general, the availability of exact higher-order
matrix elements (albeit tree-level) within WHIZARD makes matching without double-counting
a delicate task. This problem of potential double counting has been (partially) solved in the
framework of so called matching algorithms by either vetoing shower events entering hard
matrix elements regimes or reweighting with the corresponding Sudakov factors according to
the shower history. None of these algorithms have been implemented within WHIZARD 1, but
they are (at least partially) available inside WHIZARD 2.

There is also an experimental Herwig interface, but we do not discuss the details here.

4.8.2 Mixing WHIZARD and PYTHIA events

Since WHIZARD provides an external process to PYTHIA when PYTHIA fragmentation is enabled,
it is perfectly possible to mix PYTHIA and WHIZARD events. To this end, one should specify
PYTHIA processes in the simulation_input block. For instance,

pythia_processes = "22, 24"

will simulate e+e− → ZH and ZZ in addition to the WHIZARD-generated processes. There are
some caveats, however:
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• PYTHIA processes are generated only if PYTHIA fragmentation is enabled. Consequently,
the PYTHIA events are mixed with the fully fragmented WHIZARD events and optionally
written to file. There is no way to use the built-in analysis for those events.

• Since parton showers (ISR and FSR) are disabled globally, this applies to the PYTHIA

processes as well. However, one could switch the showering on by modifying the inputs.

• When the number of events to generate is derived from the luminosity input parame-
ter, it is assumed that no PYTHIA events are present. To obtain the actual luminosity
corresponding to an event sample in the presence of PYTHIA events, this number has to
be multiplied by the fraction of WHIZARD events in this sample. The parameter n_events
always refers to the total number of events. When show_pythia_statistics is true, a
summary of the generated channels and cross sections is printed.

• One should be careful not to double-count processes, except if this is actually desired
(e.g., for comparing WHIZARD and PYTHIA event samples for related processes).

4.8.3 PYTHIA event display

When fragmentation is enabled, the conventions for writing events to file are changed. The
verbose format is then not available since some information (used internally by WHIZARD) is
lost after fragmentation. The format codes 1 (HEPEVT), 2 (SHORT), 3 (LONG), and 20/21
(STDHEP) are available. In addition, there are three new format codes (11, 12, 13) which allow
for displaying events using PYTHIA’s PYLIST call. The respective argument given to PYLIST is
1, 2, or 3, corresponding to three different verbosity levels. (For automatic processing, the
more condensed HEPEVT or STDHEP formats are better suited.) Note again that these
output formats might not work properly if you use a CERN library compiled with a different
compiler than the WHIZARD core program, because in this case the output units of the two
compiler libraries are independent of each other. The PYTHIA events then just appear in a file
fort.<unit>, where <unit> is the current output unit.

4.9 Controlling WHIZARD runs

For a new process, it is not easy to predict how long it will take to reach a sufficiently precise
result or to generate a sufficiently large event sample. The achievable efficiency and accuracy
and the overall running time strongly depend on the complexity of the process, the singularity
structure of the matrix element and how well WHIZARD is able to map it, the presence or absence
of structure functions, and, clearly, the evaluation time of the matrix element for a single event.

Ideally, computer time and space is abundant, one calcaulates cross sections to the highest
possible accuracy, and infinitely large event samples are generated. In practice, one does not
want to wait too long for useable results, and one is limited by CPU time and space restrictions.
Priorities have to be defined. To meet these needs, various switches and levers are available
that control WHIZARD runs. All of them are set in the main input file and are listed in the tables
of Sec. 4.4.
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4.9.1 Grid adaptation

Parameters that control the grid adaptation and integration passes of WHIZARD are collected in
the integration_input block in the input file, listed in Sec. 4.4.3

Obviously, the array calls is the principal place for improving the accuracy and efficiency
of the adaptation and integration runs. In no case more iterations or calls than specified in
calls will be executed, where WHIZARD uses default values for entries left empty by the user.

Increasing the number of adaptation iterations normally improves (decreases) the constant
α in the error estimate for the total cross section,

∆σ

σ
=

α√
Nevents

, (7)

until a limit is reached which depends on the matrix element singularity structure and on the
choice of phase space integration channels. The estimate for α is printed as the accuracy in the
screen output table. Increasing the number of points per iteration tends to decrease the number
of iterations needed to reach this limit. In particular, this improves the precision in estimating
α and reduces inevitable fluctuations around the ideal grid configuration. Simultaneously the
reweighting efficiency ǫ increases, which is the ratio of the average to the maximum event
weight. Note that fluctuations in the ǫ estimate are significantly stronger than for α.

If the program has been killed for any reason, it can be restarted with read_grids set, so
adaptation is resumed after the last complete iteration. This mechanism can also be used to
increase the number of iterations afterwards for a job that has already been completed.

However, one wants to avoid a unnecessary large number of iterations and calls. Adaptation
iterations are skipped if any one of the following parameters is set:

accuracy goal: If this number is greater than zero, adaptation will stop when the accuracy
estimate of the last iteration is smaller.

efficiency goal: If this number is greater than zero, adaptation will stop when the efficiency
estimate of the last iteration is higher. Note that the efficiency is measured in percent.

time limit adaptation: If this number is greater than zero, adaptation will stop when the
real time after the last iteration is later than the specified time limit, measured in minutes
from the program start.

In any case, the program will not stop but the third pass (integration) will be executed after
the adaptation pass, where the number of integration steps and calls per iteration are taken
from the corresponding calls entry.

4.9.2 Simulation

The reweighting efficiency in the final event generation pass is determined by the grid quality,
measured by the efficiency ǫ. Since the precision in estimating ǫ is not very high, it may be
appropriate to insert a safety_factor f > 1 to avoid excess events with weight > 1. The time
needed for generating a fixed number of unweighted events is then proportional to 1/(fǫ). As
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a rule, investing more time in grid adaptation results in a better ǫ value, and thus less time for
event generation, up to a certain limit.

The number of unweighted events is specified by either setting the parameter n_events in
the simulation_input block, or by a luminosity value in the process_input block. The
number that leads to a larger event sample will take priority.

If the program is killed during event generation, the event sample is incomplete. The switch
catch_signals can be used to catch terminate signals if the OS and compiler supports it, so
it is guaranteed the the event files are properly closed before the program terminates. Then,
WHIZARD can be restarted with read_events set (which implies read_grids). The events
already generated will be reread from the raw event file whizard.evx until the end is reached,
and further events will be appended to this file. Event output files in other formats are re-
generated on the fly. Thisy method can also be used to increase an event sample afterwards,
spending CPU time essentially on newly generated events only.

4.9.3 Hard limits

There are situations where one has to control the amount of memory, CPU time, and disk space
which the program uses. In particular, batch installations put limits on these resources and kill
processes which exceed them.

Some of these issues can be handled by WHIZARD:

time limit: This parameter (in minutes) sets an internal limit on the wallclock time the
run may use. When it is exceeded, the program terminates. Depending whether the
termination occured during integration or simulation, the program can be restarted such
that it will resume after the last grid or event written, respectively.

events per file: This parameter takes care of event files becoming too large: once it is
exceeded, a new file is begun. An external analysis would then process the files consecu-
tively. Note that this does not apply to the internal event file whizard.evx which cannot
be split; if this file becomes too large, one has to switch it off by write_events_raw=F.

bytes per file: The analogous parameter which counts the number of bytes allowed for an
event file. This relies on certain assumptions on the number of bytes an event takes in a
particular format.
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subroutine lhef_write_init (unit, process_id)

integer, intent(in) :: unit

integer :: i

character(*), dimension(:), intent(in) :: process_id

write (unit, "(A)") ’<LesHouchesEvents version="1.0">’

write (unit, "(A)") ’<header>’

write (unit, "(2x,A)") ’<generator>’

write (unit, "(4x,A)") &

’<name version="<<Version>>" date="<<Date>>">’ // &

’WHIZARD</name>’

do i = 1, size (process_id)

write (unit, "(4x,A)") &

’<process_id>’ // trim (adjustl (process_id(i))) &

// ’</process_id>’

end do

write (unit, "(2x,A)") ’</generator>’

write (unit, "(A)") ’</header>’

end subroutine lhef_write_init

subroutine lhef_write_heprup (unit, process_id)

character(*), dimension(:), intent(in) :: process_id

integer, intent(in) :: unit

integer :: i

write (unit, "(A)") ’<init>’

write (unit, "(2(2x,I10),2(2x,G22.15E3),8x,6(2x,I10))") &

idbmup(1:2), ebmup(1:2), &

pdfgup(1:2), pdfsup(1:2), &

idwtup, nprup

do i = 1, size (process_id)

write (unit, "(3(2x,G22.15E3),8x,1(2x,I10))") &

xsecup(i), xerrup(i), xmaxup(i), lprup(i)

end do

write (unit, "(A)") ’</init>’

end subroutine lhef_write_heprup

subroutine lhef_write_hepeup (unit, pro_id)

integer, intent(in) :: unit, pro_id

integer :: i

idprup = pro_id

write (unit, "(A)") ’<event>’

write (unit, "(2(2x,I10),2(2x,G22.15E3),8x,2(2x,G22.15E3))") &

nup, idprup, xwgtup, scalup, aqedup, aqcdup

do i = 1, nup

write (unit, "(6(2x,I10),8x,3(2x,G22.15E3),8x,2(2x,G22.15E3),32x,2(2x,G22.15E3))") &

idup(i), istup(i), &

mothup(1:2,i), icolup(1:2,i), &

pup(1:5,i), vtimup(i), spinup(i)

end do

write (unit, "(A)") ’</event>’

end subroutine lhef_write_hepeup

subroutine lhef_write_final (unit)

integer, intent(in) :: unit

write (unit, "(A)") ’</LesHouchesEvents>’

end subroutine lhef_write_final

Figure 14: Output routine for the (new) Les Houches Accord (LHEF) event file format.
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! e- e+ -> e- e+ gamma

! 16 8 1 2 4

process eeg

cut M of 3 within 80 100

and

cut M of 3 within 180 200

cut PT of 4 within 100 99999

and

cut E of 4 within 0 100

histogram PT of 1 within 0 500

Figure 15: Analysis configuration file.
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5 Advanced usage of WHIZARD

In the preceding chapters we have described the use of WHIZARD as a stand-alone program. As
such, it is able to calculate total cross sections and to generate events on the partonic level, or
even on the hadronic level if fragmentation is enabled. The events can be analyzed online (on
the partonic level) or written to file (on the partonic or on the hadronic level).

This already covers many real-life applications of a Monte-Carlo integration and event-
generation package. For the theorist, it may be sufficient to calculate a total cross section with
a given set of parameters and to plot differential distributions. For an experimental simulation,
the generated event files can be used for further processing.

However, one encounters situations where a more elaborate framework is desired. For in-
stance, one would like to consider multiple sets of cuts, energies and parameter sets. For each
set, the input file has to be modified, the program has to be run, and the results have to be
stored somewhere in order to be compared later. This can easily become cumbersome, and it
is desirable to have a generic approach. Another common problem is the selection of a cer-
tain subclass of Feynman diagrams contributing to a given process, either for speeding up the
calculation by dropping irrelevant terms, or for getting a better understanding of the relative
weight of interfering subprocesses. Some possibilities are described in the following sections.

5.1 Feynman diagram selections

While the matrix element generators called by WHIZARD, by default, generate an amplitude
which corresponds to the complete set of Feynman diagrams which connect a given initial and
final state, there are problems where only a subset is needed. Therefore, WHIZARD has support
for diagram selections. Since O’Mega does not use Feynman diagrams, this option is available
only when using the CompHEP and MadGraph matrix element generators. (O’Mega, however,
supports restrictions on the internal lines of an amplitude. This is explained below in Sec. 5.2.)
Since the CompHEP and MadGraph matrix element generators are considered to be deprecated
features we describe Feynman diagram selection here only briefly.

The selection must be made before the final executable is generated. In the configuration file, the process
must be marked accordingly by the letter “s” in the last column, for instance:

# Processes

# Tag In Out Method Option

#=====================================================

cc3 e1,E1 e2,N2,u,D chep s

Note that this makes sense only for the methods chep and mad, as mentioned before. Next, the diagram numbers
to be selected have to be determined. To this end, for each process with this option a diagram selection file has
to be put into the configuration directory.

Since the user usually does not know diagram numbers in advance, it is possible to do an empty run of the
matrix element generators first. If the command

make diagrams

is issued, matrix element generation is started as usual, but the Fortran95 source code is not actually generated
(at least, with CompHEP: for the other generators it makes little difference). Instead, after this command is
completed, you will find PostScript files with Feynman diagrams in graphical representation in the subdirectory
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processes-src. View or print them and note, for each process, the diagrams you are interested in. In the
subdirectory conf you should now find, for each process, a file with the extension .sel, which contains one
entry for each diagram. Initially, all entries are set 0 (false). As a consequence, if the file is not modified, a
second WHIZARD run would fail since all diagrams are deleted initially. Change all entries you wish to enable
into T or 1 (true). If you now rerun WHIZARD to generate the actual source code (you might need to touch the
file whizard.prc in the conf subdirectory in order to force re-generation of the process under consideration)

make proc

or even

make prg install

WHIZARD should read the selection files and take into account only the specified subsets of diagrams. You may
control this by looking at the PostScript output this second pass will produce: it should contain only the
Feynman diagrams you have selected.

Needless to say, this feature should be used with great care. By violating electroweak or even electromagnetic
gauge invariance, the results may be off by far, since delicate cancellations may have been spoiled. As a rule,
never delete diagrams in any gauge other than unitarity gauge (in the CompHEP) case, and remember which
diagrams have been selected (i.e., save the PostScript file somewhere) when storing results, since the output of
the WHIZARD executable itself does not contain any hint that only a subset of Feynman diagrams have been taken
into account. In many cases the same effect can also be achieved in a simpler way by putting some parameter
to extreme values. For instance, instead of removing Higgs diagrams by hand, one may set the Higgs mass to
a very large value — the results will then be valid in any gauge.

5.2 Restrictions on intermediate states

As an alternative (and often more convenient) method for selecting Feynman diagrams, the
O’Mega interface supports restrictions on internal lines.28 As an example, the following specifi-
cation selects the resonant WW diagrams, analogous to the previous example:

# Processes

# Tag In Out Method Option

#=====================================================

cc3 e1,E1 e1,N1,u,D omega r: 3+4~W-&&5+6~W+

Simultaneous requirements for a process are concatenated by && (AND). Note that spaces in
the restrictions option (’r’) might lead to a failure of the scripts triggering the O’Mega matrix
element generation.

The following examples select only diagrams with an s-channel and t-channel γ∗, respec-
tively:

cc_gamma_s e1,E1 e1,N1,u,D omega r: 3+4+5+6~A

cc_gamma_t e1,E1 e1,N1,u,D omega r: 1+3~A

The in- and out-particles are numbered consecutively. The tilde selects only diagrams where
the specified combination of momenta corresponds to the propagator for the given particle. A
question mark instead of a particle name stands for all possible propagators with the specified

28Similar restrictions are possible with the official CompHEP and MadGraph versions, but not supported by
WHIZARD.
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momentum combination. These particle names have to follow the O’Mega notation; they are
not translated by WHIZARD as in the process specification. For colored intermediate states,
WHIZARD takes care automatically that the intermediate particle can appear in different color
flow combinations (in WHIZARD 2 this is handled directly by O’Mega itself in the matrix element
generation). It is important to keep in mind that such a selection typically violates gauge
invariance, since the intermediate particle is not forced on shell. (An on-shell option is also
present in O’Mega, but not yet supported by WHIZARD.)

The || (OR) relation is also possible, and sometimes needed, as in this example:

ww_or_zz e1,E1 e1,N1,E1,n1 omega r: 3+4~W- && 5+6~W+ || 3+5~Z && 4+6~Z

AND and OR relations can be grouped by parantheses (). Note that combinations of AND and
OR as implemented in the setup of O’Mega in WHIZARD 1 could lead to logical inconsistencies
in the selections of intermediate states, so use this feature with great care. In WHIZARD 2 this
has therefore been replaced by the option to use lists of intermediate states.

Currently, WHIZARD does not interpret or use such restrictions for its phase space setup, so
the possible speedup is constrained to the matrix element evaluation. Nevertheless, this feature
can be very useful. Such an option is foreseen for a future release of WHIZARD 2, however.

5.3 User-defined spectra and structure functions

It is possible to insert arbitrary beam spectra into the WHIZARD code. If the corresponding
code is included in the user module, it can be called from the main program. To do this,
in the whizard-src subdirectory, copy the file user.f90.default to user.f90 and edit the
appropriate functions defined within this module according to your needs. The code you have
written will be compiled instead of the default code.

The comments in the user.f90.default source should guide you. There is the possibility
to define either single-beam (factorized) or correlated spectra. The particle codes which have
been specified in the beam_input block of the input file can be accessed in order to select
between different spectra for different beams.

In the input file, for each beam there is a master switch USER_spectrum_on which determines
whether the user code is called. If no user code has been written, by default a uniform x
spectrum between 0 and 1 is inserted which could be used for testing purposes. Furthermore,
two parameters can be specified: USER_spectrum_mode, an integer which the user function
can access to select between different spectra for the same particle, and USER_spectrum_sqrts

which by default is the total c.m. energy, but in principle can be used to transfer any real
constant parameter.

Apart from user-defined spectra, user-defined structure functions can be inserted. They
are handled in an exactly analogous way (with spectrum replaced by strfun in parameter
names). The only difference is that user spectra are applied before any built-in spectra and
structure functions (like beamstrahlung, PDFs, etc.), while user structure functions are applied
after built in ones, i.e., they are called for the partonic initial state. For applications, think
of a photon collider spectrum for the initial beams as opposed to the scattering of W bosons
emitted from quarks.
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The efficiency of the program in the presence of user-defined spectra or structure functions
depends on the way they are implemented by the user. It is straightforward to insert the
corresponding functions in a literal way as functions f(x) where x is the beam energy fraction.
However, if f is strongly peaked this might lead to poor performance. In many cases one rather
should apply a variable transformation

∫ 1

0

dx f(x) σ(xs) =

∫ 1

0

dy
dg

dy
f(g(y)) σ(xs) (8)

where x = g(y). The user interface allows for this, where the input parameters are identified
with y and the output parameters x = g(y) can be different. In that case, the spectral function
f(x) = f(g(y)) has to be multiplied by the Jacobian dg/dy within the structure function code.

The implementation can be checked by making use of the “test” matrix elements (Sec. 4.1.2).
You may set up a placeholder process like

sftest e1,E1 A,A test

where the final state is massless and remove all cuts (in the example, set default_Q_cut=0 or
define an empty entry in the cut file). The matrix element is set constant, and the would-be
cross section for the process is the integral of the structure function

σ =

∫ 1

0

dx f(x) (9)

which is usually known. Furthermore, the energy distribution of the final state should reproduce
the structure function shape.

In the current implementation, beam polarization (if any) cannot be accessed or modified
by the user spectra or structure functions. Beam polarization will be kept unchanged if the in-
and out-particle of the corresponding splitting coincide (as for ISR), and it will be ignored in
the opposite case (as for PDFs).

5.4 User-defined cuts

In many applications the built-in capabilities for cuts are not sufficient. If cuts are defined using
the standard interface, all cuts are composed such that an event is only retained if it passes all
cuts (logical and). There can be several windows in one cut variable, but beyond that it is not
possible to compose cuts by a logical or. Furthermore, you may be missing your favorite cut
model in the list of predefined variables. Note that WHIZARD 2 revised this model and makes
the definition of almost arbitrary functions for cuts on (combinations of) particles possible.

User-defined cut algorithms can easily be placed in the user module which comes with
the distribution, the same module where user-defined spectra can be coded. To activate the
extra code, the parameter user_cut_mode in the input file should be set to a nonzero integer.
Then, the new cut function will be applied throughout program execution in addition to the
cut conditions defined in the standard way. Within the cut function, the numerical value of
user_cut_mode is used to select one of several cut modes defined by the user. (To disable the
default cuts, which may be desired in this case, write an empty process entry in whizard.cut1.)
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The cut function takes an array of momenta (this type and the functions operating on it
is defined in the module lorentz.f90) and results in the logical variable accept. The default
behavior is to unconditionally set accept=.true., but user code would change that, deciding
whether to accept the event based on the momentum configuration and the particle codes.

As an example, let us implement a cut such that an event is accepted if there is a photon
with energy larger than 50 GeV. (This is not possible by the built-in cut capabilities, since for
a generic process we do not know which photon to check.) To this end, we first make a copy of
the standard (no-op) user file, which then can be changed:

cd whizard-src

cp user.f90.default user.f90

The file user.f90 then has to be edited. We take the section which refers to the user cut
definition, which originally reads

! This minimal cut function accepts everything

function cut (p, code, mode) result (accept)

type(four_momentum), dimension(:), intent(in) :: p

integer, dimension(:), intent(in) :: code

integer, intent(in) :: mode

logical :: accept

select case (mode)

case default

accept = .true.

end select

end function cut

and change it as follows:

! This cut function accepts an event only if there is a photon with

! energy larger than 50 GeV

function cut (p, code, mode) result (accept)

type(four_momentum), dimension(:), intent(in) :: p

integer, dimension(:), intent(in) :: code

integer, intent(in) :: mode

logical :: accept

integer :: i

select case (mode)

case (1)

accept = .false.

do i = 1, size (code)

if (code(i) == PHOTON .and. energy (p(i)) > 50) then

accept = .true.

end if

end do

case default

accept = .true.

end select

end function cut
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We have inserted a loop over all outgoing particles, such that the code can be applied to an
arbitrary process. For each particle i, its PDG code is checked against the predefined code
PHOTON (which is defined as 22 in particles.f90), and the function energy is evaluated for the
corresponding momentum p(i). This function, which takes a variable of type four_momentum

as argument and returns a real number of default kind (i.e., double precision), is defined in
lorentz.f90.

When WHIZARD is now (re-)compiled and installed,

make whizard install

the user code becomes part of the program. To activate it, the integration_input in the
whizard.in file has to specify a nonzero user-cut mode, i.e.,

&integration_input

...

user_cut_mode = 1

/

since in the function defined above, the mode 1 refers to the special treatment of photons. When
the program is started with this setting, you will see the message

! Activating additional preselection cuts in user.f90: Mode # 1

in the screen output, and the cross section and event distribution should reflect the new cut
condition.

5.5 Reweighting matrix elements

Beyond the possibility to apply arbitrary cuts, the user might be interested in reweighting
events. One should distinguish two different situations:

1. A given event sample is rescanned, recalculating the matrix element values event by event
with some modification applied. The resulting events carry a weight which is given by
the ratio of the new matrix element values compared to the old ones. The event selection
is still based on the unmodified values.

To achieve this, one should first generate a reference sample in the usual way (adap-
tation and event generation) which results in the raw event file whizard.evx. Then,
one may change the input parameters as desired, set the parameter recalculate=T, and
start a second run. This will have two effects: First, the parameters read_grids and
read_events are assumed also to be set (even if the user has not modified them), to-
gether with read_grids_force and read_events_force.29 Thus, the grids and events
of the first run are reused. Second, when the event sample is read, the particle momenta

29The latter are necessary because the procedure makes sense only if input data have changed, so the checksum
will be invalid. This makes the user responsible for guaranteeing compatible input data in both runs; otherwise
the program may crash.
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are left unchanged, but the matrix element values and the quantum number probabilities
are recalculated, using the new input data.

The change in the matrix element values will be taken into account in the internal analysis:
The integral and histograms will be calculated using the ratio of new and old matrix
element values as event weights. If the results of the reference run have been stored (one
should rename output files to prevent them from being overwritten), the results can easily
be compared.

To make further use of the reweighted events, one can write the events to file (using the
option write_events=T) in “long” (ASCII) format: write_events_format=3. In addi-
tion to the particle codes, helicities and momenta, the file will contain the (recalculated)
matrix element value and the ratio of new and old values for each event. Again, if sev-
eral parameter sets are to be compared, one should make sure to rename the output file
whizard.evt after each run to prevent overwriting.

In any case, one has to be careful. While it does not harm to change a coupling constant
by a small amount (e.g., an anomalous coupling) and rescan the events, modifying particle
masses and cuts may have undesired side-effects since the momentum configurations are
left intact. For instance, with new mass assignments particles may no longer be on-shell,
such that delicate gauge cancellations in the matrix elements are invalid, resulting in
unphysical effects.

2. The matrix element function itself is modified by a user-defined weight, a function of
the outgoing momenta. The weight function is applied throughout adaptation and event
generation, so the integral and the event selection depend on it.

A natural application is the calculation of integrated observables other than the total
cross section, e.g. moments of the angular distribution. One might also think of radiative
corrections in “K-factor” form: a function of the momenta which multiplies the lowest-
order matrix element.30 The corresponding code can be inserted in the weight routine in
the user.f90 module. Similar to the cut routine (Sec.5.4), it takes the array of particle
momenta and particle codes to generate a single number weight. In the default routine,
weight is always equal to one. The user may change this to an arbitrary function,
provided it is nonnegative in the whole accessible phase space.31 The user-defined weight
function is then activated by setting user_weight_mode nonzero in the input file. The
numerical value can be used to select between different reweighting modes.

It is perfectly possible to combine the two approaches: One may define one or more
reweighting functions in the user module. As a reference run, events are generated with

30NLO matrix elements are nontrivial, and WHIZARD may be not the appropriate program for dealing with
them. An obvious limitation is that the user weight function does not take polarization into account. However,
several NLO matrix elements have been interfaced to WHIZARD, and in WHIZARD 2 an automatic generation of
NLO infrastructure is being prepared.

31If used with recalculate=T, this limitation is absent, since reweighting will be applied after adaptation
and event rejection. In that case, an unmodified event sample has to be generated first. Furthermore, in [19,20]
integrations of indefinite function have been performed with WHIZARD.

95



user_weight_mode=0. Then, both recalculate is set and the mode is set nonzero in a second
run. A user-defined cut function can be treated analogously.

5.6 Command-line options

WHIZARD allows to specify options on the command line. Options are available both in long
form (double dashes) and in short form (a single dash). For instance, the following command
executes WHIZARD in subdirectory tmp for the process ee_nnh, without reading an input file:

./whizard -nd tmp --process input ’process id = "ee nnh"’

5.6.1 General options

These options are executed by WHIZARD before any files are read or written

Option Long version Value Description
-h --help Display usage message and exit.
-V --version Display version string and exit.
-l --list List all available processes and exit.
-d --directory directory Set working directory.
-f --filename file name Set default base name for all input and out-

put files (without extension).
-i --input_file file name Set base name for the main input file (with-

out extension). This overrides the -f option.
-n --no_input_file Do not read the main input file.

If a working directory different from the default one is chosen by the -d option, one has to make
sure that either a phase space file (.phs or .phx) or the model definition file (.mdl) is present
in the chosen directory. Otherwise, one could use command-line options to point to files in the
initial directory (or anywhere else), for instance:

./whizard --directory tmp --integration input ’read model file="./whizard"’

When a --directory setting is in effect, it can be overriden by filenames that begin with “/”
(absolute file name) or with “./” (filename relative to the initial directory). Therefore, in the
example the model file whizard.mdl will be looked for in the directory where the command
was executed, while all other files will be looked for in or written to the subdirectory tmp.

5.6.2 Options for setting parameters

Parameters can be set not just in the input file, but also on the command line. The command-
line parameters are read after all input files have been read; they override settings in the input
file(s). Thus, one can set up a generic input file whizard.in where the constant parameters are
defined (or no input file at all) and use the command line to run WHIZARD for, e.g., a specific
process, beam energy and Higgs boson mass:
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./whizard -p ’process id="ee nnh" sqrts=800’ -P ’mH = 130’

Note that the option arguments are interpreted verbatim as if they were contained in the input
file, so string values have to be enclosed by extra quotes.

Option Long version Value Description
-p --process_input parameters set parameters in the &process_input block.
-I --integration_input parameters set parameters in the &integration_input

block.
-S --simulation_input parameters set parameters in the &simulation_input

block.
-D --diagnostics_input parameters set parameters in the &diagnostics_input

block.
-P --parameter_input parameters set parameters in the &parameter_input

block.
-B1 --beam_input1 parameters set parameters in the first &beam_input

block.
-B2 --beam_input2 parameters set parameters in the second &beam_input

block.

5.7 Tables and file management

The WHIZARD program, after it has been compiled with a specific list of processes, may be
viewed as a kind of filter: It takes as input

• the model definition file whizard.mdl,

• the parameter definition file whizard.in, and optionally

• the cut definition file whizard.cut1

• and the cut/analysis definition file whizard.cut5,

and transforms the information contained within into output files, namely

• the integration results and diagnostics, collected in the file whizard.out,

• the integration grids, usable to bypass further time-consuming adaptation runs (whizard.grb),
and optionally

• an event file usable for re-running the program (whizard.evx);

• an event file for further processing by external programs (whizard.evt);

• and a set of histograms (whizard-plots.dat) which can be converted to PostScript
format (whizard-plots.ps), or alternatively read in by an analysis package like ROOT.
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For a second WHIZARD run, the input files have to be edited, and the output files will be
overwritten if they have not been moved to a different location. Instead of doing this by hand,
one could write a script that executes a loop where in each iteration the relevant line in the
input file is modified, the program is run, and the output files are renamed or moved such that
they do not get overwritten. Here is such a script:

#!/usr/bin/perl

# Loop over the total energy, write a table and store the results

# in subdirectories

$sqrts_min = 350; $sqrts_max = 800; $sqrts_step = 50;

# These files will be preserved

@outfiles = ("whizard.out", "whizard.grb", "whizard.evt");

# This will become the table of results

$resultfile = "whizard.out";

$table = sprintf(" %-10s %-20s %-20s\n", "sqrts [GeV]",

"Total cross section [fb]", "Integration error [fb]");

# Main loop

for ($sqrts=$sqrts_min; $sqrts<=$sqrts_max; $sqrts=$sqrts+$sqrts_step) {

# Read the input file template, modify the sqrts entry, and write the

# new input file

$infile = "whizard.in.0"; $outfile = "whizard.in";

open(INFILE, $infile) or die "Can’t open $infile for reading";

open(OUTFILE, ">$outfile") or die "Can’t open $outfile for writing";

while (<INFILE>) {

s/sqrts = \d+/sqrts = $sqrts/;

print OUTFILE;

}

close(OUTFILE);

close(INFILE);

# Run WHIZARD

print "\n**** sqrts = $sqrts ****\n";

$stat = system("./whizard");

$stat==0 or die "WHIZARD run exited abnormally";

# Extract the integration results and add them to the table

open(RESULTS, "grep ’integral =’ $resultfile|")

or die "Grep failed on $resultfile";

while(<RESULTS>) { ($dummy, $equals, $integral) = split; }

close(RESULTS);

open(RESULTS, "grep ’error =’ $resultfile|")

or die "Grep failed on $resultfile";

while(<RESULTS>) { ($dummy, $equals, $error) = split; }

close(RESULTS);

$table .= sprintf(" %10g %20g %20g\n",

$sqrts, $integral, $error);
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# Create a subdirectory and move the results there

$dirname = "sqrts=$sqrts";

mkdir($dirname, oct("0755")) or die "Can’t mkdir $dirname";

foreach $file(@outfiles) {

system("mv", $file, $dirname);

}

}

print "\n*** Results:\n";

print $table;

print "*** End of WHIZARD runs\n";

exit 0;

The script assumes that the subdirectories do not yet exist, and that you have a template
whizard.in.0 for the input file which contains an entry like sqrts = 0. The table is shown
on screen after all runs have been completed.

This kind of task can be formalized further. The program whizwrap takes care of loops
over parameters and provides a convenient management of output files. It is called from the
command line; the kind of task to be performed by WHIZARD is specified in terms of command-
line options. Note that within WHIZARD 2 these tasks can be easily steered from the input file
by means of its powerful interpreter language SINDARIN. Cf. the manual of WHIZARD 2 for the
details.

5.8 WHIZARD as a subroutine library

A more ambitious enterprise is the integration of WHIZARD into a larger framework which may
also account for the subsequent steps of experimental simulation and analysis. Even if this is
not desired, it may be useful to access WHIZARD by subroutine calls in wrapper programs written
in Fortran, C, or other program languages.

To make this possible, WHIZARD is organized as a set of libraries (in the UNIX sense). When
the configuration file (the process list) has been specified, instead of making a stand-alone
executable by

make prg

one may generate the libraries only

make libs

which then can be linked with a user-supplied main program.
To facilitate this procedure, after executing make libs, the user will find the generated

libraries in the subdirectory lib (except for system-supplied libraries from the CERNLIB),
together with a script called whizard.ld in the bin subdirectory which links an arbitrary
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program with the libraries in correct order. Thus, the user may write his own Fortran 95 main
program, call it, e.g., my_main.f90, compile it32 and execute

bin/whizard.ld -o my whizard my main.o

to generate his own version of WHIZARD.33

Here is a main program that performs the same task as the script shown in the preceding
section:

! Loop over the total energy, write a table and store the results in

! separate output files.

program my_main

use kinds ! Defines the default real kind

use whizard ! Defines the WHIZARD subroutines

implicit none ! No implicit typing

! Parameters

integer, parameter :: n_values = 10

real(kind=default), parameter :: sqrts_min = 350, sqrts_max = 800

! Variables

integer :: i

character(len=14+3) :: filename

! Tables

real(kind=default), dimension(n_values) :: &

sqrts, integral, error, chi2, efficiency

! Main loop

do i = 1, n_values

! Calculate energy, set filename accordingly

sqrts(i) = ((i-1) * sqrts_max + (n_values-i) * sqrts_min) / (n_values-1)

write(filename, "(A14,I3)") "whizard_sqrts=", nint(sqrts(i))

call whizard_set_filename (filename)

! Read input and override energy setting

write (*,*)

write (*, "(A,1x,I3,1x,A)") "*** sqrts =", nint(sqrts(i)), "***"

call whizard_read_input

whizard_input%sqrts = sqrts(i)

! Integrate, record result, generate events

call whizard_integrate

call whizard_get_results (i, integral(i), error(i), chi2(i), efficiency(i))

32To access the module information, several subdirectories must be included in the module search path of the
compiler. Inspect the setting of F90INCL in the Makefile in the whizard-src subdirectory.

33This works for a Fortran 95 main program; the analogous steps for a main program in a different language
will require modifications of whizard.ld, in particular the additional linking of the compiler-specific Fortran
95 runtime library.
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call whizard_generate

call whizard_end

end do

! Write table

write (*,*)

write (*, "(A)") "*** Results:"

write (*, "(1x,A15,2x,A25,2x,A25)") "sqrts [GeV]", &

"Total cross section [fb]", "Integration error [fb]"

do i = 1, n_values

write (*, "(1x,G15.5,2x,G25.5,2x,G25.5)") &

sqrts(i), integral(i), error(i)

end do

write (*, "(A)") "*** End of WHIZARD runs"

end program my_main

The meaning of the individual subroutine calls is described in detail in the following section.
Note that parameters in the input block can be accessed via the object whizard_input which
is a module variable of the whizard module. More exactly, variables in the process_input,
integration_input, simulation_input and diagnostics_input blocks can be accessed as
above

whizard input%sqrts = sqrts

while variables in the parameter_input block are accessed like

whizard input%par%mh = 115are

and beam parameters are accessed like

whizard input%beam(1)%PDF nset = 43

5.9 Interface of the WHIZARD module

All subroutines described in this section are accessed via the module whizard, which is included
in the library whizard.a. Therefore, a main program written in Fortran 95 has to contain the
line

use whizard

in the preamble.34 For other programming languages, the subroutines are accessed by a
platform-dependent prefix. For instance, the NAG compiler preprends the string whizard MP

to all names in the module whizard, so the subroutine whizard integrate is accessed by the
name whizard MP whizard integrate. The access to arguments in subroutine calls may also
be platform-dependent.

34See footnote 32.
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5.9.1 Auxiliary routines

The following routines are needed only if some non-standard behavior of WHIZARD is intended.
They closely match the command-line arguments described in Sec. 5.6.

whizard set directory : Set a working directory different from the default one.

Invocation: call whizard set directory (directory)

Arguments:

directory : string (input parameter)

whizard set filename : Set a specific filename to be used instead of whizard for all input
and output files during this run. This is one way of avoiding files getting overwritten. If
an input file with specific filename does not exist, the generic input files whizard.in etc.
will be used. The output files will always get the specific name, if any.

Invocation: call whizard set filename (filename)

Arguments:

filename : string (input parameter)

whizard set input file : Define the name of the main input file. Needed only if it is different
from the default. The extension .in will be appended.

Invocation: call whizard set input file (filename)

Arguments:

filename : string (input parameter)

whizard enable input file : Enable/disable reading of the main input file. If the logical ar-
gument is .false., calls to whizard read input will not read any file. This makes sense
if parameters are to be set by different means, in particular by calls to whizard set input.

Invocation: call whizard enable input file (flag)

Arguments:

flag : logical true or false (input parameter)

whizard set input : Set input parameters directly. Each argument is a string of parameter
= value definitions in namelist format, as it would appear in the input file enclosed by
“&xxx” and “/”, where xxx is the respective input block (e.g., process_input). The
strings can be empty.

Invocation: call whizard set input (process input, integration input,
simulation input, diagnostics input, parameter input,
beam input1, beam input2)

Arguments:
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process input : namelist string (input parameter)

integration input : namelist string (input parameter)

simulation input : namelist string (input parameter)

diagnostics input : namelist string (input parameter)

parameter input : namelist string (input parameter)

beam input1 : namelist string (input parameter)

beam input2 : namelist string (input parameter)

5.9.2 Standard routines

The following routines are called, directly or indirectly, in standard WHIZARD runs. The explicit
interface allows for calling them directly without reference to the main program.

whizard read input : Start a new instance of WHIZARD and terminate any pending run.
Read the input file. If no specific filename has been given, this is called whizard.in. If
this routine is not called explicitly, it will be called automatically by whizard_integrate.
Calling it explicitly allows for overriding input data before they are fed into the integration
pass.

Invocation: call whizard read input

Arguments: none.

whizard number processes : Return the number of processes specified in the input file.

Invocation: call whizard number processes (number)

Arguments:

number : integer (output parameter)

whizard integrate : Calculate the total cross section resp. read pre-generated results from
file, as required by the input data. This routine reads the model definition file whizard.mdl,
the cut configuration file whizard.cut1 and, if required, it reads/writes the grids whizard.grc
and whizard.grb. If this routine is not called explicitly, it will be called automatically
by the event generation routines.

Invocation: call whizard integrate

Arguments: none.

whizard get results : Read out the current integration results for the indicated process: To-
tal cross section, error estimate, χ2 value, reweighting efficiency estimate. If process index
is zero, return the total integral, error and efficiency average for all activated processes.
The χ2 value is zero in that case. If no integration has yet been performed, all returned
numbers are zero. If the process index is larger than the number of processes (as returned
by whizard_number_processes), an error is issued.
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The returned numbers are of the default real kind, which is double precision under normal
circumstances. The default real kind may be accessed in a Fortran 95 program by a
use kinds directive and including the kinds-src subdirectory in the module search
path.

Invocation: call whizard get results (process index, integral, error, chi2,
efficiency)

Arguments:

process index : integer (input variable)

integral : default real (output variable)

error : default real (output variable)

chi2 : default real (output variable)

efficiency : default real (output variable)

whizard generate : Generate a fixed number of events resp. read them from file, as speci-
fied by the input data. This routine reads the cut/analysis configuration whizard.cut5

and reads/writes the event file(s) whizard.evt and whizard.evx, if required. Further-
more, it can write histogram data in whizard-plots.dat. This subroutine is equivalent
to consecutive calls of whizard_events_begin, whizard_event (multiple times), and
whizard_events_end (see below).

Invocation: call whizard generate

Arguments: none

whizard events begin : Prepare event generation for a n_calls events. It is assumed that
the main program contains a loop with exactly n_calls to whizard_event. However, in
case of unweighted events generation, this number is used only for opening a STDHEP
format file, so the value is irrelevant if that option is not used.

Invocation: call whizard events begin (n calls)

Arguments:

n calls : 64-bit integer (input parameter)

whizard event : Generate a single (unweighted) event. The event is stored in the standard
HEPEVT COMMON block. If requested by the input data, it is also written to file. To
make use of the current event, the caller routine must be able to access HEPEVT.

Invocation: call whizard event

Arguments: none

whizard events end : Finalize event generation.

Invocation: call whizard events end
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Arguments: none

whizard end : Finalize the WHIZARD run. Close all open files and deallocate memory.

Invocation: call whizard end

Arguments: none
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6 Examples

In the following sections five realistic applications of WHIZARD are presented: first, three LEP ex-
amples, namely, Higgs production in the four-fermion channels, W production (four fermions),
and strong WW scattering (six fermions). With certain refinements and modifications, they
could be used for actual physical applications. However, here they are intended as a form of
tutorial, showing typical setups and common problems. We then switch to two LHC exam-
ples, the Jacobian peak or endpoint in W production and Drell-Yan production of a heavy Z ′

vector boson. Note that WHIZARD 1 was intended for lepton collider simulations basically, a
lot of hadron collider physics does work perfectly with this version, but WHIZARD 2 has been
specifically designed for hadron collider physics. So we strongly recommend using WHIZARD 2
in such cases. We nevertheless present the two LHC examples here.

6.1 Higgs production at LEP

Let us simulate the production of a 115 GeV Standard Model Higgs in e+e− collisions at
209 GeV. With this mass, the Higgs boson decays mainly into b̄b with a small fraction of τ+τ−

decays. Here, we only consider the signal together with its irreducible background, contributing
to the processes

e−e+ → νν̄bb̄

→ qq̄bb̄

→ bb̄bb̄

→ µ−µ+bb̄

→ e−e+bb̄

→ qq̄τ−τ+

where q = u, d, s, c and ν = νe, νµ, ντ . This list of processes directly translates into the config-
uration file whizard.prc:

# WHIZARD configuration file

# The selected model

model SM

alias q u:d:s:c

alias Q U:D:S:C

alias n n1:n2:n3

alias N N1:N2:N3

# Processes

# Methods: omega=O’Mega)
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# Tag In Out Method Option

#=====================================================

# On-shell process:

zh e1,E1 Z,H omega

# Full four-fermion matrix elements:

nnbb e1,E1 n,N,b,B omega

qqbb e1,E1 q,Q,b,B omega c

bbbb e1,E1 b,B,b,B omega c

eebb e1,E1 e1,E1,b,B omega

mmbb e1,E1 e2,E2,b,B omega

qqtt e1,E1 q,Q,e3,E3 omega

bbtt e1,E1 b,B,e3,E3 omega

Here, we use flavor summation for the quark and missing-energy channels. After this file has
been saved in the conf subdirectory, we should run configure in the directory where we had
unpacked the distribution, if not already done,

> ./configure

and make and install the executable

> make install

After this step is completed, we are ready for running the program.

6.1.1 The on-shell process

All necessary files have now been installed in the results subdirectory:

> cd results

> ls

Makefile whizard whizard.cut5 whizard.mdl

Makefile.in whizard.cut1 whizard.in whizard.prc

The file whizard.prc is a copy of the one we prepared above. whizard.mdl contains all
SM-specific definitions. Here, only the vertex list contained within is used for phase space
generation; usually we don’t need to modify it. The two cut configuration files are empty. The
file which is of interest for us now is whizard.in which we have to edit:

&process_input

process_id = "zh"

sqrts = 209

/

&integration_input

stratified = F
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/

&simulation_input /

&diagnostics_input /

&parameter_input

MH = 115

wH = 0.3228E-02

Mb = 2.9

Me = 0

Ms = 0

Mc = 0

/

&beam_input /

&beam_input /

As a warm-up, we examine the on-shell process e−e+ → ZH , labeled zh. We insert the c.m.
energy 209 GeV and the Higgs mass 115 GeV. The next two parameters are not relevant here,
but will be needed for the other processes: The Higgs width value wH is the one returned by
HDECAY [8]. The b mass Mb is the running mass evaluated at a scale around mH . This is
important since the Hbb coupling is proportional to mb.

35 The setting stratified=F calls for
importance sampling instead of stratified sampling (see below). All other fields are left empty.

Having saved whizard.in, the program can be started:

> ./whizard

(if you like, you can also type make run). Since this process is trivial, the results are there
immediately:

! WHIZARD 1.97 (May 31 2011)

! Reading process data from file whizard.in

! Wrote whizard.out

! Reading phase space configurations from file whizard.phx

!

! Process nnbb:

! e a-e -> nu_e a-nu_e b a-b

! e a-e -> nu_mu a-nu_mu b a-b

! e a-e -> nu_tau a-nu_tau b a-b

! 32 16 -> 1 2 4 8

! Process energy set to 209.00 GeV

35 For a genuine analysis, one should inspect the underlying assumptions and try to find a consistent parameter
set. Since the WHIZARD matrix elements are evaluated at tree level, some higher-order corrections should not be
included in the Higgs width.
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! 12 phase space channels found for process nnbb

! Scanning phase space channels for equivalences ...

! Phase space: 12 equivalence relations found.

!

! Created grids: 12 channels, 8 dimensions with 20 bins

!

! WHIZARD run for process nnbb:

!=============================================================================

! It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It]

!-----------------------------------------------------------------------------

! Reading cut configuration data from file whizard.cut1

! No cut data found for process nnbb

! Preparing (fixed weights): 1 sample of 20000 calls ...

1 20000 1.0948826E+02 1.94E+00 1.77 2.51* 3.93 0.00 1

!-----------------------------------------------------------------------------

! Adapting (variable wgts.): 10 samples of 20000 calls ...

2 20000 1.0834009E+02 1.92E+00 1.77 2.50* 3.88

3 20000 1.0638224E+02 7.58E-01 0.71 1.01* 14.69

4 20000 1.0667771E+02 6.08E-01 0.57 0.81* 19.32

5 20000 1.0672584E+02 5.62E-01 0.53 0.75* 19.40

6 20000 1.0562583E+02 5.39E-01 0.51 0.72* 19.10

7 20000 1.0656915E+02 5.45E-01 0.51 0.72 15.70

8 20000 1.0690159E+02 5.39E-01 0.50 0.71* 18.15

9 20000 1.0706322E+02 5.39E-01 0.50 0.71* 18.44

10 20000 1.0656723E+02 5.29E-01 0.50 0.70* 18.90

11 20000 1.0630854E+02 5.23E-01 0.49 0.70* 20.26

!-----------------------------------------------------------------------------

! Integrating (fixed wgts.): 3 samples of 20000 calls ...

12 60000 1.0655809E+02 3.04E-01 0.28 0.70 15.36 1.57 3

!-----------------------------------------------------------------------------

!

! Time estimate for generating 10000 unweighted events: 0h 00m 12s

!=============================================================================

! Summary (all processes):

!-----------------------------------------------------------------------------

! Process ID Integral[fb] Error[fb] Err[%] Frac[%]

!-----------------------------------------------------------------------------

nnbb 1.0655809E+02 3.04E-01 0.28 100.00

!-----------------------------------------------------------------------------

sum 1.0655809E+02 3.04E-01 0.28 100.00

!=============================================================================

! Wrote whizard.out

! Integration complete.

! No event generation requested

The cross section is36

σ = 106.56 ± 0.30 fb

This calculation takes roughly a minute on a PC (Intel Core2 2.5 GHz, gfortran compiler). Of
course, if we invest more CPU time, we can improve the accuracy, as explained in the previous

36This number should be taken with a grain of salt. See footnote 35.
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subsection.
In inspecting the output, the column tagged Err/Exp is of main interest (read: relative

error over expected relative error). This is the estimated relative error multiplied by the square
root of the number of calls, a number which should be of the order one. Each time this error
improves, the entry is marked with a star. The best grid so far (the last one with a star) will
be used for integration, and later for event generation. As evident from the column Eff[%],
the estimated reweighting efficiency improves as well. In the last column the χ2 value divided
by the number of iterations is shown. This value is meaningful only if there is more than one
iteration in the integration step. This is not the case here, so it is zero in our example.

Let us now generate events. We define a nonzero luminosity (100 fb−1, which was more
than 100 times the LEP integrated luminosity per year):

&process_input

process_id = "nnbb"

sqrts = 209

luminosity = 100

/

We do not want to repeat the adaptation and integration steps, therefore we read in the
previously adapted grids

&integration_input

read_grids = T

/

Now running WHIZARD will result in a repetition of the previous result, before event generation
is started:

! Reading analysis configuration data from file whizard.cut5

! No analysis data found for process nnbb

! Event sample corresponds to luminosity [fb-1] = 100.0

! Event sample corresponds to 69367 weighted events

! Generating 10656 unweighted events ...

! Event generation finished.

!=============================================================================

! Analysis results for process nnbb:

! It Events Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It]

!-----------------------------------------------------------------------------

13 10656 1.0655809E+02 1.03E+00 0.97 1.00 100.00

!-----------------------------------------------------------------------------

! Warning: Excess events: 7.9 ( 0.07% ) | Maximal weight: 1.25

The generation of 10,656 events takes one more minute in this case. No further analysis has
been requested, so we just get the total cross section again. By definition, this is equal to the
previously calculated cross section, but the error now corresponds to the actual event sample.

There are some excess events (weight greater than one), but the effect of this excess being
dropped is considerably less than the statistical error of the event sample. If necessary, the
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excess could be removed by setting safety_factor to a value greater than one (e.g., 1.1), at
the expense of extra CPU time since the reweighting efficiency is reduced by this factor.

The event sample can be further analyzed: Let us plot the missing invariant mass distribu-
tion and the dijet invariant mass distribution, which should exhibit peaks at the Z and Higgs
mass. To this end, we tell WHIZARD to reread the generated event sample

&simulation_input

read_events = T

/

and make up an analysis configuration file whizard.cut5:

# cut/histogram configuration file

# e- e+ -> nu nubar b bbar

# 32 16 1 2 4 8

process nnbb, qqbb, bbbb, eebb, mmbb, qqtt, bbtt

histogram M of 3 within 0 209 nbin 40

and

histogram M of 12 within 0 209 nbin 40

and

cut M of 12 within 114 116

histogram M of 3 within 0 209 nbin 40

This type of analysis can serve for all processes, therefore we have added the other tags. The
last histogram counts only those events which have a bb̄ invariant mass close to the Higgs mass.
The numbers result from adding up the binary codes of the external particles, which are shown
as a the comment in the file header.

Running WHIZARD this time takes almost no time since only the previously generated files
have to be read:

! Reading analysis configuration data from file whizard.cut5

! Found 3 analysis configuration datasets.

! Looking for raw event file whizard.evx ...

! Event sample corresponds to luminosity [fb-1] = 100.0

! Event sample corresponds to 69367 weighted events

! Reading 10656 unweighted events ...

! Event generation finished.

!=============================================================================

! Analysis results for process nnbb:

! It Events Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It]

!-----------------------------------------------------------------------------

13 10656 1.0655809E+02 1.03E+00 0.97 1.00 100.00

!-----------------------------------------------------------------------------

! Warning: Excess events: 7.9 ( 0.07% ) | Maximal weight: 1.25

!=============================================================================

! Analysis results for process nnbb:

! It Events Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It]

!-----------------------------------------------------------------------------
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13 10656 1.0655809E+02 1.03E+00 0.97 1.00 100.00

!-----------------------------------------------------------------------------

! Warning: Excess events: 7.9 ( 0.07% ) | Maximal weight: 1.25

!=============================================================================

! Analysis results for process nnbb:

!

! Additional cuts:

! integration pass 5

cut M of 12 within 1.14000E+02 1.16000E+02

! It Events Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It]

!-----------------------------------------------------------------------------

13 2166 2.1659612E+01 4.65E-01 2.15 1.00 20.33

!-----------------------------------------------------------------------------

! Warning: Excess events: 1.5 ( 0.07% ) | Maximal weight: 1.05

From the last line we read off that the actual contribution of Higgs production in this channel
is 2166 events (or 20.33 %). Here the efficiency is not the reweighting efficiency as before, but
the fraction of events remaining after cuts. The histograms can now be found in the output file
whizard.nnbb.dat:

!=============================================================================

! WHIZARD 1.97 (May 31 2011)

! Process nnbb:

! e a-e -> nu_e a-nu_e b a-b

! e a-e -> nu_mu a-nu_mu b a-b

! e a-e -> nu_tau a-nu_tau b a-b

! 32 16 -> 1 2 4 8

! Analysis results for process nnbb:

!

! Histograms:

!

histogram M of 3 within 0.00000E+00 2.09000E+02 nbin 40

2.61250000 0.00000000 0.00000000 0.00000000

7.83750000 1.00000000 1.00000000 0.00000000

13.0625000 2.00000000 1.41421356 0.00000000

18.2875000 3.00000000 1.73205081 0.220852468

23.5125000 4.00000000 2.00000000 0.00000000

28.7375000 7.00000000 2.64575131 0.00000000

33.9625000 10.0000000 3.16227766 0.379512096E-01

39.1875000 13.0000000 3.60555128 0.00000000

44.4125000 20.0000000 4.47213595 0.455956036E-02

49.6375000 28.0000000 5.29150262 0.180557973

54.8625000 36.0000000 6.00000000 0.452075346E-03

60.0875000 49.0000000 7.00000000 0.00000000

65.3125000 63.0000000 7.93725393 0.131335186

70.5375000 72.0000000 8.48528137 0.922046560

75.7625000 154.000000 12.4096736 0.00000000

80.9875000 274.000000 16.5529454 0.00000000

86.2125000 1071.00000 32.7261363 1.47417846

.....
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Figure 16: Histograms for the process e−e+ → νν̄bb̄ at
√
s = 209 GeV with mH = 115 GeV.

Top: Dijet invariant mass distribution. Bottom: Missing invariant mass distribution.

In these histograms, the first column is the bin midpoint. The second column is the number of
entries, the third column the statistical error on this number (

√
N). The fourth column shows

the excess events, which introduce an additional error. However, for each bin this contribution
is negligible compared to the statistical error which is present anyway.

The actual histograms are shown in Fig. 16. (For better illustration, we have changed the
linear scale to a logarithmic one; this is done in the file whizard-plots.tex by the manual
replacement of the lines 37

setup(linear,linear); graphrange (#0.00,#0), (#209.,??);

by

setup(linear,log); graphrange (#0.00,#.5), (#209.,#1e4);

and a subsequent rerun)

> make plots

In the dijet invariant mass distribution the Z and Higgs peaks are clearly visible. At low dijet
invariant mass there is a tail of continuum bb̄ production. In the missing mass distribution the
peak is at the Z mass.

37Note that in WHIZARD 2 this can be directly demanded by flags in the input file.
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6.1.2 The four-jet channel

There are two four-jet channels
e−e+ → qq̄bb̄, bb̄bb̄.

If the light quark masses are set to zero (see the input file above), all light quark channels can
be treated in a single run. For unequal masses, flavor summation is not possible, therefore the
b channel has to be treated separately. (We can’t set the b mass to zero since this would remove
the b Yukawa coupling.)

Running the program as before for the process qqbb with the given input and analysis
configuration files takes about a few minutes in total. The cross section result is

σ = 284.05 ± 0.71 fb

and 28406 events are generated in this run, 4637 of them within the Higgs mass window.
To obtain a finite result, WHIZARD had to insert a cut of 10 GeV on the dijet invariant mass

of the light quarks. This cut is written into the file whizard.qqbb.cut0:

! Automatically generated set of cuts

! Process qqbb:

! e a-e -> u a-u b a-b

! e a-e -> d a-d b a-b

! e a-e -> s a-s b a-b

! e a-e -> c a-c b a-b

! 32 16 -> 1 2 4 8

process qqbb

cut M of 3 within 1.00000E+01 1.00000E+99

The cut could be modified either by changing the default value in whizard.in, e.g.

&integration_input

...

default_jet_cut = 5

/

or by providing a non-empty file whizard.cut1 of the same format, with a different set of cuts.
If an appropriate process entry is found in this file, any default cuts are ignored.

The bb̄bb̄ channel is similar, although the presence of identical particles in the final state
makes phase space more complicated. The adaptation again works well and we get

σ = 44.71 ± 0.12 fb (10)

6.1.3 The lepton channels

In the µ+µ− channel adaptation takes somewhat longer due to the small muon mass, if no cuts
are provided. However, the 10 iterations of the adaptation step are sufficient, and in the final
integration step, the result

σ = 52.83 ± 0.16 fb
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is perfectly stable. With suitable cuts, we can set the muon mass to zero, which as a side effect
speeds up the calculation by a factor of two.

A more difficult task is to get to a stable result for the cross section of the process

e−e+ → e−e+b̄b

without cuts, but with nonzero electron mass. The default choice for the number of calls and
iterations does not suffice here:

! WHIZARD run for process eebb:

!=============================================================================

! It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It]

!-----------------------------------------------------------------------------

! Reading cut configuration data from file whizard.cut1

! Replacing default cuts by user-defined cuts.

! Preparing (fixed weights): 1 sample of 20000 calls ...

1 20000 1.0106043E+03 3.58E+02 35.42 50.10* 0.22 0.00 1

!-----------------------------------------------------------------------------

! Adapting (variable wgts.): 30 samples of 20000 calls ...

2 20000 1.1608216E+03 5.28E+02 45.46 64.29 0.14

3 20000 9.4934352E+02 2.17E+02 22.83 32.28* 0.09

4 20000 1.6287972E+03 2.77E+02 17.00 24.04* 0.12

5 20000 2.3970665E+03 6.33E+02 26.41 37.35 0.07

6 20000 3.8934769E+03 1.27E+03 32.57 46.06 0.03

7 20000 1.2274732E+04 9.29E+03 75.71 107.07 0.05

8 20000 5.5859667E+03 2.25E+03 40.21 56.87 0.06

9 20000 3.8208742E+03 5.29E+02 13.84 19.57* 0.13

10 20000 4.5776710E+03 6.04E+02 13.20 18.67* 0.27

11 20000 1.2110487E+04 5.47E+03 45.16 63.86 0.04

.....

Apparently, convergence is not reached. One possibility to proceed is to reuse these grids, but
do further iterations:

&integration_input

calls = 1 20000 30 20000 3 20000

read_grids = T

/

For the first iterations the old results are copied. The additional iterations now find convergence,
although the final accuracy and efficiency are not really satisfactory:

.....

28 20000 7.5246100E+03 1.72E+02 2.29 3.24 1.17

29 20000 7.7685827E+03 2.05E+02 2.64 3.73 0.93

30 20000 8.0304810E+03 3.52E+02 4.38 6.19 0.60

31 20000 7.7031026E+03 2.21E+02 2.87 4.06 0.81

!-----------------------------------------------------------------------------

! Integrating (fixed wgts.): 3 samples of 20000 calls ...

32 60000 7.2436310E+03 1.39E+02 1.91 4.69 0.31 2.37 3

!-----------------------------------------------------------------------------
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To get a more precise result, we should also increase the number of calls per iteration. This
costs additional CPU time.

Fortunately, there is a shortcut. The problem of this calculation is the fact that a large part
of the cross section comes from the region of very forward electrons. Furthermore, there is a
piece which corresponds to bb̄γ∗ production where the virtual photon splits into the electron-
positron pair. These small regions are sampled only after several iterations and only then
have sufficiently adapted grids. The mappings built into WHIZARD assume the parameters
default_Q_cut and default_mass_cut as typical scales for these subprocesses. The implicit
assumption, which works in many cases, is that this is not too far from the actual cuts. How-
ever, if there are no cuts, the assumption is inadequate. We rather should set those parameters
to zero

&integration_input

default_Q_cut = 0

default_mass_cut = 0

/

(which actually replaces them by some finite small value), and start again:

! WHIZARD run for process eebb:

!=============================================================================

! It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It]

!-----------------------------------------------------------------------------

! Reading cut configuration data from file whizard.cut1

! Replacing default cuts by user-defined cuts.

! Preparing (fixed weights): 1 sample of 20000 calls ...

1 20000 8.6041111E+03 4.17E+03 48.43 68.48* 0.16 0.00 1

!-----------------------------------------------------------------------------

! Adapting (variable wgts.): 10 samples of 20000 calls ...

2 20000 1.0198520E+04 3.59E+03 35.25 49.84* 0.19

3 20000 7.1720651E+03 4.57E+02 6.37 9.00* 0.44

4 20000 8.0690070E+03 3.42E+02 4.24 6.00* 0.39

5 20000 7.5135901E+03 3.94E+02 5.24 7.41 0.40

6 20000 8.0065259E+03 4.47E+02 5.58 7.89 0.31

7 20000 7.4418114E+03 2.71E+02 3.65 5.16* 0.88

8 20000 7.8493882E+03 1.78E+02 2.27 3.20* 1.26

9 20000 7.3683498E+03 1.27E+02 1.72 2.43* 2.27

10 20000 7.4932575E+03 1.13E+02 1.51 2.14* 2.55

11 20000 7.7184631E+03 1.45E+02 1.88 2.66 2.26

!-----------------------------------------------------------------------------

! Integrating (fixed wgts.): 3 samples of 20000 calls ...

12 60000 7.5716096E+03 1.13E+02 1.49 3.66 0.09 1.59 3

!-----------------------------------------------------------------------------

This time, the difficult regions are sampled from the beginning.
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With standard cuts on the electron energies and angles, this process is well-behaved. The
extra effort is needed only if we are particularly interested in the events with electron and
positron going in the very forward and backward regions, respectively.
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6.2 6-fermion production: Higgs pairs

A process which is of interest at a future Linear Collider is Higgs pair production, which is
sensitive to the Higgs trilinear coupling. A process definition file whizard.prc for this process
could look like

# WHIZARD configuration file

alias q u:d:s:c

alias Q U:D:S:C

model SM

#=============================================================

# On-shell process:

zhh e1,E1 Z,H,H omega

# Full six-fermion matrix elements:

qqbbbb e1,E1 q,Q,b,B,b,B omega c

For simplicity, we consider only six-quark production where four quarks are b quarks (the main
decay channel of the Higgs pair), and the remaining quark pair is light.

The input file whizard.in is prepared for the six-fermion process at
√
s = 500 GeV with

default settings. We would like to generate an event sample corresponding to 10 ab−1.

&process_input

process_id = "qqbbbb"

sqrts = 500

luminosity = 10000

/

&integration_input /

&simulation_input /

&diagnostics_input /

&parameter_input

mH = 115

wH = 0.3228E-02

mb = 2.9

me = 0

ms = 0

mc = 0

/
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&beam_input /

&beam_input /

Without further considerations, we switch into the results subdirectory and start integration
and event generation

> ./whizard

After the initial message

! WHIZARD 1.97 (May 31 2011)

! Reading process data from file whizard.in

! Wrote whizard.out

!

! Process qqbbbb:

! e a-e -> u a-u b a-b b a-b

! e a-e -> d a-d b a-b b a-b

! e a-e -> s a-s b a-b b a-b

! e a-e -> c a-c b a-b b a-b

! 128 64 -> 1 2 4 8 16 32

! Process energy set to 500.00 GeV

! Reading vertices from file whizard.mdl ...

! Model file: 54 trilinear vertices found.

! Model file: 54 vertices usable for phase space setup.

! Generating phase space channels for process qqbbbb...

the program needs quite some time for generating the phase space configuration (this would
be faster without flavor summation). Fortunately, the configuration is written to the file
whizard.phx and WHIZARD will reuse it when possible.

After this step is finished, a default cut for the light quark pair is inserted and integration
is started.

! Phase space: 342 phase space channels generated.

! Scanning phase space channels for equivalences ...

! Phase space: 1368 equivalence relations found.

! Note: This cross section may be infinite without cuts.

! Wrote default cut configuration file whizard.qqbbbb.cut0

! Note: This cross section may be infinite without cuts.

! Wrote default cut configuration file whizard.qqbbbb.cut0

! Note: This cross section may be infinite without cuts.

! Wrote default cut configuration file whizard.qqbbbb.cut0

! Note: This cross section may be infinite without cuts.

! Wrote default cut configuration file whizard.qqbbbb.cut0

! Wrote phase space configurations to file whizard.phx

!

! Created grids: 342 channels, 14 dimensions with 20 bins

!

! WHIZARD run for process qqbbbb:

!=============================================================================

! It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It]
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!-----------------------------------------------------------------------------

! Reading cut configuration data from file whizard.cut1

! No cut data found for process qqbbbb

! Using default cuts.

cut M of 3 within 1.00000E+01 1.00000E+99

! Preparing (fixed weights): 1 sample of 100000 calls ...

The whole adaptation and integration run takes a considerable amount of CPU time (about
one day on an Xeon or Alpha processor). If only one quark flavor were considered, this could
be reduced by a factor of four (currently, WHIZARD/O’Mega does not take advantage of the fact
that some matrix elements with different flavor content are in fact identical. Such a mechanism,
known as cross-flavor common subexpression elimination has been incorporated into WHIZARD

2.).
A usable result is already reached after about 10 iterations, with considerable fluctuation

around the optimal grid38:

1 100000 1.4904184E+00 1.97E-01 13.21 41.77* 0.54 0.00 1

!-----------------------------------------------------------------------------

! Adapting (variable wgts.): 20 samples of 100000 calls ...

2 100000 1.5389248E+00 3.52E-01 22.86 72.29 0.52

3 100000 1.5009010E+00 7.44E-02 4.96 15.67* 0.60

4 100000 1.6253297E+00 7.43E-02 4.57 14.45* 0.68

5 100000 1.6136791E+00 4.64E-02 2.87 9.08* 0.70

6 100000 2.2312050E+00 6.57E-01 29.46 93.15 0.51

7 100000 1.5917687E+00 3.05E-02 1.92 6.07* 1.09

8 100000 1.6079748E+00 4.15E-02 2.58 8.16 0.91

9 100000 1.5235805E+00 3.38E-02 2.22 7.03 1.21

10 100000 1.6966923E+00 7.18E-02 4.23 13.38 1.16

11 100000 1.5519629E+00 2.22E-02 1.43 4.52* 1.68

12 100000 1.5970681E+00 2.47E-02 1.55 4.90 1.74

13 100000 1.6847993E+00 5.81E-02 3.45 10.90 1.67

14 100000 1.5552737E+00 1.64E-02 1.05 3.33* 2.55

15 100000 1.6117607E+00 1.84E-02 1.14 3.61 2.67

16 100000 1.6167684E+00 2.17E-02 1.34 4.24 2.63

17 100000 1.6052581E+00 1.94E-02 1.21 3.83 2.82

18 100000 1.6101957E+00 1.95E-02 1.21 3.84 3.10

19 100000 1.6045048E+00 1.54E-02 0.96 3.03* 3.20

20 100000 1.5782323E+00 1.44E-02 0.91 2.88* 3.78

21 100000 1.5855381E+00 1.33E-02 0.84 2.65* 3.76

!-----------------------------------------------------------------------------

! Integrating (fixed wgts.): 3 samples of 100000 calls ...

Nevertheless, the best grid obtained so far can safely be used for event generation. The final
estimate for the integral is

22 300000 1.5716132E+00 6.93E-03 0.44 2.41* 2.80 0.46 3

!-----------------------------------------------------------------------------

!

! Time estimate for generating 10000 unweighted events: 1h 19m 27s

38By reducing the parameter weights power in the input file, these fluctuations can be somewhat dampened.
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However, we don’t need that many events: simulating 10 ab−1 now takes only half an hour:

! Event sample corresponds to luminosity [fb-1] = 0.1000E+05

! Event sample corresponds to 561275 weighted events

! Generating 15716 unweighted events ...

! Event generation finished.

!=============================================================================

! Analysis results for process qqbbbb_full:

! It Events Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It]

!-----------------------------------------------------------------------------

23 15716 1.5716132E+00 1.25E-02 0.80 1.00 100.00

!-----------------------------------------------------------------------------

! Warning: Excess events: 273.0 ( 1.74% ) | Maximal weight: 45.62

If we wish to know how many of those events are originating from HH pairs, we should set up
an analysis configuration file whizard.cut5 like this

! e- e+ -> q qbar b bbar b bbar

!128 64 1 2 4 8 16 32

process qqbbbb

cut M of 12 within 114 116

cut M of 48 within 114 116

and

cut M of 36 within 114 116

cut M of 24 within 114 116

and rerun the program, setting read_grids=T and read_events=T. The result is

! Analysis results for process qqbbbb_full:

!

! Additional cuts:

! integration pass 5

cut M of 12 within 1.14000E+02 1.16000E+02

cut M of 48 within 1.14000E+02 1.16000E+02

! It Events Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It]

!-----------------------------------------------------------------------------

23 195 1.9500164E-02 1.40E-03 7.16 1.00 1.24

!-----------------------------------------------------------------------------

! Warning: Excess events: 1.4 ( 0.70% ) | Maximal weight: 1.27

!=============================================================================

! Analysis results for process qqbbbb_full:

!

! Additional cuts:

! integration pass 5

cut M of 36 within 1.14000E+02 1.16000E+02

cut M of 24 within 1.14000E+02 1.16000E+02

! It Events Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It]

!-----------------------------------------------------------------------------

23 167 1.6700140E-02 1.29E-03 7.74 1.00 1.06

!-----------------------------------------------------------------------------

! Warning: Excess events: 0.0 ( 0.00% ) | Maximal weight: 1.00
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The two event samples may be added (assuming that no events pass both cuts simultaneously),
to yield 362 “signal” events.

The stability of the result and the computing time can be improved by reducing the number
of phase space channels (see Sec. 4.6.2).
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6.3 Vector boson scattering: polarization and beamstrahlung

In case no light Higgs boson exists, one will try to measure vector boson scattering at high-
energy colliders, e.g.

W+W− →W+W−, ZZ

Such processes can be described in an effective-Lagrangian approach, where higher-order correc-
tions to the scattering amplitude are described by new parameters α4, α5, . . .. WHIZARD defines
these anomalous couplings in the model SM_ac.mdl.

At an e+e− collider, WW scattering processes occur as a subprocess of

e−e+ → νeν̄eqq̄qq̄.

This can be simulated in a single run, if we set up the process configuration file whizard.prc

as follows:

# WHIZARD configuration file

model SM_ac

alias q u:d

alias Q U:D

alias n n1:n2:n3

alias N N1:N2:N3

# Tag In Out Method Option

#=======================================================

# On-shell process:

ww W+,W- W+,W- omega

zz W+,W- Z,Z omega

# Full six-fermion matrix elements:

nnqqqq e1,E1 n,N,q,Q,q,Q omega c

enqqqq e1,E1 e1,N1,q,Q,q,Q omega c,w:c

neqqqq e1,E1 n1,E1,q,Q,q,Q omega c,w:c

eeqqqq e1,E1 e1,E1,q,Q,q,Q omega c,w:c

# First neutrino generation only:

# WW and ZZ

nnuudd e1,E1 n1,N1,u,U,d,D omega c

# WW only

nnucsd e1,E1 n1,N1,u,C,s,D omega c

eeucsd e1,E1 e1,E1,u,C,s,D omega c,w:c

# ZZ only

nnuuss e1,E1 n1,N1,u,U,s,S omega c
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# WZ

enudss e1,E1 e1,N1,u,D,s,S omega c,w:c

# Second neutrino generation only:

# WW and ZZ

nnuudd2 e1,E1 n2,N2,u,U,d,D omega c

# WW only

nnucsd2 e1,E1 n2,N2,u,C,s,D omega c

# ZZ only

nnuuss2 e1,E1 n2,N2,u,U,s,S omega c

This is actually an abridged version of the process file whizard.prc.ww-strong that comes
with the standard distribution.

In the chosen model, the Higgs boson is actually not absent, but its mass is set to a very
large value (resp. infinity) by default. Apart from the signal process nnqqqq we have included
some important background processes, which must be considered if the final-state electron
is not observed. For these processes, gauge invariance is an issue, and we must set the w:f

(fudged-width) or w:c (constant-width) option to obtain a consistent result. Note, however,
that the fudged-width option does not work with the ’c’ flag for colored amplitudes, but the
constant-width option works perfectly fine.

The setup below is (for historical reasons) for the original TESLA collider design. We may
have polarization and have to account for ISR and beamstrahlung. The input file whizard.in

specifies 80 % left-handed electron polarization and 40 % right-handed positron polarization:

&process_input

process_id = "nnqqqq"

sqrts = 800

luminosity = 0

polarized_beams = T

structured_beams = T

/

&integration_input

calls = 1 100000 15 100000 5

default_Q_cut = 0

/

&simulation_input

/

&diagnostics_input

/

&parameter_input
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ms = 0

mc = 0

a4 = 0

a5 = 0

/

&beam_input

particle_name = "e-"

polarization = 0.80 0

CIRCE_on = T

CIRCE_acc = 2

ISR_on = T

ISR_alpha = 0.0072993

ISR_m_in = 0.000511

/

&beam_input

particle_name = "e+"

polarization = 0 0.40

CIRCE_on = T

CIRCE_acc = 2

ISR_on = T

ISR_alpha = 0.0072993

ISR_m_in = 0.000511

/

Polarization is switched on by the entry polarized_beams in the first block. Then, the
polarization settings in the beam_input blocks are respected. Similarly, structured_beams
switches on possible spectra and/or structure function settings. Now, the beam particles are
no longer automatically defined by the process, but have to be explicitly defined for each beam.

The beamstrahlung settings (CIRCE) are for the accelerator type 2 (TESLA), default param-
eterization version and revision numbers. Concerning initial-state radiation (ISR), we should
set the electromagnetic coupling constant equal to the low-energy value of 1/137 since on-shell
photons are radiated. The incoming mass must be reset equal to 511 keV, since the physical
electron mass me has been set to zero.

In the parameter section, the two anomalous couplings α4 and α5 are included. Here, we
set them to zero which is also the default value.

The signal process considered here is quite well-behaved, so, in the integration section, we
choose a number of iterations that is smaller than the default for this class of processes, to
limit execution time. (The zero value set for the Q cut is unnecessary for the signal process
considered here and could be left out. It is useful for integrating the background process
e+e− → e+e−qq̄qq̄. With no Q cut on the final-state electron, we get the total cross section.
The parameter default_Q_cut has the side effect of setting the scale for the integration over
the transverse momentum. If the parameter is zero, the electron mass is taken as setting the
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scale, which is appropriate for the total cross section.) The actual cuts for the signal and
background processes may be taken as the default ones, or we could write them explicitly in a
file. The default cuts require a minimum invariant mass of 10 GeV for each quark pair.

The output shown below is for the complete process, including all possible flavor combina-
tions in the process labeled nnqqqq

e−e+ → νeν̄eqq̄qq̄; ν = νe, νµ, ντ ; q = u, d

! WHIZARD 1.97 (May 31 2011)

! Reading process data from file whizard.in

! Wrote whizard.out

! Reading phase space configurations from file whizard.phx

!

! Process nnqqqq:

! e a-e -> nu_e a-nu_e u a-u u a-u

.....

! e a-e -> nu_tau a-nu_tau d a-d d a-d

! 128 64 -> 1 2 4 8 16 32

! Process energy set to 800.00 GeV

! Active structure functions for beam 1:

! CIRCE: e -> e (generator)

! ISR: e -> e

! Active structure functions for beam 2:

! CIRCE: a-e -> a-e (generator)

! ISR: a-e -> a-e

! Warning: CIRCE: Beamstrahlung effect on polarization will be ignored.

! Warning: CIRCE: Beamstrahlung effect on polarization will be ignored.

! Warning: ISR: Effect on beam polarization will be ignored.

! Warning: ISR: Effect on beam polarization will be ignored.

! 416 phase space channels found for process nnqqqq

! Scanning phase space channels for equivalences ...

! Phase space: 2160 equivalence relations found.

! Note: This cross section may be infinite without cuts.

.....

! Wrote default cut configuration file whizard.nnqqqq.cut0

!

! Created grids: 416 channels, 18 dimensions with 20 bins

! Reading grid data from file whizard.nnqqqq.grb

! Reading grid data from file whizard.nnqqqq.grc

!

! WHIZARD run for process nnqqqq:

!=============================================================================

! It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It]

!-----------------------------------------------------------------------------

! Reading cut configuration data from file whizard.cut1

! No cut data found for process nnqqqq

! Using default cuts.

cut M of 12 within 1.00000E+01 1.00000E+99

cut M of 20 within 1.00000E+01 1.00000E+99

cut M of 36 within 1.00000E+01 1.00000E+99

cut M of 24 within 1.00000E+01 1.00000E+99
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cut M of 40 within 1.00000E+01 1.00000E+99

cut M of 48 within 1.00000E+01 1.00000E+99

! Using grids and results from file:

1 100000 6.8946962E+00 1.25E+00 18.14 57.37* 0.75 0.00 1

!-----------------------------------------------------------------------------

! Using grids and results from file:

2 100000 6.8564783E+00 1.19E+00 17.42 55.09* 0.85

3 100000 1.2555981E+01 5.38E+00 42.87 135.55 0.45

4 100000 6.0430895E+00 3.31E-01 5.48 17.34* 0.86

5 100000 6.8791354E+00 5.83E-01 8.48 26.82 1.02

6 100000 6.2190338E+00 1.86E-01 2.99 9.46* 1.16

7 100000 6.0883991E+00 1.37E-01 2.24 7.10* 1.66

8 100000 6.1381611E+00 1.15E-01 1.88 5.94* 1.66

9 100000 6.1823849E+00 1.09E-01 1.77 5.59* 1.70

10 100000 6.2165210E+00 2.23E-01 3.59 11.34 1.49

11 100000 6.0081519E+00 8.52E-02 1.42 4.48* 2.23

12 500000 6.0368363E+00 4.79E-02 0.79 5.62 0.73

13 100000 5.7156812E+00 1.38E-01 2.41 7.61 3.19

14 100000 6.0900287E+00 1.15E-01 1.88 5.95 1.75

15 100000 6.2165952E+00 1.25E-01 2.01 6.37 1.56

!-----------------------------------------------------------------------------

! Integrating (fixed wgts.): 5 samples of 100000 calls ...

16 500000 6.1040057E+00 5.19E-02 0.85 6.01 0.68 1.19 5

!-----------------------------------------------------------------------------

!

! Time estimate for generating 10000 unweighted events: 0h 26m 58s

!=============================================================================

! Summary (all processes):

!-----------------------------------------------------------------------------

! Process ID Integral[fb] Error[fb] Err[%] Frac[%]

!-----------------------------------------------------------------------------

nnqqqq 6.1040057E+00 5.19E-02 0.85 100.00

!-----------------------------------------------------------------------------

sum 6.1040057E+00 5.19E-02 0.85 100.00

!=============================================================================

! Wrote whizard.out

! Integration complete.

! No event generation requested

6.4 W endpoint at LHC

We want to study the Jacobian peak of the W boson at the LHC. Therefore, we introduce
aliases for leptons and neutrinos as well as for light jets and use the following whizard.prc file:

# WHIZARD configuration file

# The selected model

model SM

alias j u:U:d:D:g
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alias ll e1:e2

alias neutrino n1:n2:N1:N2

# Processes

# Tag In Out Method Option

#=====================================================

enj j,j ll,neutrino,j omega c

Note that we sum only over up and down quark (as well as the gluon) for the parton as well as
for the final jet. More quarks can easily be added, but do not change the picture. We sum over
the first two lepton (and neutrino) generations, but take only production of negatively charged
W bosons into account. Many technical details have been discussed above and need not be
repeated here.

We use the following input file:

&process_input

process_id = "enj"

sqrts = 14000

polarized_beams = F

structured_beams = T

/

&integration_input

calls = 3 10000 10 20000 5 100000

/

&simulation_input

n_events = 1000

/

&diagnostics_input /

&parameter_input /

&beam_input

particle_name = "p"

LHAPDF_on = T

LHAPDF_file = "cteq6ll.LHpdf"

PDF_running_scale = T

/

&beam_input

particle_name = "p"
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LHAPDF_on = T

LHAPDF_file = "cteq6ll.LHpdf"

PDF_running_scale = T

/

So the setup is for a 14 TeV LHC (pp) collider, using cteq6ll.LHpdf leading order CTEQ PDFs
from LHAPDF. We chose to use a running scale (i.e.

√
ŝ) rather than the W mass. Instead of

choosing a specific luminosity we just generated 1,000 unweighted events. We adopt only very
mild cuts, i.e. a 10 GeV pT cut on the charged lepton and the jet in the file whizard.cut1:

process enj

cut PT of 1 within 10 99999

cut PT of 2 within 10 99999

cut PT of 4 within 10 99999

Starting WHIZARD gives the following run output:

! WHIZARD 1.97 (May 31 2011)

! Reading process data from file whizard.in

! Wrote whizard.out

! Reading phase space configurations from file whizard.phx

!

! Process enj:

! a-u d -> e a-nu_e g

.....

! g d -> mu a-nu_mu u

! 16 8 -> 1 2 4

! Process energy set to 14000. GeV

*************************************

* LHAPDF Version 5.8.4 *

* Configured for the following: *

* All PDFs *

* FULL MEMORY option *

* Maximum 3 concurrent set(s) *

*************************************

>>>>>> PDF description: <<<<<<

CTEQ6L1 - LO with LO alpha_s

.....

>>>>>> <<<<<<

Parametrization: CTEQ6

! Active structure functions for beam 2:

! LHAPDF: p -> a-u

! 3 phase space channels found for process enj

! Scanning phase space channels for equivalences ...

! Phase space: 3 equivalence relations found.

! Note: This cross section may be infinite without cuts.

! Wrote default cut configuration file whizard.enj.cut0

.....
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Figure 17: Histograms for the process pp→ ℓ−ν̄j at
√
s = 14 TeV. Top: pT distribution of the

lepton, Bottom: pT distribution of the jet.

!

! Created grids: 3 channels, 7 dimensions with 20 bins

!

! WHIZARD run for process enj:

!=============================================================================

! It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It]

!-----------------------------------------------------------------------------

! Reading cut configuration data from file whizard.cut1

! Replacing default cuts by user-defined cuts.

cut pT of 1 within 1.00000E+01 9.99990E+04

cut pT of 2 within 1.00000E+01 9.99990E+04

cut pT of 4 within 1.00000E+01 9.99990E+04

! Preparing (fixed weights): 3 samples of 10000 calls ...

1 30000 5.1065657E+06 1.32E+05 2.58 4.47* 0.21 2.66 3

!-----------------------------------------------------------------------------

! Adapting (variable wgts.): 10 samples of 20000 calls ...

2 20000 5.2468949E+06 1.05E+05 2.01 2.84* 1.65
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Figure 18: Histograms for the process pp→ ℓ−ν̄j at
√
s = 14 TeV. Top: Energy distribution of

the lepton, Bottom: Energy distribution of the jet.

3 20000 5.1653531E+06 5.66E+04 1.10 1.55* 3.25

4 20000 5.2198528E+06 4.94E+04 0.95 1.34* 3.14

5 20000 5.1720114E+06 5.11E+04 0.99 1.40 2.18

6 20000 5.1487802E+06 4.58E+04 0.89 1.26* 7.61

7 20000 5.1670713E+06 4.32E+04 0.84 1.18* 3.95

8 20000 5.2170596E+06 4.51E+04 0.86 1.22 3.01

9 20000 5.2760343E+06 4.92E+04 0.93 1.32 2.50

10 20000 5.2178545E+06 4.38E+04 0.84 1.19 6.15

11 20000 5.2588972E+06 4.46E+04 0.85 1.20 4.02

!-----------------------------------------------------------------------------

! Integrating (fixed wgts.): 5 samples of 100000 calls ...

12 500000 5.2309417E+06 9.60E+03 0.18 1.30 0.66 0.34 5

!-----------------------------------------------------------------------------

!

! Time estimate for generating 10000 unweighted events: 0h 00m 44s

!=============================================================================

! Summary (all processes):
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!-----------------------------------------------------------------------------

! Process ID Integral[fb] Error[fb] Err[%] Frac[%]

!-----------------------------------------------------------------------------

enj 5.2309417E+06 9.60E+03 0.18 100.00

!-----------------------------------------------------------------------------

sum 5.2309417E+06 9.60E+03 0.18 100.00

!=============================================================================

! Wrote whizard.out

! Integration complete.

!

! Reading analysis configuration data from file whizard.cut5

! Found 1 analysis configuration dataset.

! Event sample corresponds to luminosity [fb-1] = 0.1912E-03

! Event sample corresponds to 150712 weighted events

! Generating 1000 unweighted events ...

! Event generation finished.

!=============================================================================

! Analysis results for process enj:

! It Events Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It]

!-----------------------------------------------------------------------------

13 1000 5.2309417E+06 1.65E+05 3.16 1.00 100.00

!-----------------------------------------------------------------------------

! Warning: Excess events: 5.0 ( 0.50% ) | Maximal weight: 3.41

For the analysis, we want to histogram the pT distributions for the charged lepton and the jet
as well as their corresponding energies. This is achieved with the analysis file whizard.cut5:

process enj

histogram PT of 1 within 0 80 nbin 40

histogram PT of 4 within 0 80 nbin 40

histogram E of 1 within 0 160 nbin 40

histogram E of 4 within 0 80 nbin 40

In the following figures we show the pT distribution of the lepton which shows the Jacobian
peak from the W decay, while the corresponding histogram of the jet does not show this
feature 17. Fig. 18 shows the energy of the lepton and the jet, respectively. These are more
less resembling the behavior of the pT distribution.
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6.5 Z ′ in Drell-Yan Production at the LHC

As a second example for LHC physics, we consider the simplest beyond the Standard Model
(BSM) search, namely that for Z ′ bosons in Drell-Yan production with subsequent decay into
electrons. After having defined the process in whizard.prc:

# WHIZARD configuration file

# The selected model

model Zprime

alias p u:d:s:c:U:D:S:C

# Processes

# Tag In Out Method Option

#=====================================================

drellyan p,p e1,E1 omega c

Note that we have to set the model to Zprime, otherwise for the SM WHIZARD would generate
ordinary Drell-Yan production and our search for a high-energetic dilepton resonance would be
in vain.

We impose the following cuts on the process: basically experimental trigger cuts, demanding
the final state leptons to have a transverse momentum pT > 50 GeV and to stay centrally in
the detector, i.e. −2.5 < η < +2.5. Furthermore, we concentrate on the discovery region
for a heavy vector resonance in Drell-Yan production, meaning that we look only for dilepton
invariant masses larger than 800 GeV (below we will assume that the Z ′ boson has a mass of
1.5 TeV). The cuts are set by the following statements in the file whizard.cut1:

process drellyan

cut PT of 1 within 50 99999

cut PT of 2 within 50 99999

cut Eta of 1 within -2.5 2.5

cut Eta of 2 within -2.5 2.5

cut M of 3 within 800 99999

The input file is only a slight modification of the one whizard.in.Zprime that can be found
in the conf subdirectory:

&process_input

process_id = "drellyan"

sqrts = 14000

luminosity = 0

polarized_beams = F

structured_beams = T

/

&integration_input

calls = 1 10000 10 20000 5 100000

/

&simulation_input
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n_events = 100000

/

&diagnostics_input /

&parameter_input

Me = 0

Ms = 0

Mc = 0

MH = 115

wH = 0.3228E-02

MZH = 1500

wZH = 50

!!! Zprime couplings as multiples of Z couplings

v_lep = 1.0

v_neu = 1.0

v_up = 1.0

v_dwn = 1.0

a_lep = 1.0

a_neu = 1.0

a_up = 1.0

a_dwn = 1.0

!!! Explicit Zprime couplings

glepv = 0.0

gneuv = 0.0

gupv = 0.0

gdwnv = 0.0

glepa = 0.0

gneua = 0.0

gupa = 0.0

gdwna = 0.0

/

&beam_input

particle_name = "p"

LHAPDF_on = T

LHAPDF_file = "cteq6ll.LHpdf"

LHAPDF_set = 0

!!! Should be chosen equal to MZH

PDF_scale = 1500

/

&beam_input

particle_name = "p"

LHAPDF_on = T

LHAPDF_file = "cteq6ll.LHpdf"

LHAPDF_set = 0

!!! Should be chosen equal to MZH

PDF_scale = 1500

/
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Again, cteq6ll.LHpdf sets from LHAPDF are used, this time with a scale equal to the mass of
the Z ′ boson, namely 1.5 TeV. The width is not calculated, but set explicitly to 50 GeV. For the
couplings, there are several parameters which could be set in that particular BSM model. The
couplings glepv etc. allow for explicit values for the Z ′ couplings to the SM fermions, while
v_lep, a_lep etc. are just rescalings of the SM Z boson couplings to the fermions. As these
values are set equal to one everywhere, this Z ′ is the infamous strawman model of a sequential
Z ′ which however from a theoretical point of view is useless, because it is a non-renormalizable
model.

Starting WHIZARD yields the following output:

! WHIZARD 1.97 (May 31 2011)

! Reading process data from file whizard.in

! Wrote whizard.out

!

! Process drellyan:

! u a-u -> e a-e

.....

! 8 4 -> 1 2

! Process energy set to 14000. GeV

*************************************

* LHAPDF Version 5.8.3 *

* Configured for the following: *

* All PDFs *

* FULL MEMORY option *

* Maximum 3 concurrent set(s) *

*************************************

>>>>>> PDF description: <<<<<<

.....

>>>>>> <<<<<<

Parametrization: CTEQ6

! Active structure functions for beam 2:

! LHAPDF: p -> a-u

! Reading vertices from file whizard.mdl ...

! Model file: 62 trilinear vertices found.

! Model file: 62 vertices usable for phase space setup.

! Generating phase space channels for process drellyan...

! Phase space: 2 phase space channels generated.

! Scanning phase space channels for equivalences ...

! Phase space: 2 equivalence relations found.

! Note: This cross section may be infinite without cuts.

! Wrote default cut configuration file whizard.drellyan.cut0

.....

! Wrote phase space configurations to file whizard.phx

!

! Created grids: 2 channels, 4 dimensions with 20 bins

!

! WHIZARD run for process drellyan:

!=============================================================================
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! It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It]

!-----------------------------------------------------------------------------

! Reading cut configuration data from file whizard.cut1

! Replacing default cuts by user-defined cuts.

cut pT of 1 within 5.00000E+01 9.99990E+04

cut pT of 2 within 5.00000E+01 9.99990E+04

cut eta of 1 within -2.50000E+00 2.50000E+00

cut eta of 2 within -2.50000E+00 2.50000E+00

cut M of 3 within 8.00000E+02 9.99990E+04

! Preparing (fixed weights): 1 sample of 10000 calls ...

1 10000 6.3659147E+01 7.91E+00 12.42 12.42* 0.22 0.00 1

!-----------------------------------------------------------------------------

! Adapting (variable wgts.): 10 samples of 20000 calls ...

2 20000 8.2530400E+01 6.53E+00 7.91 11.19* 0.26

3 20000 6.6421810E+01 1.83E+00 2.75 3.89* 1.88

4 20000 6.9202182E+01 8.07E-01 1.17 1.65* 7.94

5 20000 6.9246385E+01 4.22E-01 0.61 0.86* 4.39

6 20000 6.9431259E+01 3.46E-01 0.50 0.71* 11.81

7 20000 6.9932020E+01 3.67E-01 0.52 0.74 9.65

8 20000 6.9123994E+01 3.80E-01 0.55 0.78 7.37

9 20000 6.9979530E+01 3.95E-01 0.56 0.80 8.59

10 20000 7.0999763E+01 3.80E-01 0.54 0.76 8.86

11 20000 7.0029224E+01 4.01E-01 0.57 0.81 9.40

!-----------------------------------------------------------------------------

! Integrating (fixed wgts.): 5 samples of 100000 calls ...

12 500000 6.9702626E+01 7.24E-02 0.10 0.73 3.28 0.51 5

!-----------------------------------------------------------------------------

!

! Time estimate for generating 10000 unweighted events: 0h 00m 05s

!=============================================================================

! Summary (all processes):

!-----------------------------------------------------------------------------

! Process ID Integral[fb] Error[fb] Err[%] Frac[%]

!-----------------------------------------------------------------------------

drellyan 6.9702626E+01 7.24E-02 0.10 100.00

!-----------------------------------------------------------------------------

sum 6.9702626E+01 7.24E-02 0.10 100.00

!=============================================================================

! Wrote whizard.out

! Integration complete.

!

! Reading analysis configuration data from file whizard.cut5

! Found 1 analysis configuration dataset.

! Event sample corresponds to luminosity [fb-1] = 1435.

! Event sample corresponds to 3050955 weighted events

! Generating 100000 unweighted events ...

! Event generation finished.

!=============================================================================

! Analysis results for process drellyan:

! It Events Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It]

!-----------------------------------------------------------------------------

13 100000 6.9702626E+01 2.20E-01 0.32 1.00 100.00
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Figure 19: Drell-Yan production of a 1.5 TeV Z ′ boson. Dilepton invariant mass.

0

5000

1×104

1.5×104

2×104

2.5×104

500 1000 1500 2000

#evt/bin

p⊥ [GeV] of (1)

Figure 20: Drell-Yan production of a 1.5 TeV Z ′ boson. pT distribution of the negatively charged
lepton.

!-----------------------------------------------------------------------------

! Warning: Excess events: 42.0 ( 0.04% ) | Maximal weight: 2.44

In the analysis, we want to investigate the dilepton invariant mass spectrum in the high-
energy region, the pT distribution of the lepton, as well as the lepton’s angular correlation.
Hence, we use the following analysis file whizard.cut5:

process drellyan

histogram M of 3 within 1000 2000 step 50

histogram PT of 1 within 100 2000 step 100

histogram AAD of 1 within 0 180 step 10

The three distributions are shown in the three Figs. 19, 20, and 21.
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Figure 21: Drell-Yan production of a 1.5 TeV Z ′ boson. Angle of the negatively charged lepton
with respect to the beam.
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6.6 Energy and more general parameter scans

If one wants to scan over a parameter range (either the center-of-mass energy for which there
is also the option to use a uniform beam spectrum or another parameter of the model), there
is the shell script scan range.pl which can be found in the conf subdirectory:

#!/usr/bin/perl

# Loop over energy and extract results

$prog = "./whizard";

$file = "whizard.out";

$Emin = 500;

$Emax = 5000;

$Estep = 50;

@processes = (

"eemm"

);

foreach $proc (@processes) {

$proc{$proc} = 1;

eval "\$tab_".$proc." .= ’Cross section for process $proc\n’";

eval "\$tab_".$proc." .= ’# sqrts[GeV] sigma[fb] error[fb]\n’";

}

for ($E=$Emin; $E <= $Emax; $E=$E+$Estep) {

system ("$prog -P’Mzh=$E’");

# system ("$prog -p’sqrts=$E’");

open (RESULT, "$file") or die;

while (<RESULT>) {

($proc, $cs, $err) = split;

if ($proc{$proc}) {

eval "\$tab_".$proc." .= ’ $E $cs $err\n’";

}

}

close (RESULT);

}

open (OUT, ">scan_range.dat");

foreach $proc (@processes) {

eval "print OUT \$tab_".$proc;

print OUT "\n\n";

}

close (OUT);

This PERL script takes a list of processes (here only eemm intended to be e−e+ → µ−µ+) to
be attached to the PERL array @processes. Then, there is one input parameter $E that is
varied between the two values $Emin and $Emax with steps $Estep. The following line of
code system ("$prog -P’Mzh=$E’") calls the program (i.e. WHIZARD) with the command line
option setting the parameter (here Mzh, i.e. the mass of the heavy Z ′ boson and varies it. The
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center-of-mass energy must then be set explicitly in the whizard.in file. (If the parameter to
be varied is

√
s itself, the corresponding entry in the input file could be empty). The PERL

script produces an output file scan_rannge.dat which contains histogrammed data for the
corresponding variable. Note that WHIZARD 2 has an intrinsic option for parameter scans, and
is able to directly produce plain histogram files. For more information confer the WHIZARD 2
manual.
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