
WHIZARD 3.1

A generic
Monte-Carlo integration and event generation package

for multi-particle processes

MANUAL 1

Wolfgang Kilian, Thorsten Ohl, Jürgen Reuter, with contributions from
Fabian Bach, Timothy L. Barklow, Mikael Berggren, Simon Braß, Pia Mareen
Bredt, Bijan Chokoufé Nejad, Oliver Fischer, Christian Fleper, Marius Höfer,

Maximilian Löschner, Krzysztof Mękała, Akiya Miyamoto, Michael Peskin,
Vincent Rothe, Sebastian Schmidt, Marco Sekulla, So Young Shim, Christian
Speckner, Florian Staub, Pascal Stienemeier, Manuel Utsch, Christian Weiss,

Aleksander Filip Żarnecki, Zhijie Zhao

Universität Siegen, Emmy-Noether-Campus, Walter-Flex-Str. 3, D–57068 Siegen, Germany
Universität Würzburg, Emil-Hilb-Weg 22, D–97074 Würzburg, Germany

Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D–22603 Hamburg, Germany

1This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Associa-
tion) under Germany’s Excellence Strategy-EXC 2121 “Quantum Universe”-39083330 and under grant
396021762 - TRR 257. In the past it was supported by Helmholtz-Alliance “Physics at the Terascale”.
In former stages this work has also been supported by the Helmholtz-Gemeinschaft VH–NG–005
E-mail: whizard@desy.de



2

when using WHIZARD please cite:
W. Kilian, T. Ohl, J. Reuter,

WHIZARD: Simulating Multi-Particle Processes at LHC and ILC,
Eur.Phys.J.C71 (2011) 1742, arXiv: 0708.4233 [hep-ph];

M. Moretti, T. Ohl, J. Reuter,
O’Mega: An Optimizing Matrix Element Generator,

arXiv: hep-ph/0102195



3

ABSTRACT

WHIZARD is a program system designed for the efficient calculation of multi-
particle scattering cross sections and simulated event samples. The generated
events can be written to file in various formats (including HepMC, LHEF,
STDHEP, LCIO, and ASCII) or analyzed directly on the parton or hadron
level using a built-in LATEX-compatible graphics package.

Complete tree-level matrix elements are generated automatically for arbitrary
partonic multi-particle processes by calling the built-in matrix-element gener-
ator O’Mega. Beyond hard matrix elements, WHIZARD can generate (cascade)
decays with complete spin correlations. Various models beyond the SM are
implemented, in particular, the MSSM is supported with an interface to
the SUSY Les Houches Accord input format. Matrix elements obtained by
alternative methods (e.g., including loop corrections) may be interfaced as
well.

The program uses an adaptive multi-channel method for phase space integra-
tion, which allows to calculate numerically stable signal and background cross
sections and generate unweighted event samples with reasonable efficiency
for processes with up to eight and more final-state particles. Polarization is
treated exactly for both the initial and final states. Quark or lepton flavors
can be summed over automatically where needed.

For hadron collider physics, we ship the package with the most recent PDF
sets from the MSTW/MMHT and CTEQ/CT10/CJ12/CJ15/CT14 collabo-
rations. Furthermore, an interface to the LHAPDF library is provided.

For Linear Collider physics, beamstrahlung (CIRCE1, CIRCE2), Compton and
ISR spectra are included for electrons and photons, including the most recent
ILC and CLIC collider designs. Alternatively, beam-crossing events can be
read directly from file.

For parton showering and matching/merging with hard matrix elements ,
fragmenting and hadronizing the final state, a first version of two different
parton shower algorithms are included in the WHIZARD package. This also
includes infrastructure for the MLM matching and merging algorithm. For
hadronization and hadronic decays, PYTHIA and HERWIG interfaces are pro-
vided which follow the Les Houches Accord. In addition, the last and final
version of (Fortran) PYTHIA is included in the package.

The WHIZARD distribution is available at

https://whizard.hepforge.org

where also the svn repository is located.

https://whizard.hepforge.org


4



Contents

1 Introduction 13
1.1 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Historical remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 About examples in this manual . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Installation 21
2.1 Package Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 No Binary Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Tarball Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 SVN Repository Version . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.4 Public Git Repository Version . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.5 Nightly development snapshots . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.6 Fortran Compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.7 LHAPDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.8 HOPPET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.9 HepMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.10 PYTHIA6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.11 PYTHIA8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.12 FastJet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.13 STDHEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.14 LCIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.1 Central Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.2 Installation in User Space . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3 Configure Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.4 Details on the Configure Process . . . . . . . . . . . . . . . . . . . . . . 35
2.3.5 Building on Darwin/macOS . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.6 Building on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.7 WHIZARD self tests/checks . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5



6 CONTENTS

3 Working with WHIZARD 37
3.1 Hello World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 A Simple Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 WHIZARD in a Computing Environment . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Working on a Single Computer . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 Working Parallel on Several Computers . . . . . . . . . . . . . . . . . . . 43
3.3.3 Stopping and Resuming WHIZARD Jobs . . . . . . . . . . . . . . . . . . 45
3.3.4 Files and Directories: default and customization . . . . . . . . . . . . . . 46
3.3.5 Batch jobs on a different machine . . . . . . . . . . . . . . . . . . . . . . 47
3.3.6 Static Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.1 Possible (uncommon) build problems . . . . . . . . . . . . . . . . . . . . 50
3.4.2 What happens if WHIZARD throws an error? . . . . . . . . . . . . . . . . . 50
3.4.3 Debugging, testing, and validation . . . . . . . . . . . . . . . . . . . . . . 56

4 Steering WHIZARD: SINDARIN Overview 59
4.1 The command language for WHIZARD . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 SINDARIN scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.1 Process Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.3 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.4 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Control Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5.1 Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.2 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.3 Including Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6.1 Numeric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6.2 Logical and String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6.3 Special . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 SINDARIN in Details 75
5.1 Data and expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.1 Real-valued objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.2 Integer-valued objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1.3 Complex-valued objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1.4 Logical-valued objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.1.5 String-valued objects and string operations . . . . . . . . . . . . . . . . . 78

5.2 Particles and (sub)events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.1 Particle aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



CONTENTS 7

5.2.2 Subevents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.3 Subevent functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.4 Calculating observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.5 Cuts and event selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.6 More particle functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Physics Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.1 Process definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.2 Particle names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.3 Options for processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.4 Process components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.4.5 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.4.6 Process libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.7 Stand-alone WHIZARD with precompiled processes . . . . . . . . . . . . . 101

5.5 Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.5.1 Beam setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.5.2 Asymmetric beams and Crossing angles . . . . . . . . . . . . . . . . . . . 103
5.5.3 LHAPDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5.4 Built-in PDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.5.5 HOPPET b parton matching . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.5.6 Lepton Collider ISR structure functions . . . . . . . . . . . . . . . . . . . 108
5.5.7 Lepton Collider Beamstrahlung . . . . . . . . . . . . . . . . . . . . . . . 109
5.5.8 Beam events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.5.9 Gaussian beam-energy spread . . . . . . . . . . . . . . . . . . . . . . . . 112
5.5.10 Equivalent photon approximation . . . . . . . . . . . . . . . . . . . . . . 113
5.5.11 Effective W approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5.12 Energy scans using structure functions . . . . . . . . . . . . . . . . . . . 116
5.5.13 Photon collider spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.5.14 Concatenation of several structure functions . . . . . . . . . . . . . . . . 118

5.6 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.6.1 Initial state polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.6.2 Final state polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.7 Cross sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.7.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.7.2 Integration run IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.7.3 Controlling iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.7.4 Phase space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.7.5 Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.7.6 QCD scale and coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.7.7 Reweighting factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.8 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.8.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.8.2 Decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



8 CONTENTS

5.8.3 Event formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.9 Analysis and Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.9.1 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.9.2 The analysis expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.9.3 Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.9.4 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.9.5 Analysis Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.10 Custom Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.10.1 Output Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.10.2 Printing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.11 WHIZARD at next-to-leading order . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.11.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.11.2 NLO cross sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.11.3 Fixed-order NLO events . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.11.4 POWHEG matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.11.5 Separation of finite and singular contributions . . . . . . . . . . . . . . . 154

6 Random number generators 155
6.1 General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.2 The TAO Random Number Generator . . . . . . . . . . . . . . . . . . . . . . . 155
6.3 The RNGStream Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7 Integration Methods 157
7.1 The Monte-Carlo integration routine: VAMP . . . . . . . . . . . . . . . . . . . . . 157
7.2 The next generation integrator: VAMP2 . . . . . . . . . . . . . . . . . . . . . . . 157

7.2.1 Multichannel integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.2.2 VEGAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.2.3 Channel equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8 Phase space parameterizations 161
8.1 General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.2 The flat method: rambo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.3 The default method: wood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.4 A new method: fast_wood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.5 Phase space respecting restrictions on subdiagrams . . . . . . . . . . . . . . . . 165
8.6 Phase space for processes forbidden at tree level . . . . . . . . . . . . . . . . . . 165

9 Methods for Hard Interactions 167
9.1 Internal test matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
9.2 Template matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
9.3 The O’Mega matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
9.4 Interface to GoSam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
9.5 Interface to Openloops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
9.6 Interface to Recola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173



CONTENTS 9

9.7 Special applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

10 Implemented physics 175
10.1 The hard interaction models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.1.1 The Standard Model and friends . . . . . . . . . . . . . . . . . . . . . . . 175
10.1.2 Beyond the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.2 The SUSY Les Houches Accord (SLHA) interface . . . . . . . . . . . . . . . . . 177
10.3 Lepton Collider Beam Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

10.3.1 CIRCE1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
10.3.2 CIRCE2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
10.3.3 Photon Collider Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

10.4 Transverse momentum for ISR photons . . . . . . . . . . . . . . . . . . . . . . . 181
10.5 Transverse momentum for the EPA approximation . . . . . . . . . . . . . . . . . 181
10.6 Resonances and continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

10.6.1 Complete matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . 182
10.6.2 Processes restricted to resonances . . . . . . . . . . . . . . . . . . . . . . 182
10.6.3 Factorized processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
10.6.4 Resonance insertion in the event record . . . . . . . . . . . . . . . . . . . 183

10.7 Parton showers and Hadronization . . . . . . . . . . . . . . . . . . . . . . . . . 186
10.7.1 The kT -ordered parton shower . . . . . . . . . . . . . . . . . . . . . . . . 187
10.7.2 The analytic parton shower . . . . . . . . . . . . . . . . . . . . . . . . . 187
10.7.3 Parton shower and hadronization from PYTHIA6 . . . . . . . . . . . . . . 187
10.7.4 Parton shower and hadronization from PYTHIA8 . . . . . . . . . . . . . . 189
10.7.5 Other tools for parton shower and hadronization . . . . . . . . . . . . . . 189

10.8 Simulation of low-pT hadrons at lepton colliders . . . . . . . . . . . . . . . . . . 189
10.9 Loop-induced processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

11 More on Event Generation 191
11.1 Event generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
11.2 Unweighted and weighted events . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
11.3 Choice on event normalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
11.4 Event selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
11.5 Supported event formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
11.6 Interfaces to Parton Showers, Matching and Hadronization . . . . . . . . . . . . 202

11.6.1 Parton Showers and Hadronization . . . . . . . . . . . . . . . . . . . . . 203
11.6.2 Parton shower – Matrix Element Matching . . . . . . . . . . . . . . . . . 205

11.7 Rescanning and recalculating events . . . . . . . . . . . . . . . . . . . . . . . . . 206
11.8 Negative weight events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

12 Internal Data Visualization 211
12.1 GAMELAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

12.1.1 User-specific changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
12.2 Histogram Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213



10 CONTENTS

12.3 Plot Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
12.4 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
12.5 Drawing options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

13 Fast Detector Simulation and External Analysis 219
13.1 Interfacing ROOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
13.2 Interfacing RIVET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
13.3 Fast Detector Simulation with DELPHES . . . . . . . . . . . . . . . . . . . . . 222

14 User Interfaces for WHIZARD 223
14.1 Command Line and SINDARIN Input Files . . . . . . . . . . . . . . . . . . . . . 223
14.2 WHISH – The WHIZARD Shell/Interactive mode . . . . . . . . . . . . . . . . . . . 225
14.3 Graphical user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
14.4 WHIZARD as a library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

14.4.1 Fortran main program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
14.4.2 C main program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
14.4.3 C++ main program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
14.4.4 Python main program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

15 Examples 249
15.1 Z lineshape at LEP I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
15.2 W pairs at LEP II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
15.3 Higgs search at LEP II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
15.4 Deep Inelastic Scattering at HERA . . . . . . . . . . . . . . . . . . . . . . . . . 260
15.5 W endpoint at LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
15.6 SUSY Cascades at LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
15.7 Polarized WW at ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

16 Technical details – Advanced Spells 261
16.1 Efficiency and tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

17 New External Physics Models 263
17.1 New physics models via SARAH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

17.1.1 WHIZARD/O’Mega model files from SARAH . . . . . . . . . . . . . . . . . . 264
17.1.2 Linking SPheno and WHIZARD . . . . . . . . . . . . . . . . . . . . . . . . 265
17.1.3 BSM Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

17.2 New physics models via FeynRules . . . . . . . . . . . . . . . . . . . . . . . . . 267
17.2.1 Installation and Usage of the WHIZARD-FeynRules interface . . . . . . . . 267
17.2.2 Options of the WHIZARD-FeynRules interface . . . . . . . . . . . . . . . . 271
17.2.3 Validation of the interface . . . . . . . . . . . . . . . . . . . . . . . . . . 272
17.2.4 Examples for the WHIZARD-/FeynRules interface . . . . . . . . . . . . . . 272

17.3 New physics models via the UFO file format . . . . . . . . . . . . . . . . . . . . . 277



CONTENTS 11

A SINDARIN Reference 279
A.1 Commands and Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
A.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

A.2.1 Rebuild Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
A.2.2 Standard Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308



12 CONTENTS



Chapter 1

Introduction

1.1 Disclaimer
This is a preliminary version of the WHIZARD manual. Many parts are still missing or
incomplete, and some parts will be rewritten and improved soon. To find updated versions of the
manual, visit the WHIZARD website

https://whizard.hepforge.org

or consult the current version in the svn repository on https: // whizard. hepforge. org
directly. Note, that the most recent version of the manual might contain information about
features of the current svn version, which are not contained in the last official release version!

For information that is not (yet) written in the manual, please consult the examples in
the WHIZARD distribution. You will find these in the subdirectory share/examples of the main
directory where WHIZARD is installed. More information about the examples can be found on the
WHIZARD Wiki page

https://whizard.hepforge.org/trac/wiki.

13

https://whizard.hepforge.org
https://whizard.hepforge.org
https://whizard.hepforge.org/trac/wiki


14 CHAPTER 1. INTRODUCTION

WHIZARD core
user interface, steering, phase space

O’Mega
matrix elements

VAMP
Monte-Carlo integration

USER
process setup, cuts, analysis definitions, etc.

Figure 1.1: General structure of the WHIZARD package.

1.2 Overview

WHIZARD is a multi-purpose event generator that covers all parts of event generation (unweighted
and weighted), either through intrinsic components or interfaces to external packages. Realistic
collider environments are covered through sophisticated descriptions for beam structures at
hadron colliders, lepton colliders, lepton-hadron colliders, both circular and linear machines.
Other options include scattering processes e.g. for dark matter annihilation or particle decays.
WHIZARD contains its in-house generator for (tree-level) high-multiplicity matrix elements, O’Mega
that supports the whole Standard Model (SM) of particle physics and basically all possibile
extensions of it. QCD parton shower describe high-multiplicity partonic jet events that can
be matched with matrix elements. At the moment, only hadron collider parton distribution
functions (PDFs) and hadronization are handled by packages not written by the main authors.

This manual is organized mainly along the lines of the way how to run WHIZARD: this is done
through a command language, SINDARIN (Scripting INtegration, Data Analysis, Results display
and INterfaces.) Though this seems a complication at first glance, the user is rewarded with a
large possibility, flexibility and versatility on how to steer WHIZARD.

After some general remarks in the follow-up sections, in Chap. 2 we describe how to get the
program, the package structure, the prerequisites, possible external extensions of the program
and the basics of the installation (both as superuser and locally). Also, a first technical overview
how to work with WHIZARD on single computer, batch clusters and farms are given. Furthermore,
some rare uncommon possible build problems are discussed, and a tour through options for
debugging, testing and validation is being made.

A first dive into the running of the program is made in Chap. 3. This is following by an
extensive, but rather technical introduction into the steering language SINDARIN in Chap. 4. Here,
the basic elements of the language like commands, statements, control structures, expressions
and variables as well as the form of warnings and error messages are explained in detail.

Chap. 5 contains the application of the SINDARIN command language to the main tasks in
running WHIZARD in a physics framework: the defintion of particles, subevents, cuts, and event
selections. The specification of a particular physics models is discussed, while the next sections



1.3. HISTORICAL REMARKS 15

are devoted to the setup and compilation of code for particular processes, the specification
of beams, beam structure and polarization. The next step is the integration, controlling
the integration, phase space, generator cuts, scales and weights, proceeding further to event
generation and decays. At the end of this chapter, WHIZARD’s internal data analysis methods
and graphical visualization options are documented.

The following chapters are dedicated to the physics implemented in WHIZARD: methods for
hard matrix interactions in Chap. 9. Then, in Chap. 10, implemented methods for adaptive
multi-channel integration, particularly the integrator VAMP are explained, together with the
algorithms for the generation of the phase-space in WHIZARD. Finally, an overview is given over
the physics models implemented in WHIZARD and its matrix element generator O’Mega, together
with possibilities for their extension. After that, the next chapter discusses parton showering,
matching and hadronization as well as options for event normalizations and supported event
formats. Also weighted event generation is explained along the lines with options for negative
weights.

Chap. 12 is a stand-alone documentation of GAMELAN, the interal graphics support for the
visualization of data and analysis. The next chapter, Chap. 14 details user interfaces: how to use
more options of the WHIZARD command on the command line, how to use WHIZARD interactively,
and how to include WHIZARD as a library into the user’s own program.

Then, an extensive list of examples in Chap. 15 documenting physics examples from the
LEP, SLC, HERA, Tevatron, and LHC colliders to future linear and circular colliders. This
chapter is a particular good reference for the beginning, as the whole chain from choosing a
model, setting up processes, the beam structure, the integration, and finally simulation and
(graphical) analysis are explained in detail.

More technical details about efficiency, tuning and advance usage of WHIZARD are collected
in Chap. 16. Then, Chap. 17 shows how to set up your own new physics model with the help of
external programs like SARAH or FeynRules program or the Universal Feynrules Output, UFO,
and include it into the WHIZARD event generator.

In the appendices, we e.g. give an exhaustive reference list of SINDARIN commands and
built-in variables.

Please report any inconsistencies, bugs, problems or simply pose open questions to our
contact whizard@desy.de.

There is now also a support page on Launchpad, which offers support that is easily visible
for the whole user community: https://launchpad.net/whizard.

1.3 Historical remarks

This section gives a historical overview over the development of WHIZARD and can be easily
skipped in a (first) reading of the manual. WHIZARD has been developed in a first place as a tool
for the physics at the then planned linear electron-positron collider TESLA around 1999. The
intention was to have a tool at hand to describe electroweak physics of multiple weak bosons and
the Higgs boson as precise as possible with full matrix elements. Hence, the acronym: WHiZard,
which stood for W, Higgs, Z, and respective decays.

whizard@desy.de
https://launchpad.net/whizard


16 CHAPTER 1. INTRODUCTION

Several components of the WHIZARD package that are also available as independent sub-
packages have been published already before the first versions of the WHIZARD generator itself:
the multi-channel adaptive Monte-Carlo integration package VAMP has been released mid 1998 [5].
The dedicated packages for the simulation of linear lepton collider beamstrahlung and the option
for a photon collider on Compton backscattering (CIRCE1/2) date back even to mid 1996 [6].
Also parts of the code for WHIZARD’s internal graphical analysis (the gamelan module) came into
existence already around 1998.

After first inofficial versions, the official version 1 of WHIZARD was release in the year 2000.
The development, improvement and incorporation of new features continued for roughly a
decade. Major milestones in the development were the full support of all kinds of beyond the
Standard Model (BSM) models including spin 3/2 and spin 2 particles and the inclusion of
the MSSM, the NMSSM, Little Higgs models and models for anomalous couplings as well as
extra-dimensional models from version 1.90 on. In the beginning, several methods for matrix
elements have been used, until the in-house matrix element generator O’Mega became available
from version 1.20 on. It was included as a part of the WHIZARD package from version 1.90 on.
The support for full color amplitudes came with version 1.50, but in a full-fledged version from
2.0 on. Version 1.40 brought the necessary setups for all kinds of collider environments, i.e.
asymmetric beams, decay processes, and intrinsic pT in structure functions.

Version 2.0 was released in April 2010 as an almost complete rewriting of the original
code. It brought the construction of an internal density-matrix formalism which allowed the
use of factorized production and (cascade) decay processes including complete color and spin
correlations. Another big new feature was the command-line language SINDARIN for steering
all parts of the program. Also, many performance improvement have taken place in the new
release series, like OpenMP parallelization, speed gain in matrix element generation etc. Version
2.2 came out in May 2014 as a major refactoring of the program internals but keeping (almost
everywhere) the same user interface. New features are inclusive processes, reweighting, and
more interfaces for QCD environments (BLHA/HOPPET).

The following tables shows some of the major steps (physics implementation and/or technical
improvements) in the development of WHIZARD(we break the table into logical and temporal
blocks of WHIZARD development).



1.3. HISTORICAL REMARKS 17

WHIZARD 1, first line of development, ca. 1998-2010:

0.99 08/1999 Beta version
1.00 12/2000 First public version
1.10 03/2001 Libraries; PYTHIA6 interface
1.11 04/2001 PDF support; anomalous couplings
1.20 02/2002 O’Mega matrix elements; CIRCE support
1.22 03/2002 QED ISR; beam remnants, phase space improvements
1.25 05/2003 MSSM; weighted events; user-code plug-in
1.28 04/2004 Improved phase space; SLHA interface; signal catching
1.30 09/2004 Major technical overhaul
1.40 12/2004 Asymmetric beams; decays; pT in structure functions
1.50 02/2006 QCD support in O’Mega (color flows); LHA format
1.51 06/2006 Hgg, Hγγ; Spin 3/2 + 2; BSM models
1.90 11/2007 O’Mega included; LHAPDF support; Z ′; WW scattering
1.92 03/2008 LHE format; UED; parton shower beta version
1.93 04/2009 NMSSM; SLHA2 accord; improved color/flavor sums
1.95 02/2010 MLM matching; development stop in version 1
1.97 05/2011 Manual for version 1 completed.

WHIZARD 2.0-2.2: first major refactoring and early new release, ca. 2007-2015:

2.0.0 04/2010 Major refactoring: automake setup; dynamic libraries
improved speed; cascades; OpenMP; SINDARIN steering language

2.0.3 07/2010 QCD ISR+FSR shower; polarized beams
2.0.5 05/2011 Builtin PDFs; static builds; relocation scripts
2.0.6 12/2011 Anomalous top couplings; unit tests
2.1.0 06/2012 Analytic ISR+FSR parton shower; anomalous Higgs couplings
2.2.0 05/2014 Major technical refactoring: abstract object-orientation; THDM;

reweighting; LHE v2/3; BLHA; HOPPET interface; inclusive processes
2.2.1 05/2014 CJ12 PDFs; FastJet interface
2.2.2 07/2014 LHAPDF6 support; correlated LC beams; GuineaPig interface
2.2.3 11/2014 O’Mega virtual machine; lepton collider top pair threshold;

Higgs singlet extension
2.2.4 02/2015 LCIO support; progress on NLO; many technical bug fixes
2.2.7 08/2015 progress on POWHEG; fixed-order NLO events;

revalidation of ILC event chain
2.2.8 11/2015 support for quadruple precision; StdHEP included;

SM dim 6 operators supported



18 CHAPTER 1. INTRODUCTION

WHIZARD 2.3-2.8, completion of refactoring, continuous development, ca. 2015-2020:

2.3.0 07/2016 NLO: resonance mappings for FKS subtraction;
more advanced cascade syntax;
GUI (α version); UFO support (α version); ILC v1.9x-v2.x final validation

2.3.1 08/2016 Complex mass scheme
2.4.0 11/2016 Refactoring of NLO setup
2.4.1 03/2017 α version of new VEGAS implementation
2.5.0 05/2017 Full UFO support (SM-like models)
2.6.0 09/2017 MPI parallel integration and event generation; resonance histories

for showers; RECOLA support
2.6.1 11/2017 EPA/ISR transverse distributions, handling of shower resonances;

more efficient (alternative) phase space generation
2.6.2 12/2017 Hee coupling, improved resonance matching
2.6.3 02/2018 Partial NLO refactoring for quantum numbers,

unified RECOLA 1/2 interface.
2.6.4 08/2018 Gridpack functionality; Bug fixes: color flows, HSExt model, MPI setup
2.7.0 01/2019 PYTHIA8 interface, process setup refactoring, RAMBO PS option;

gfortran 5.0+ necessary
2.8.0 08/2019 (Almost) complete UFO support, general Lorentz structures, n-point vertices
2.8.1 09/2019 HepMC3, NLO QCD pp (almost) complete, b/c jet selection, photon isolation
2.8.2 10/2019 Support for OCaml ≥ 4.06.0, UFO Spin-2 support, LCIO alternative weights
2.8.3 07/2020 UFO Majorana feature complete, many e+e− related improvements
2.8.4 07/2020 Bug fix for UFO Majorana models
2.8.5 09/2020 Bug fix for polarizations in H → ττ

WHIZARD 3.0 and onwards, the NLO series:

3.0.0 04/2021 NLO QCD automation & UFO Majorana support released
3.0.1 07/2021 MPI load balancer, rescan of ILC mass production samples
3.0.2 11/2021 NLO EW for pp processes, sums/products in SINDARIN
3.0.3 04/2022 NLO EW/QCD mixed processes, NLL electron PDFs
3.1.0 12/2022 General POWHEG matching (hadron/lepton colliders)
3.1.2 03/2023 Improved numerical stability for s-channel resonances
3.1.3 10/2023 New compiler requirements: gfortran 9.1.0+, OCaml 4.08+
3.1.4 11/2023 Bug fixes for Pythia8 v8.310+, UFO interface
3.1.5 09/2024 Low-pT hadrons, resonance-aware FKS for LHC
3.1.6 03/2025 full Recola NLO support, overhaul of NLL ePDFs



1.3. HISTORICAL REMARKS 19

For a detailed overview over the historical development of the code confer the ChangeLog
file and the commit messages in our revision control system repository.



20 CHAPTER 1. INTRODUCTION

1.4 About examples in this manual
Although WHIZARD has been designed as a Monte Carlo event generator for LHC physics, several
elementary steps and aspects of its usage throughout the manual will be demonstrated with
the famous textbook example of e+e− → µ+µ−. This is the same process, the textbook by
Peskin/Schroeder [58] uses as a prime example to teach the basics of quantum field theory. We
use this example not because it is very special for WHIZARD or at the time being a relevant
physics case, but simply because it is the easiest fundamental field theoretic process without
the complications of structured beams (which can nevertheless be switched on like for ISR and
beamstrahlung!), the need for jet definitions/algorithms and flavor sums; furthermore, it easily
accomplishes a demonstration of polarized beams. After the basics of WHIZARD usage have been
explained, we move on to actual physics cases from LHC (or Tevatron).



Chapter 2

Installation

2.1 Package Structure
WHIZARD is a software package that consists of a main executable program (which is called
whizard), libraries, auxiliary executable programs, and machine-independent data files. The
whole package can be installed by the system administrator, by default, on a central location
in the file system (/usr/local with its proper subdirectories). Alternatively, it is possible to
install it in a user’s home directory, without administrator privileges, or at any other location.

A WHIZARD run requires a workspace, i.e., a writable directory where it can put generated
code and data. There are no constraints on the location of this directory, but we recommend to
use a separate directory for each WHIZARD project, or even for each WHIZARD run.

Since WHIZARD generates the matrix elements for scattering and decay processes in form of
Fortran code that is automatically compiled and dynamically linked into the running program,
it requires a working Fortran compiler not just for the installation, but also at runtime.

The previous major version WHIZARD1 did put more constraints on the setup. In a nutshell,
not just the matrix element code was compiled at runtime, but other parts of the program as
well, so the whole package was interleaved and had to be installed in user space. The workflow
was controlled by make and PERL scripts. These constraints are gone in the present version in
favor of a clean separation of installation and runtime workspace.

2.2 Prerequisites

2.2.1 No Binary Distribution

WHIZARD is currently not distributed as a binary package, nor is it available as a debian or RPM
package. This might change in the future. However, compiling from source is very simple (see
below). Since the package needs a compiler also at runtime, it would not work without some
development tools installed on the machine, anyway.

Note, however, that we support an install script, that downloads all necessary prerequisites,
and does the configuration and compilation described below automatically. This is called
the “instant WHIZARD” and is accessible through the WHIZARD webpage from version

21



22 CHAPTER 2. INSTALLATION

2.1.1 on: https://whizard.hepforge.org/versions/install/install-whizard-2.X.X.sh.
Download this shell script, make it executable by

chmod +x install-whizard-2.X.X.sh

and execute it. Note that this also involves compilation of the required Fortran compiler
which takes 1-3 hours depending on your system. Darwin operating systems (a.k.a. as Mac
OS X) have a very similar general system for all sorts of software, called MacPorts (http:
//www.macports.org). This offers to install WHIZARD as one of its software ports, and is very
similar to “instant WHIZARD” described above.

2.2.2 Tarball Distribution

This is the recommended way of obtaining WHIZARD. You may download the current stable
distribution from the WHIZARD webpage, hosted at the HepForge webpage

https://whizard.hepforge.org

The distribution is a single file, say whizard-3.1.6.tgz for version 3.1.6.
You need the additional prerequisites:

• GNU tar (or gunzip and tar) for unpacking the tarball.

• The make utility. Other standard Unix utilities (sed, grep, etc.) are usually installed by
default.

• A modern Fortran compiler (see Sec. 2.2.6 for details).

• The OCaml system. OCaml is a functional and object-oriented language. Version 4.02.3 or
newer is required to compile all components of WHIZARD. The package is freely available
either as a debian/RPM package on your system (it might be necessary to install it from
the usual repositories), or you can obtain it directly from

http://caml.inria.fr

and install it yourself. If desired, the package can be installed in user space without
administrator privileges1.

The following optional external packages are not required, but used for certain purposes. Make
sure to check whether you will need any of them, before you install WHIZARD.

• LATEX and MetaPost for data visualization. Both are part of the TEX program family. These
programs are not absolutely necessary, but WHIZARD will lack the tools for visualization
without them.

1Unfortunately, the version of the OCaml compiler from 3.12.0 broke backwards compatibility. Therefore,
versions of O’Mega/WHIZARD up to 2.0.2 only compile with older versions (3.11.x works). This has been fixed in
versions 2.0.3 and later. See also Sec. 3.4.1. WHIZARD versions up to 2.7.1 were still backwards compatible with
OCaml 3.12.0

https://whizard.hepforge.org/versions/install/install-whizard-2.X.X.sh
http://www.macports.org
http://www.macports.org
https://whizard.hepforge.org
http://caml.inria.fr


2.2. PREREQUISITES 23

• The LHAPDF structure-function library. See Sec. 2.2.7.

• The HOPPET structure-function matching tool. See Sec. 2.2.8.

• The HepMC event-format package. See Sec. 2.2.9.

• The FastJet jet-algorithm package. See Sec. 2.2.12.

• The LCIO event-format package. See Sec. 2.2.14.

Until version v2.2.7 of WHIZARD, the event-format package STDHEP used to be available as an
external package. As their distribution is frozen with the final version v5.06.01, and it used
to be notoriously difficult to compile and link STDHEP into WHIZARD, it was decided to include
STDHEP into WHIZARD. This is the case from version v2.2.8 of WHIZARD on. Linking against an
external version of STDHEP is precluded from there on. Nevertheless, we list some explanations
in Sec. 2.2.13, particularly on the need to install the libtirpc headers for the legacy support of
this event format. Once these prerequisites are met, you may unpack the package in a directory
of your choice

some-directory> tar xzf whizard-3.1.6.tgz

and proceed.2
For using external physics models that are directly supported by WHIZARD and O’Mega, the

user can use tools like SARAH or FeynRules. There installation and linking to WHIZARD will be
explained in Chap. 17. Besides this, also new models can be conveniently included via UFO files,
which will be explained as well in that chapter.

The directory will then contain a subdirectory whizard-3.1.6 where the complete source
tree is located. To update later to a new version, repeat these steps. Each new version will
unpack in a separate directory with the appropriate name.

2.2.3 SVN Repository Version

If you want to install the latest development version, you have to check it out from the WHIZARD
SVN repository. Note that since a couple of years our development is now via a Git revision
control system hosted at the University of Siegen, cf. the next subsection.

In addition to the prerequisites listed in the previous section, you need:

• The subversion package (svn), the tool for dealing with SVN repositories.

• The autoconf package, part of the autotools development system. automake is needed
with version 1.12.2 or newer.

• The noweb package, a light-weight tool for literate programming. This package is nowadays
often part of Linux distributions3. You can obtain the source code from4

2Without GNU tar, this would read gunzip -c whizard-3.1.6.tgz | tar xz -
3In Ubuntu from version 10.04 on, and in Debian since squeeze. For Mac OS X, noweb is available via the

MacPorts system.
4Please, do not use any of the binary builds from this webpage. Probably all of them are quite old and broken.



24 CHAPTER 2. INSTALLATION

https://github.com/nrnrnr/noweb

To start, go to a directory of your choice and execute

your-src-directory> svn checkout
svn+ssh://vcs@phab.hepforge.org/source/whizardsvn/trunk \;\; .

Note that for the time being after the HepForge system modernization early September 2018, a
HepForge account with a local ssl key is necessary to checkout the subversion repository. This is
enforced by the phabricator framework of HepForge, and will hopefully be relaxed in the future.
The SVN source tree will appear in the current directory. To update later, you just have to
execute

your-src-directory> svn update

within that directory.
After checking out the sources, you first have to create configure.ac by executing the

shell script build_master.sh. In order to build the configure script, the autotools package
autoreconf has to be run. On some Unix systems the RPC headers needed for the legacy support
of the STDHEP event format are provided by the TIRPC library (cf. Sec. 2.2.13). To easily check
for them, configure.ac processed by autoreconf makes use of the pkg-config tool which
needs to be installed for the developer version. So now, run5

your-src-directory> autoreconf

This will generate a configure script.

2.2.4 Public Git Repository Version

Since a couple of years, development of WHIZARD is done by means of a Git revision system,
hosted at the University of Siegen. There is a public mirror of that Git repository available at

https://gitlab.tp.nt.uni-siegen.de/whizard/public

Cloning via HTTPS brings the user to the same change as the SVN checkout from HepForge
described in the previous subsection:

git clone https://gitlab.tp.nt.uni-siegen.de/whizard/public.git

The next steps are the same as described in the previous subsection.

2.2.5 Nightly development snapshots

Nightly development snapshots that are pre-packaged in the same way as an official distribution
are available from

https://whizard.tp.nt.uni-siegen.de/

Building WHIZARD works the way as described in Sec. 2.2.2.
5At least, version 2.65 of the autoconf package is required.

https://github.com/nrnrnr/noweb
https://gitlab.tp.nt.uni-siegen.de/whizard/public
https://whizard.tp.nt.uni-siegen.de/


2.2. PREREQUISITES 25

2.2.6 Fortran Compilers

WHIZARD is written in modern Fortran. To be precise, it uses a subset of the Fortran2003
standard. At the time of this writing, this subset is supported by, at least, the following
compilers:

• gfortran (GNU, Open Source). You will need version 9.5.0 or higher 6.

• nagfor (NAG). You will need version 7.1 or higher.

• ifort (Intel). You will need version 21.10 or higher

2.2.7 LHAPDF

For computing scattering processes at hadron colliders such as the LHC, WHIZARD has a small set
of standard structure-function parameterizations built in, cf. Sec. 5.5.4. For many applications,
this will be sufficient, and you can skip this section.

However, if you need structure-function parameterizations that are not in the default set
(e.g. PDF error sets), you can use the LHAPDF structure-function library, which is an external
package. It has to be linked during WHIZARD installation. For use with WHIZARD, version 5.3.0
or higher of the library is required7. The LHAPDF package has undergone a major rewriting from
Fortran version 5 to C++ version 6. While still maintaining the interface for the LHAPDF version
5 series, from version 2.2.2 of WHIZARD on, the new release series of LHAPDF, version 6.0 and
higher, is also supported.

If LHAPDF is not yet installed on your system, you can download it from

https://lhapdf.hepforge.org

for the most recent LHAPDF version 6 and newer, or

https://lhapdf.hepforge.org/lhapdf5

for version 5 and older, and install it. The website contains comprehensive documentation on
the configuring and installation procedure. Make sure that you have downloaded and installed
not just the package, but also the data sets. Note that LHAPDF version 5 needs both a Fortran
and a C++ compiler.

During WHIZARD configuration, WHIZARD looks for the script lhapdf (which is present in
LHAPDF series 6) first, and then for lhapdf-config (which is present since LHAPDF version 4.1.0):
if those are in an executable path (or only the latter for LHAPDF version 5), the environment
variables for LHAPDF are automatically recognized by WHIZARD, as well as the version number.
This should look like this in the configure output (for LHAPDF version 6 or newer),

6Some versions 9.x.x before 9.5.0 do work, but some are known to have problematic bugs or regressions. Note
that WHIZARD versions 2.0.0 until 2.3.1 compiled with gfortran 4.7.4, but the object-oriented refactoring of the
WHIZARD code from 2.4.0 on until version 2.6.5 made a switch to gfortran 4.8.4 or higher necessary. In the same
way, since version 2.7.0, gfortran 5.1.0 or newer is needed, Before WHIZARD version 3.1.3, gfortran 7 and 8
could be used.

7Note that PDF sets which contain photons as partons are only supported with WHIZARD for LHAPDF version
5.7.1 or higher

https://lhapdf.hepforge.org
https://lhapdf.hepforge.org/lhapdf5


26 CHAPTER 2. INSTALLATION

configure: --------------------------------------------------------------
configure: --- LHAPDF ---
configure:
checking for lhapdf... /usr/local/bin/lhapdf
checking for lhapdf-config... /usr/local/bin/lhapdf-config
checking the LHAPDF version... 6.2.1
checking the major version... 6
checking the LHAPDF pdfsets path... /usr/local/share/LHAPDF
checking the standard PDF sets... all standard PDF sets installed
checking if LHAPDF is functional... yes
checking LHAPDF... yes
configure: --------------------------------------------------------------

while for LHAPDF version 5 and older it looks like this:

configure: --------------------------------------------------------------
configure: --- LHAPDF ---
configure:
checking for lhapdf... no
checking for lhapdf-config... /usr/local/bin/lhapdf-config
checking the LHAPDF version... 5.9.1
checking the major version... 5
checking the LHAPDF pdfsets path... /usr/local/share/lhapdf/PDFsets
checking the standard PDF sets... all standard PDF sets installed
checking for getxminm in -lLHAPDF... yes
checking for has_photon in -lLHAPDF... yes
configure: --------------------------------------------------------------

If you want to use a different LHAPDF (e.g. because the one installed on your system by
default is an older one), the preferred way to do so is to put the lhapdf (and/or lhapdf-config)
scripts in an executable path that is checked before the system paths, e.g. <home>/bin.

For the old series, LHAPDF version 5, a possible error could arise if LHAPDF had been compiled
with a different Fortran compiler than WHIZARD, and if the run-time library of that Fortran
compiler had not been included in the WHIZARD configure process. The output then looks like
this:

configure: --------------------------------------------------------------
configure: --- LHAPDF ---
configure:
checking for lhapdf... no
checking for lhapdf-config... /usr/local/bin/lhapdf-config
checking the LHAPDF version... 5.9.1
checking the major version... 5
checking the LHAPDF pdfsets path... /usr/local/share/lhapdf/PDFsets
checking for standard PDF sets... all standard PDF sets installed
checking for getxminm in -lLHAPDF... no
checking for has_photon in -lLHAPDF... no
configure: --------------------------------------------------------------



2.2. PREREQUISITES 27

So, the WHIZARD configure found the LHAPDF distribution, but could not link because it
could not resolve the symbols inside the library. In case of failure, for more details confer the
config.log.

If LHAPDF is installed in a non-default directory where WHIZARD would not find it, set the
environment variable LHAPDF_DIR to the correct installation path when configuring WHIZARD.

The check for the standard PDF sets are those sets that are used in the default WHIZARD
self tests in the case LHAPDF is enabled and correctly linked. If some of them are missing, then
this test will result in a failure. They are the CT10 set for LHAPDF version 6 (for version 5,
cteq61.LHpdf, cteq6ll.LHpdf, cteq5l.LHgrid, and GSG961.LHgrid are demanded). If you
want to use LHAPDF inside WHIZARD please install them such that WHIZARD could perform all its
sanity checks with them. The last check is for the has_photon flag, which tests whether photon
PDFs are available in the found LHAPDF installation.

2.2.8 HOPPET
HOPPET (not Hobbit) is a tool for the QCD DGLAP evolution of PDFs for hadron colliders. It
provides possibilities for matching algorithms for 4- and 5-flavor schemes, that are important for
precision simulations of b-parton initiated processes at hadron colliders. If you are not interested
in those features, you can skip this section. Note that this feature is not enabled by default
(unlike e.g. LHAPDF), but has to be explicitly during the configuration (see below):

your-build-directory> your-src-directory/configure --enable-hoppet

If you configure messages like the following:
configure: --------------------------------------------------------------
configure: --- HOPPET ---
configure:
checking for hoppet-config... /usr/local/bin/hoppet-config
checking for hoppetAssign in -lhoppet_v1... yes
checking the HOPPET version... 1.2.0
configure: --------------------------------------------------------------

then you know that HOPPET has been found and was correctly linked. If that is not the case,
you have to specify the location of the HOPPET library, e.g. by adding

HOPPET=<hoppet\_directory>/lib

to the configure options above. For more details, please confer the HOPPET manual.

2.2.9 HepMC

With version 2.8.1, WHIZARD supports both the "classical" version 2 as well as the newly designed
version 3 (release 2019). The configure step can successfully recognize the two different versions,
the user do not have to specify which version is installed.

HepMC is a C++ class library for handling collider scattering events. In particular, it provides
a portable format for event files. If you want to use this format, you should link WHIZARD with
HepMC, otherwise you can skip this section.

If it is not already installed on your system, you may obtain HepMC2 from this webpage:



28 CHAPTER 2. INSTALLATION

http://gitlab.cern.ch/hepmc/HepMC

and HepMC3 from this webpage:

http://gitlab.cern.ch/hepmc/HepMC3

If the HepMC library is linked with the installation, WHIZARD is able to read and write files in the
HepMC format.

Detailed information on the installation and usage can be found on the HepMC homepage.
We give here only some brief details relevant for the usage with WHIZARD: For the compilation of
HepMC one needs a C++ compiler. Then the procedure is the same as for the WHIZARD package,
namely configure HepMC:

configure --with-momentum=GEV --with-length=MM --prefix=<install dir>

Note that the particle momentum and decay length flags are mandatory, and we highly rec-
ommend to set them to the values GEV and MM, respectively. After configuration, do make, an
optional make check (which might sometimes fail for non-standard values of momentum and
length), and finally make install.

The latest version of HepMC (2.6.11) as well as the new relase series HepMC3 use cmake for
their build process. For more information, confer the HepMC webpage.

If HepMC is installed in a non-default directory where WHIZARD would not find it, set the envi-
ronment variable HEPMC_DIR for HepMC3 and HEPMC2_DIR for HepMC2 to the correct installation
path when configuring WHIZARD. Furthermore, the environment variable CXXFLAGS allows you
to set specific C/C++ preprocessor flags, e.g. non-standard include paths for header files.

A typical configuration of HepMC will look like this:
configure: --------------------------------------------------------------
configure: --- ROOT ---
configure:
checking for root-config... /usr/local/bin/root-config
checking for root... /usr/local/bin/root
checking for rootcint... /usr/local/bin/rootcint
checking for dlopen in -ldl... (cached) yes
configure: --------------------------------------------------------------
configure: --- HepMC ---
configure:
configure: looking for HepMC3 ...
checking for HepMC3-config... /usr/local/bin/HepMC3-config
checking if HepMC3 is built with ROOT interface... yes
checking if HepMC3 is functional... yes
checking for HepMC3... yes
checking the HepMC3 version... 3.02.05
configure: looking for HepMC2 ...
checking the HepMC2 version... 2.06.11
checking for GenEvent class in -lHepMC... yes
configure: --------------------------------------------------------------

As can be seen, WHIZARD will check for the ROOT environment as well as whether HepMC3 has
been built with support for the ROOT and RootTree writer classes. This is an easy option to use
WHIZARD to write out ROOT events. For more information see Sec. 13.1.

Note that from WHIZARD v3.1.5+ on, both HepMC2 and HepMC3 can be linked in parallel.

http://gitlab.cern.ch/hepmc/HepMC
http://gitlab.cern.ch/hepmc/HepMC3


2.2. PREREQUISITES 29

2.2.10 PYTHIA6

The WHIZARD package ships with the final version of the old PYTHIA6 release series, v6.427. This
is no longer maintained, but many analyses are still set up for this shower and hadronization
tool, so WHIZARD offers the possibility of backwards compatibility here.

configure: ————————————————————– configure: — SHOWERS
PYTHIA6 PYTHIA8 MPI — configure: checking whether we want to enable
PYTHIA6... yes checking for PYTHIA6... (enabled) checking for PYTHIA6 eh
settings... (disabled)

WHIZARD automatically compiles PYTHIA6, it has not to be specifically enabled by the user.
In order to properly use PYTHIA6 for high-energy electron-hadron collisions which allow much

further forward regions to be explored as old experiments like HERA, there is a special switch
to enable those specific settings for eh-colliders:

–enable-pythia6_ep

Those settings have been provided by [59].

2.2.11 PYTHIA8

PYTHIA8 is a C++ class library for handling hadronization, showering and underlying event. If
you want to use this feature (once it is fully supported in WHIZARD), you should link WHIZARD
with PYTHIA8, otherwise you can skip this section.

If it is not already installed on your system, you may obtain PYTHIA8 from

http://home.thep.lu.se/~torbjorn/Pythia.html

If the PYTHIA8 library is linked with the installation, WHIZARD will be able to use its hadronization
and showering, once this is fully supported within WHIZARD.

To link a PYTHIA8 installation to WHIZARD, you should specify the flag

–enable-pythia8

to configure. If PYTHIA8 is installed in a non-default directory where WHIZARD would not find
it, specify also

–with-pythia8=<your-pythia8-installation-path>

A successful WHIZARD configuration should produce a screen output similar to this:

configure: --------------------------------------------------------------
configure: --- SHOWERS PYTHIA6 PYTHIA8 MPI ---
configure:
[....]
checking for pythia8-config... /usr/local/bin/pythia8-config
checking if PYTHIA8 is functional... yes
checking PYTHIA8... yes
configure: WARNING: PYTHIA8 configure is for testing purposes at the moment.
configure: --------------------------------------------------------------

http://home.thep.lu.se/~torbjorn/Pythia.html


30 CHAPTER 2. INSTALLATION

2.2.12 FastJet

FastJet is a C++ class library for handling jet clustering. If you want to use this feature, you
should link WHIZARD with FastJet, otherwise you can skip this section.

If it is not already installed on your system, you may obtain FastJet from

http://fastjet.fr

If the FastJet library is linked with the installation, WHIZARD is able to call the jet algorithms
provided by this program for the purposes of applying cuts and analysis.

To link a FastJet installation to WHIZARD, you should specify the flag

–enable-fastjet

to configure. If FastJet is installed in a non-default directory where WHIZARD would not find
it, specify also

–with-fastjet=<your-fastjet-installation-path>

A successful WHIZARD configuration should produce a screen output similar to this:

configure: --------------------------------------------------------------
configure: --- FASTJET ---
configure:
checking for fastjet-config... /usr/local/bin/fastjet-config
checking if FastJet is functional... yes
checking FastJet... yes
checking the FastJet version... 3.3.4
configure: --------------------------------------------------------------

Note that when compiling on Darwin/macOS it might be necessary to set the option
–disable-auto-ptr when compiling with clang++.

2.2.13 STDHEP

STDHEP is a library for handling collider scattering events [60]. In particular, it provides a
portable format for event files. Until version 2.2.7 of WHIZARD, STDHEP that was maintained by
Fermilab, could be linked as an externally compiled library. As the STDHEP package is frozen
in its final release v5.06.1 and no longer maintained, it has from version 2.2.8 been included
WHIZARD. This eases many things, as it was notoriously difficult to compile and link STDHEP in a
way compatible with WHIZARD. Not the full package has been included, but only the libraries
for file I/O (mcfio, the library for the XDR conversion), while the various translation tools
for PYTHIA, HERWIG, etc. have been abandoned. Note that STDHEP has largely been replaced
in the hadron collider community by the HepMC format, and in the lepton collider community
by LCIO. WHIZARD might serve as a conversion tools for all these formats, but other tools also
exist, of course. Note that the mcfio framework makes use of the RPC headers. These come –
provided by SunOS/Oracle America, Inc. – together with the system headers, but on some

http://fastjet.fr


2.2. PREREQUISITES 31

Unix systems (e.g. ArchLinux, Fedora) have been replaced by the libtirpc headers . The
configure script searches for these headers so these have to be installed mandatorily.

If the STDHEP library is linked with the installation, WHIZARD is able to write files in the
STDHEP format, the corresponding configure output notifies you that STDHEP is always included:

configure: --------------------------------------------------------------
configure: --- STDHEP ---
configure:
checking for pkg-config... /opt/local/bin/pkg-config
checking pkg-config is at least version 0.9.0... yes
checking for libtirpc... no
configure: for StdHEP legacy code: using SunRPC headers and library
configure: StdHEP v5.06.01 is included internally
configure: --------------------------------------------------------------

2.2.14 LCIO

LCIO is a C++ class library for handling collider scattering events. In particular, it provides a
portable format for event files. If you want to use this format, you should link WHIZARD with
LCIO, otherwise you can skip this section.

If it is not already installed on your system, you may obtain LCIO from:

http://lcio.desy.de

If the LCIO library is linked with the installation, WHIZARD is able to read and write files in the
LCIO format.

Detailed information on the installation and usage can be found on the LCIO homepage. We
give here only some brief details relevant for the usage with WHIZARD: For the compilation of
LCIO one needs a C++ compiler. LCIO is based on cmake. For the corresponding options please
confer the LCIO manual.

A WHIZARD configuration for LCIO looks like this:

configure: --------------------------------------------------------------
configure: --- LCIO ---
configure:
checking the LCIO version... 2.12.1
checking for LCEventImpl class in -llcio... yes
configure: --------------------------------------------------------------

If LCIO is installed in a non-default directory where WHIZARD would not find it, set the
environment variable LCIO or LCIO_DIR to the correct installation path when configuring
WHIZARD. The first one is the variable exported by the setup.sh script while the second one is
analogous to the environment variables of other external packages. LCIO takes precedence over
LCIO_DIR. Furthermore, the environment variable CXXFLAGS allows you to set specific C/C++
preprocessor flags, e.g. non-standard include paths for header files.

http://lcio.desy.de


32 CHAPTER 2. INSTALLATION

2.3 Installation
Once you have unpacked the source (either the tarball or the SVN version), you are ready to
compile it. There are several options.

2.3.1 Central Installation

This is the default and recommended way, but it requires adminstrator privileges. Make sure
that all prerequisites are met (Sec. 2.2).

1. Create a fresh directory for the WHIZARD build. It is recommended to keep this separate
from the source directory.

2. Go to that directory and execute

your-build-directory> your-src-directory/configure

This will analyze your system and prepare the compilation of WHIZARD in the build
directory. Make sure to set the proper options to configure, see Sec. 2.3.3 below.

3. Call make to compile and link WHIZARD:

your-build-directory> make

4. If you want to make sure that everything works, run

your-build-directory> make check

This will take some more time.

5. Become superuser and say

your-build-directory> make install

WHIZARD should now installed in the default locations, and the executable should be available in
the standard path. Try to call whizard –help in order to check this.

2.3.2 Installation in User Space

You may lack administrator privileges on your system. In that case, you can still install and
run WHIZARD. Make sure that all prerequisites are met (Sec. 2.2).

1. Create a fresh directory for the WHIZARD build. It is recommended to keep this separate
from the source directory.

2. Reserve a directory in user space for the WHIZARD installation. It should be empty, or yet
non-existent.



2.3. INSTALLATION 33

3. Go to that directory and execute

your-build-directory> your-src-directory/configure
--prefix=your-install-directory

This will analyze your system and prepare the compilation of WHIZARD in the build
directory. Make sure to set the proper additional options to configure, see Sec. 2.3.3
below.

4. Call make to compile and link WHIZARD:

your-build-directory> make

5. If you want to make sure that everything works, run

your-build-directory> make check

This will take some more time.

6. Install:

your-build-directory> make install

WHIZARD should now be installed in the installation directory of your choice. If the installation
is not in your standard search paths, you have to account for this by extending the paths
appropriately, see Sec. 3.3.1.

2.3.3 Configure Options

The configure script accepts environment variables and flags. They can be given as arguments
to the configure program in arbitrary order. You may run configure –help for a listing; only
the last part of this long listing is specific for the WHIZARD system. Here is an example:

configure FC=gfortran FCFLAGS="-g -O3" --enable-fc-openmp

The most important options are

• FC (variable): The Fortran compiler. This is necessary if you need a compiler different
from the standard compiler on the system, e.g., if the latter is too old.

• FCFLAGS (variable): The flags to be given to the Fortran compiler. The main use is to
control the level of optimization.

• –prefix=⟨directory-name ⟩: Specify a non-default directory for installation.



34 CHAPTER 2. INSTALLATION

• –enable-fc-openmp: Enable parallel executing via OpenMP on a multi-processor/multi-
core machine. This works only if OpenMP is supported by the compiler (e.g., gfortran).
When running WHIZARD, the number of processors that are actually requested can be
controlled by the user. Without this option, WHIZARD will run in serial mode on a single
core. See Sec. 5.4.3 for further details.

• –enable-fc-mpi: Enable parallel executing via MPI on a single machine using several
cores or several machines. This works only if a MPI library is installed (e.g. OpenMPI)
and FC=mpifort CC=mpicc CXX=mpic++ is set. Without this option, WHIZARD will run in
serial mode on a single core. The flag can be combined with –enable-fc-openmp. See
Sec. 3.3.2 for further details.

• LHADPF_DIR (variable): The location of the optional LHAPDF package, if non-default.

• LOOPTOOLS_DIR (variable): The location of the optional LOOPTOOLS package, if non-default.

• OPENLOOPS_DIR (variable): The location of the optional OpenLoops package, if non-default.

• GOSAM_DIR (variable): The location of the optional Gosam package, if non-default.

• HOPPET_DIR (variable): The location of the optional HOPPET package, if non-default.

• HEPMC_DIR (variable): The location of the optional HepMC package, if non-default.

• LCIO/LCIO_DIR (variable): The location of the optional LCIO package, if non-default.

Other flags that might help to work around possible problems are the flags for the C and
C++ compilers as well as the Fortran77 compiler, or the linker flags and additional libraries for
the linking process.

• CC (variable): C compiler command

• F77 (variable): Fortran77 compiler command

• CXX (variable): C++ compiler command

• CPP (variable): C preprocessor

• CXXCPP (variable): C++ preprocessor

• CFLAGS (variable): C compiler flags

• FFLAGS (variable): Fortran77 compiler flags

• CXXFLAGS (variable): C++ compiler flags

• LIBS (variable): libraries to be passed to the linker as -llibrary

• LDFLAGS (variable): non-standard linker flags

For other options (like e.g. –with-precision=... etc.) please see the configure –help
option.



2.3. INSTALLATION 35

2.3.4 Details on the Configure Process

The configure process checks for the build and host system type; only if this is not detected
automatically, the user would have to specify this by himself. After that system-dependent files
are searched for, LaTeX and Acroread for documentation and plots, the Fortran compiler is
checked, and finally the OCaml compiler. The next step is the checks for external programs like
LHAPDF and HepMC. Finally, all the Makefiles are being built.

The compilation is done by invoking make and finally make install. You could also do a
make check in order to test whether the compilation has produced sane files on your system.
This is highly recommended.

Be aware that there be problems for the installation if the install path or a user’s home
directory is part of an AFS file system. Several times problems were encountered connected
with conflicts with permissions inside the OS permission environment variables and the AFS
permission flags which triggered errors during the make install procedure. Also please avoid
using make -j options of parallel execution of Makefile directives as AFS filesystems might
not be fast enough to cope with this.

For specific problems that might have been encountered in rare circumstances for some
FORTRAN compilers confer the webpage https://whizard.hepforge.org/compilers.html.

Note that the PYTHIA bundle for showering and hadronization (and some other external
legacy code pieces) do still contain good old Fortran77 code. These parts should better be
compiled with the very same Fortran2003 compiler as the WHIZARD core. There is, however,
one subtlety: when the configure flag FC gets a full system path as argument, libtool is not
able to recognize this as a valid (GNU) Fortran77 compiler. It then searches automatically for
binaries like f77, g77 etc. or a standard system compiler. This might result in a compilation
failure of the Fortran77 code. A viable solution is to define an executable link and use this
(not the full path!) as FC flag.

It is possible to compile WHIZARD without the OCaml parts of O’Mega, namely by using the
–disable-omega option of the configure. This will result in a built of WHIZARD with the O’Mega
Fortran library, but without the binaries for the matrix element generation. All selftests (cf.
2.3.7) requiring O’Mega matrix elements are thereby switched off. Note that you can install such
a built (e.g. on a batch system without OCaml installation), but the try to build a distribution
(all make distxxx targets) will fail.

2.3.5 Building on Darwin/macOS

The easiest way to build WHIZARD on Darwin/macOS is to install the complete GNU compiler
suite (gcc/g++/gfortran). This can be done with one of the code repositories like MacPorts,
HomeBrew or Fink. In order to include ROOT which natively should be built using the intrinsic
clang/clang++ for the graphics support, there is also the possibility to build external tools
like HepMC3, PYTHIA8, FastJet, and LCIO with clang++, and set in the configure option for
WHIZARD C and C++ compiler accordingly:

../configure CC=clang CXX=clang++ [...]

https://whizard.hepforge.org/compilers.html


36 CHAPTER 2. INSTALLATION

Note that FastJet might need to be configured with the –disable-auto-ptr option when
compiling with clang++ and strict C++17 standard.

Since Darwin v10.11, the security measures of the new Darwin systems do not allow e.g.
environment variables passed to subprocesses. This does not change anything for the installed
WHIZARD, but the testsuite (make check) will not work before make install has been executed.
make distcheck will not work on El Capitan. There is also the option to disable the System
Integrity Protocol (SIP) of modern OSX by booting in Recovery Mode, open a terminal and
type csrutil disable. However, we do not recommend to do so.

2.3.6 Building on Windows

For Windows, from Windows 10 onwards, there is the possibility to install and use an underlying
Linux operating system, e.g. Ubuntu. Installation and usage of WHIZARD works then the same
way as described above.

2.3.7 WHIZARD self tests/checks

WHIZARD has a number of self-consistency checks and tests which assure that most of its features
are running in the intended way. The standard procedure to invoke these self tests is to perform
a make check from the build directory. If src and build directories are the same, all relevant
files for these self-tests reside in the tests subdirectory of the main WHIZARD directory. In that
case, one could in principle just call the scripts individually from the command line. Note, that
if src and build directory are different as recommended, then the input files will have been
installed in prefix/share/whizard/test, while the corresponding test shell scripts remain in
the srcdir/test directory. As the main shell script run_whizard.sh has been built in the
build directory, one now has to copy the files over by and set the correct paths by hand, if
one wishes to run the test scripts individually. make check still correctly performs all WHIZARD
self-consistency tests. The tests itself fall into two categories, unit self test that individually test
the modular structure of WHIZARD, and tests that are run by SINDARIN files. In future releases
of WHIZARD, these two categories of tests will be better separated than in the 2.2.1 release.

There are additional, quite extensiv numerical tests for validation and backwards compatibility
checks for SM and MSSM processes. As a standard, these extended self tests are not invoked.
However, they can be enabled by executing the corresponding specific make check operations
in the subdirectories for these extensive tests.

As the new WHIZARD testsuite does very thorough and scrupulous tests of the whole WHIZARD
structure, it is always possible that some tests are failing due to some weird circumstances
or because of numerical fluctuations. In such a case do not panic, contact the developers
(whizard@desy.de) and provide them with the logfiles of the failing test as well as the setup of
your configuration.



Chapter 3

Working with WHIZARD

WHIZARD can run as a stand-alone program. You (the user) can steer WHIZARD either interactively
or by a script file. We will first describe the latter method, since it will be the most common
way to interact with the WHIZARD system.

3.1 Hello World
The legacy version series 1 of the program relied on a bunch of input files that the user had to
provide in some obfuscated format. This approach is sufficient for straightforward applications.
However, once you get experienced with a program, you start thinking about uses that the
program’s authors did not foresee. In case of a Monte Carlo package, typical abuses are parameter
scans, complex patterns of cuts and reweighting factors, or data analysis without recourse to
external packages. This requires more flexibility.

Instead of transferring control over data input to some generic scripting language like PERL or
Python (or even C++), which come with their own peculiarities and learning curves, we decided
to unify data input and scripting in a dedicated steering language that is particularly adapted
to the needs of Monte-Carlo integration, simulation, and simple analysis of the results. Thus we
discovered what everybody knew anyway: that W(h)izards communicate in SINDARIN, Scripting
INtegration, Data Analysis, Results display and INterfaces.

SINDARIN is a DSL – a domain-specific scripting language – that is designed for the single
purpose of steering and talking to WHIZARD. Now since SINDARIN is a programming language,
we honor the old tradition of starting with the famous Hello World program. In SINDARIN this
reads simply

printf "Hello World!"

Open your favorite editor, type this text, and save it into a file named hello.sin.
Now we assume that you – or your kind system administrator – has installed WHIZARD in

your executable path. Then you should open a command shell and execute (we will come to the
meaning of the -r option later.)

/home/user$ whizard -r hello.sin

37



38 CHAPTER 3. WORKING WITH WHIZARD

| Writing log to ’whizard.log’
|=============================================================================|
| |
| WW WW WW WW WW WWWWWW WW WWWWW WWWW |
| WW WW WW WW WW WW WW WWWW WW WW WW WW |
| WW WW WW WW WWWWWWW WW WW WW WW WWWWW WW WW |
| WWWW WWWW WW WW WW WW WWWWWWWW WW WW WW WW |
| WW WW WW WW WW WWWWWW WW WW WW WW WWWW |
| |
| |
| W |
| sW |
| WW |
| sWW |
| WWW |
| wWWW |
| wWWWW |
| WW WW |
| WW WW |
| wWW WW |
| wWW WW |
| WW WW |
| WW WW |
| WW WW |
| WW WW |
| WW WW |
| WW WW |
| wwwwww WW WW |
| WWWWWww WW WW |
| WWWWWwwwww WW WW |
| wWWWwwwwwWW WW |
| wWWWWWWWWWWwWWW WW |
| wWWWWW wW WWWWWWW |
| WWWW wW WW wWWWWWWWwww |
| WWWW wWWWWWWWwwww |
| WWWW WWWW WWw |
| WWWWww WWWW |
| WWWwwww WWWW |
| wWWWWwww wWWWWW |
| WwwwwwwwwWWW |
| |
| |
| |
| by: Wolfgang Kilian, Thorsten Ohl, Juergen Reuter |
| with contributions from Christian Speckner |
| Contact: <whizard@desy.de> |
| |
| if you use WHIZARD please cite: |
| W. Kilian, T. Ohl, J. Reuter, Eur.Phys.J.C71 (2011) 1742 |
| [arXiv: 0708.4233 [hep-ph]] |
| M. Moretti, T. Ohl, J. Reuter, arXiv: hep-ph/0102195 |
| |
|=============================================================================|
| WHIZARD 3.1.6
|=============================================================================|
| Reading model file ’/usr/local/share/whizard/models/SM.mdl’
| Preloaded model: SM
| Process library ’default_lib’: initialized
| Preloaded library: default_lib
| Reading commands from file ’hello.sin’
Hello World!
| WHIZARD run finished.
|=============================================================================|

Figure 3.1: Output of the "Hello world!" SINDARIN script.



3.2. A SIMPLE CALCULATION 39

and if everything works well, you get the output (the complete output including the WHIZARD
banner is shown in Fig. 3.1)

| Writing log to ’whizard.log’

[... here a banner is displayed]

|=============================================================================|
| WHIZARD 3.1.6
|=============================================================================|
| Reading model file ’/usr/local/share/whizard/models/SM.mdl’
| Preloaded model: SM
! Process library ’default_lib’: initialized
! Preloaded library: default_lib
| Reading commands from file ’hello.sin’
Hello World!
| WHIZARD run finished.
|=============================================================================|

If this has just worked for you, you can be confident that you have a working WHIZARD installation,
and you have been able to successfully run the program.

3.2 A Simple Calculation

You may object that WHIZARD is not exactly designed for printing out plain text. So let us
demonstrate a more useful example.

Looking at the Hello World output, we first observe that the program writes a log file named
(by default) whizard.log. This file receives all screen output, except for the output of external
programs that are called by WHIZARD. You don’t have to cache WHIZARD’s screen output yourself.

After the welcome banner, WHIZARD tells you that it reads a physics model, and that it
initializes and preloads a process library. The process library is initially empty. It is ready for
receiving definitions of elementary high-energy physics processes (scattering or decay) that you
provide. The processes are set in the context of a definite model of high-energy physics. By
default this is the Standard Model, dubbed SM.

Here is the SINDARIN code for defining a SM physics process, computing its cross section,
and generating a simulated event sample in Les Houches event format:

process ee = e1, E1 => e2, E2
sqrts = 360 GeV
n_events = 10
sample_format = lhef
simulate (ee)

As before, you save this text in a file (named, e.g., ee.sin) which is run by

/home/user$ whizard -r ee.sin



40 CHAPTER 3. WORKING WITH WHIZARD

(We will come to the meaning of the -r option later.) This produces a lot of output which looks
similar to this:

| Writing log to ’whizard.log’
[... banner ...]
|=============================================================================|
| WHIZARD 3.1.6
|=============================================================================|
| Reading model file ’/usr/local/share/whizard/models/SM.mdl’
| Preloaded model: SM
| Process library ’default_lib’: initialized
| Preloaded library: default_lib
| Reading commands from file ’ee.sin’
| Process library ’default_lib’: recorded process ’ee’
sqrts = 3.600000000000E+02
n_events = 10

| Starting simulation for process ’ee’
| Simulate: process ’ee’ needs integration
| Integrate: current process library needs compilation
| Process library ’default_lib’: compiling ...
| Process library ’default_lib’: writing makefile
| Process library ’default_lib’: removing old files
rm -f default_lib.la
rm -f default_lib.lo default_lib_driver.mod opr_ee_i1.mod ee_i1.lo
rm -f ee_i1.f90
| Process library ’default_lib’: writing driver
| Process library ’default_lib’: creating source code
rm -f ee_i1.f90
rm -f opr_ee_i1.mod
rm -f ee_i1.lo
/usr/local/bin/omega_SM.opt -o ee_i1.f90 -target:whizard
-target:parameter_module parameters_SM -target:module opr_ee_i1
-target:md5sum ’70DB728462039A6DC1564328E2F3C3A5’ -fusion:progress
-scatter ’e- e+ -> mu- mu+’

[1/1] e- e+ -> mu- mu+ ... allowed. [time: 0.00 secs, total: 0.00 secs, remaining: 0.00 secs]
all processes done. [total time: 0.00 secs]
SUMMARY: 6 fusions, 2 propagators, 2 diagrams
| Process library ’default_lib’: compiling sources

[.....]

| Process library ’default_lib’: loading
| Process library ’default_lib’: ... success.
| Integrate: compilation done
| RNG: Initializing TAO random-number generator
| RNG: Setting seed for random-number generator to 9616
| Initializing integration for process ee:
| ------------------------------------------------------------------------
| Process [scattering]: ’ee’
| Library name = ’default_lib’



3.2. A SIMPLE CALCULATION 41

| Process index = 1
| Process components:
| 1: ’ee_i1’: e-, e+ => mu-, mu+ [omega]
| ------------------------------------------------------------------------
| Beam structure: [any particles]
| Beam data (collision):
| e- (mass = 5.1099700E-04 GeV)
| e+ (mass = 5.1099700E-04 GeV)
| sqrts = 3.600000000000E+02 GeV
| Phase space: generating configuration ...
| Phase space: ... success.
| Phase space: writing configuration file ’ee_i1.phs’
| Phase space: 2 channels, 2 dimensions
| Phase space: found 2 channels, collected in 2 groves.
| Phase space: Using 2 equivalences between channels.
| Phase space: wood
Warning: No cuts have been defined.

| Starting integration for process ’ee’
| Integrate: iterations not specified, using default
| Integrate: iterations = 3:1000:"gw", 3:10000:""
| Integrator: 2 chains, 2 channels, 2 dimensions
| Integrator: Using VAMP channel equivalences
| Integrator: 1000 initial calls, 20 bins, stratified = T
| Integrator: VAMP
|=============================================================================|
| It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] |
|=============================================================================|

1 784 8.3282892E+02 1.68E+00 0.20 0.06* 39.99
2 784 8.3118961E+02 1.23E+00 0.15 0.04* 76.34
3 784 8.3278951E+02 1.36E+00 0.16 0.05 54.45

|-----------------------------------------------------------------------------|
3 2352 8.3211789E+02 8.01E-01 0.10 0.05 54.45 0.50 3

|-----------------------------------------------------------------------------|
4 9936 8.3331732E+02 1.22E-01 0.01 0.01* 54.51
5 9936 8.3341072E+02 1.24E-01 0.01 0.01 54.52
6 9936 8.3331151E+02 1.23E-01 0.01 0.01* 54.51

|-----------------------------------------------------------------------------|
6 29808 8.3334611E+02 7.10E-02 0.01 0.01 54.51 0.20 3

|=============================================================================|

[.....]
| Simulate: integration done
| Simulate: using integration grids from file ’ee_m1.vg’
| RNG: Initializing TAO random-number generator
| RNG: Setting seed for random-number generator to 9617
| Simulation: requested number of events = 10
| corr. to luminosity [fb-1] = 1.2000E-02
| Events: writing to LHEF file ’ee.lhe’
| Events: writing to raw file ’ee.evx’



42 CHAPTER 3. WORKING WITH WHIZARD

| Events: generating 10 unweighted, unpolarized events ...
| Events: event normalization mode ’1’
| ... event sample complete.
| Events: closing LHEF file ’ee.lhe’
| Events: closing raw file ’ee.evx’
| There were no errors and 1 warning(s).
| WHIZARD run finished.
|=============================================================================|

The final result is the desired event file, ee.lhe.
Let us discuss the output quickly to walk you through the procedures of a WHIZARD run: after

the logfile message and the banner, the reading of the physics model and the initialization of a
process library, the recorded process with tag ’ee’ is recorded. Next, user-defined parameters
like the center-of-mass energy and the number of demanded (unweighted) events are displayed.
As a next step, WHIZARD is starting the simulation of the process with tag ’ee’. It recognizes
that there has not yet been an integration over phase space (done by an optional integrate
command, cf. Sec. 5.7.1), and consequently starts the integration. It then acknowledges, that
the process code for the process ’ee’ needs to be compiled first (done by an optional compile
command, cf. Sec. 5.4.5). So, WHIZARD compiles the process library, writes the makefile for its
steering, and as a safeguard against garbage removes possibly existing files. Then, the source
code for the library and its processes are generated: for the process code, the default method –
the matrix element generator O’Mega is called (cf. Sec. 9.3); and the sources are being compiled.

The next steps are the loading of the process library, and WHIZARD reports the completion
of the integration. For the Monte-Carlo integration, a random number generator is initialized.
Here, it is the default generator, TAO (for more details, cf. Sec. 6.2, while the random seed is
set to a value initialized by the system clock, as no seed has been provided in the SINDARIN
input file.

Now, the integration for the process ’ee’ is initialized, and information about the process
(its name, the name of its process library, its index inside the library, and the process components
out of which it consists, cf. Sec. 5.4.4) are displayed. Then, the beam structure is shown, which
in that case are symmetric partonic electron and positron beams with the center-of-mass energy
provided by the user (360 GeV). The next step is the generation of the phase space, for which
the default phase space method wood (for more details cf. Sec. 8.3) is selected. The integration
is performed, and the result with absolute and relative error, unweighting efficiency, accuracy,
χ2 quality is shown.

The final step is the event generation (cf. Chap. 11). The integration grids are now being used,
again the random number generator is initialized. Finally, event generation of ten unweighted
events starts (WHIZARD let us know to which integrated luminosity that would correspond), and
events are written both in an internal (binary) event format as well as in the demanded LHE
format. This concludes the WHIZARD run.

After a more comprehensive introduction into the SINDARIN steering language in the next
chapter, Chap. 4, we will discuss all the details of the different steps of this introductory example.



3.3. WHIZARD IN A COMPUTING ENVIRONMENT 43

3.3 WHIZARD in a Computing Environment

3.3.1 Working on a Single Computer

After installation, WHIZARD is ready for use. There is a slight complication if WHIZARD has been
installed in a location that is not in your standard search paths.

In that case, to successfully run WHIZARD, you may either

• manually add your-install-directory/bin to your execution PATH
and your-install-directory/lib to your library search path (LD_LIBRARY_PATH),
or

• whenever you start a project, execute

your-workspace> . your-install-directory/bin/whizard-setup.sh

which will enable the paths in your current environment, or

• source whizard-setup.sh script in your shell startup file.

In either case, try to call whizard –help in order to check whether this is done correctly.
For a new WHIZARD project, you should set up a new (empty) directory. Depending on the

complexity of your task, you may want to set up separate directories for each subproblem that
you want to tackle, or even for each separate run. The location of the directories is arbitrary.

To run, WHIZARD needs only a single input file, a SINDARIN command script with extension
.sin (by convention). Running WHIZARD is as simple as

your-workspace> whizard your-input.sin

No other configuration files are needed. The total number of auxiliary and output files generated
in a single run may get quite large, however, and they may clutter your workspace. This is the
reason behind keeping subdirectories on a per-run basis.

Basic usage of WHIZARD is explained in Chapter 3, for more details, consult the following
chapters. In Sec. 14.1 we give an account of the command-line options that WHIZARD accepts.

3.3.2 Working Parallel on Several Computers

For integration (only VAMP2), WHIZARD supports parallel execution via MPI by communicating
between parallel tasks on a single machine or distributed over several machines.

During integration the calculation of channels is distributed along several workers where
a master worker collects the results and adapts weights and grids. In wortwhile cases (e.g.
high number of calls in one channel), the calculation of a single grid is additionally dis-
tributed. For that, we provide two different parallelization methods, which can be steered by
$vamp_parallel_method, implementing the dualistic parallelization approach between channels
and single grids. The simple method provides a locally-fixed assignment approach without
the need of intermediate communication between the MPI workers. Whereas the load method
provides a global queue with a master worker acting as a (communication) governor, therefore,



44 CHAPTER 3. WORKING WITH WHIZARD

excluding itself as potential "computing" worker. The governor receives and distributes work
requests from all other workers, and, finally, receives their results. The methods differ from each
other only in the way how they distribute excessive workers, in the case, where there are more
workers than channels. Here, the load method implements a balancing condition based on the
channel weights in contrast to the simplistic ansatz.

Both methods use a full non-blocking communication approach in order to collect the
integration results of each channel after each iteration. After finishing the computation of a
channel, the associated slave worker spawns a callback mechansim leading to the initialization of
a sending process to the master. The master worker organizes, depending on the parallelization
method, the correct closing of the sending process for a given channel by a matching receiving
process. The callback approach allows us to concurrently communicate and produce integration
results providing an increased parallelization portion, i.e. better HPC performance and utilization.

The load method comes with a drawback that it does not work with less than three workers.
Hence, we recommend (e.g. for debugging purpose of the parallel setup) to use the simple
method, and to use the load method only for direct production runs.

In order to use these advancements, WHIZARD requires an installed MPI-3.1 capable library
(e.g. OpenMPI) and configuration and compilation with the appropriate flags, cf. Sec. 2.3.

MPI support is only active when the integration method is set to VAMP2. Additionally, to
preserve the numerical properties of a single task run, it is recommended to use the RNGstream
as random number generator.

$integration_method = ’vamp2’
$rng_method = ’rng_stream’
$vamp_parallel_method = ’simple’ !! or ’load’

WHIZARD has then to be called by mpirun

your-workspace> mpirun -f hostfile -np 4 --output-filename mpi.log whizard your-input.sin

where the number of parallel tasks can be set by -np and a hostfile can be given by –hostfile.
It is recommended to use –output-filename which lets mpirun redirect the standard (error)
output to a file, for each worker separately.

Notes on Parallelization with MPI

The parallelization of WHIZARD requires that all instances of the parallel run be able to write
and read all files produced by WHIZARD in a network file system as the current implementation
does not handle parallel I/O. Usually, high-performance clusters have support for at least one
network filesystem.

Furthermore, not all functions of WHIZARD are currently supported or are only supported in
a limited way in parallel mode. Currently the ?rebuild_<flags> for the phase space and the
matrix element library are not yet available, as well as the calculation of matrix elements with
resonance histories.

Some features that have been missing in the very first implementation of the parallelized
integration have now been made available, like the support of run IDs and the parallelization of
the event generation.



3.3. WHIZARD IN A COMPUTING ENVIRONMENT 45

A final remark on the stability of the numerical results in terms of the number of workers
involved. Under certain circumstances, results between different numbers of workers but using
otherwise an identical SINDARIN file can lead to slightly numerically different (but statistically
compatible) results for integration or event generation This is related to the execution of the
computational operations in MPI, which we use to reduce results from all workers. If the order
of the numbers in the arithmetical operations changes, for example, by different setups of the
workers, then the numerical results change slightly, which in turn is amplified under the influence
of the adaptation. Nevertheless, the results are all statistically consistent.

3.3.3 Stopping and Resuming WHIZARD Jobs

On a Unix-like system, it is possible to prematurely stop running jobs by a kill(1) command,
or by entering Ctrl-C on the terminal.

If the system supports this, WHIZARD traps these signals. It also traps some signals that
a batch operating system might issue, e.g., for exceeding a predefined execution time limit.
WHIZARD tries to complete the calculation of the current event and gracefully close open files.
Then, the program terminates with a message and a nonzero return code. Usually, this should
not take more than a fraction of a second.

If, for any reason, the program does not respond to an interrupt, it is always possible to kill
it by kill -9. A convenient method, on a terminal, would be to suspend it first by Ctrl-Z
and then to kill the suspended process.

The program is usually able to recover after being stopped. Simply run the job again from
start, with the same input, all output files generated so far left untouched. The results obtained
so far will be quickly recovered or gathered from files written in the previous run, and the
actual time-consuming calculation is resumed near the point where it was interrupted.1 If the
interruption happened during an integration step, it is resumed after the last complete iteration.
If it was during event generation, the previous events are taken from file and event generation is
continued.

The same mechanism allows for efficiently redoing a calculation with similar, somewhat
modified input. For instance, you might want to add a further observable to event analysis, or
write the events in a different format. The time for rerunning the program is determined just
by the time it takes to read the existing integration or event files, and the additional calculation
is done on the recovered information.

By managing various checksums on its input and output files, WHIZARD detects changes
that affect further calculations, so it does a real recalculation only where it is actually needed.
This applies to all steps that are potentially time-consuming: matrix-element code generation,
compilation, phase-space setup, integration, and event generation. If desired, you can set
command-line options or SINDARIN parameters that explicitly discard previously generated
information.

1This holds for simple workflow. In case of scans and repeated integrations of the same process, there may be
name clashes on the written files which prevent resuming. A future WHIZARD version will address this problem.



46 CHAPTER 3. WORKING WITH WHIZARD

3.3.4 Files and Directories: default and customization

WHIZARD jobs take a small set of files as input. In many cases, this is just a single SINDARIN
script provided by the user. When running, WHIZARD can produce a set of auxiliary and output
files:

1. Job. Files pertaining to the WHIZARD job as a whole. This is the default log file
whizard.log.

2. Process compilation. Files that originate from generating and compiling process code.
If the default O’Mega generator is used, these files include Fortran source code as well
as compiled libraries that are dynamically linked to the running executable. The file
names are derived from either the process-library name or the individual process names,
as defined in the SINDARIN input. The default library name is default_lib.

3. Integration. Files that are created by integration, i.e., when calculating the total cross
section for a scattering process using the Monte-Carlo algorithm. The file names are
derived from the process name.

4. Simulation. Files that are created during simulation, i.e., generating event samples for a
process or a set of processes. By default, the file names are derived from the name of the
first process. Event-file formats are distinguished by appropriate file name extensions.

5. Result Analysis. Files that are created by the internal analysis tools and written
by the command write_analysis (or compile_analysis). The default base name is
whizard_analysis.

A complex workflow with several processes, parameter sets, or runs, can easily lead to in
file-name clashes or a messy working directory. Furthermore, running a batch job on a dedicated
computing environment often requires transferring data from a user directory to the server and
back.

Custom directory and file names can be used to organize things and facilitate dealing with
the environment, along with the available batch-system tools for coordinating file transfer.

1. Job.

• The -L option on the command line defines a custom base name for the log file.

• The -J option on the command line defines a job ID. For instance, this may be set
to the job ID assigned by the batch system. Within the SINDARIN script, the job ID
is available as the string variable $job_id and can be used for constructing custom
job-specific file and directory names, as described below.

2. Process compilation.

• The user can require the program to put all files created during the compilation step
including the library to be linked, in a subdirectory of the working directory. To
enable this, set the string variable $compile_workspace within the SINDARIN script.



3.3. WHIZARD IN A COMPUTING ENVIRONMENT 47

3. Integration.

• The value of the string variable $run_id, if set, is appended to the base name of
all files created by integration, separated by dots. If the SINDARIN script scans over
parameters, varying the run ID avoids repeatedly overwriting files with identical
name during the scan.

• The user can require the program to put the important files created during the
integration step – the phase-space configuration file and the VAMP grid files – in
a subdirectory of the working directory. To enable this, set the string variable
$integrate_workspace within the SINDARIN script. ($compile_workspace and
$integrate_workspace may be set to the same value.)

Log files produced during the integration step are put in the working directory.

4. Simulation.

• The value of the string variable $run_id, if set, identifies the specific integration run
that is used for the event sample. It is also inserted into default event-sample file
names.

• The variable $sample, if set, defines an arbitrary base name for the files related to
the event sample.

Files resulting from simulation are put in the working directory.

5. Result Analysis.

• The variable $out_file, if set, defines an arbitrary base name for the analysis data
and auxiliary files.

Files resulting from result analysis are put in the working directory.

3.3.5 Batch jobs on a different machine

It is possible to separate the tasks of process-code compilation, integration, and simulation, and
execute them on different machines. To make use of this feature, the local and remote machines
including all installed libraries that are relevant for WHIZARD, must be binary-compatible.

1. Process-code compilation may be done once on a local machine, while the time-consuming
tasks of integration and event generation for specific parameter sets are delegated to a
remote machine, e.g., a batch cluster. To enable this, prepare a SINDARIN script that just
produces process code (i.e., terminates with a compile command) for the local machine.
You may define $compile_workspace such that all generated code conveniently ends up
in a single subdirectory.

To start the batch job, transfer the workspace subdirectory to the remote machine and start
WHIZARD there. The SINDARIN script on the remote machine must include the local script



48 CHAPTER 3. WORKING WITH WHIZARD

unchanged in all parts that are relevant for process definition. The program will recognize
the contents of the workspace, skip compilation and instead link the process library
immediately. To proceed further, the script should define the run-specific parameters and
contain the appropriate commands for integration and simulation.

2. Analogously, you may execute both process-code compilation and integration locally,
but generate event samples on a remote machine. To this end, prepare a SINDARIN
script that produces process code and computes integrals (i.e., terminates with an
integrate command) for the local machine. You may define $compile_workspace and
$integrate_workspace (which may coincide) such that all generated code, phase-space
and integration grid data conveniently end up in subdirectories.

To start the batch job, transfer the workspace(s) to the remote machine and start WHIZARD
there. The SINDARIN script on the remote machine must include the local script unchanged
in all parts that are relevant for process definition and integration. The program will
recognize the contents of the workspace, skip compilation and integration and instead load
the process library and integration results immediately. To proceed further, the script
should define the sample-specific parameters and contain the appropriate commands for
simulation.

To simplify transferring whole directories, WHIZARD supports the –pack and –unpack options.
You may specify any number of these options for a WHIZARD run. (The feature relies on the
GNU version of the tar utility.)

For instance,
whizard script1.sin --pack my_ws

runs WHIZARD with the SINDARIN script script1.sin as input, where within the script you have
defined

$compile_workspace = "my_ws"

as the target directory for process-compilation files. After completion, the program will tar and
gzip the target directory as my_ws.tgz. You should copy this file to the remote machine as one
of the job’s input files.

On the remote machine, you can then run the program with
whizard script2.sin --unpack my_ws.tgz

where script2.sin should include script1.sin, and add integration or simulation commands.
The contents of ws.tgz will thus be unpacked and reused on the remote machine, instead of
generating new process code.

3.3.6 Static Linkage

In its default running mode, WHIZARD compiles process-specific matrix element code on the fly
and dynamically links the resulting library. On the computing server, this requires availability
of the appropriate Fortran compiler, as well as the OCaml compiler suite, and the dynamical
linking feature.



3.3. WHIZARD IN A COMPUTING ENVIRONMENT 49

Since this may be unavailable or undesired, there is a possibility to distribute WHIZARD as
a statically linked executable that contains a pre-compiled library of processes. This removes
the need for the Fortran compiler, the OCaml system, and extra dynamic linking. Any external
libraries that are accessed (the Fortran runtime environment, and possibly some dynamically
linked external libraries and/or the C++ runtime library, must still be available on the target
system, binary-compatible. Otherwise, there is no need for transferring the complete WHIZARD
installation or process-code compilation data.

Generating, compiling and linking matrix element code is done in advance on a machine that
can access the required tools and produces compatible libraries. This procedure is accomplished
by SINDARIN commands, explained below in Sec. 5.4.7.



50 CHAPTER 3. WORKING WITH WHIZARD

3.4 Troubleshooting
In this section, we list known issues or problems and give advice on what can be done in case
something does not work as intended.

3.4.1 Possible (uncommon) build problems

OCaml versions and O’Mega builds

For the matrix element generator O’Mega of WHIZARD the functional programming language
OCaml is used. Unfortunately, the versions of the OCaml compiler from 3.12.0 on broke backwards
compatibility. Therefore, versions of O’Mega/WHIZARD up to v2.0.2 only compile with older
versions (3.04 to 3.11 works). This has been fixed in all WHIZARD versions from 2.0.3 on.

Identical Build and Source directories

There is a problem that only occurred with version 2.0.0 and has been corected for all follow-up
versions. It can only appear if you compile the WHIZARD sources in the source directory. Then
an error like this may occur:

...
libtool: compile: gfortran -I../misc -I../vamp -g -O2 -c processes.f90 -fPIC -o

.libs/processes.o
libtool: compile: gfortran -I../misc -I../vamp -g -O2 -c processes.f90 -o

processes.o >/dev/null 2>&1
make[2]: *** No rule to make target ‘limits.lo’, needed by ‘decays.lo’. Stop.
...
make: *** [all-recursive] Error 1

In this case, please unpack a fresh copy of WHIZARD and configure it in a separate directory (not
necessarily a subdirectory). Then the compilation will go through:

$ zcat whizard-3.0.3.tar.gz | tar xf -
$ cd whizard-3.0.3
$ mkdir _build
$ cd _build
$ ../configure FC=gfortran
$ make

The developers use this setup to be able to test different compilers. Therefore building in the
same directory is not as thoroughly tested. This behavior has been patched from version 2.0.1
on. But note that in general it is always adviced to keep build and source directory apart from
each other.

3.4.2 What happens if WHIZARD throws an error?

Particle name special characters in process declarations

Trying to use a process declaration like



3.4. TROUBLESHOOTING 51

process foo = e-, e+ => mu-, mu+

will lead to a SINDARIN syntax error:

process foo = e-, e+ => mu-, mu+
^^

| Expected syntax: SEQUENCE <cmd_process> = process <process_id> ’=’ <process_p
| Found token: KEYWORD: ’-’
******************************************************************************
******************************************************************************
*** FATAL ERROR: Syntax error (at or before the location indicated above)
******************************************************************************
******************************************************************************

WHIZARD tries to interpret the minus and plus signs as operators (KEYWORD: ’-’), so you have
to quote the particle names: process foo = "e-", "e+" => "mu-", "mu+".

Missing collider energy

This happens if you forgot to set the collider energy in the integration of a scattering process:

******************************************************************************
******************************************************************************
*** FATAL ERROR: Colliding beams: sqrts is zero (please set sqrts)
******************************************************************************
******************************************************************************

This will solve your problem:

sqrts = <your_energy>

Missing process declaration

If you try to integrate or simulate a process that has not declared before (and is also not available
in a library that might be loaded), WHIZARD will complain:

******************************************************************************
******************************************************************************
*** FATAL ERROR: Process library doesn’t contain process ’f00’
******************************************************************************
******************************************************************************

Note that this could sometimes be a simple typo, e.g. in that case an integrate (f00) instead
of integrate (foo)



52 CHAPTER 3. WORKING WITH WHIZARD

Ambiguous initial state without beam declaration

When the user declares a process with a flavor sum in the initial state, e.g.

process qqaa = u:d, U:D => A, A
sqrts = <your_energy>
integrate (qqaa)

then a fatal error will be issued:
******************************************************************************
******************************************************************************
*** FATAL ERROR: Setting up process ’qqaa’:
*** --------------------------------------------
*** Inconsistent initial state. This happens if either
*** several processes with non-matching initial states
*** have been added, or for a single process with an
*** initial state flavor sum. In that case, please set beams
*** explicitly [singling out a flavor / structure function.]
******************************************************************************
******************************************************************************

What now? Either a structure function providing a tensor structure in flavors has to be provided
like

beams = p, pbar => pdf_builtin

or, if the partonic process was intended, a specific flavor has to be singled out,

beams = u, U

which would take only the up-quarks. Note that a sum over process components with varying
initial states is not possible.

Invalid or unsupported beam structure

An error message like

******************************************************************************
******************************************************************************
*** FATAL ERROR: Beam structure: [.......] not supported
******************************************************************************
******************************************************************************

This happens if you try to use a beam structure with is either not supported by WHIZARD
(meaning that there is no phase-space parameterization for Monte-Carlo integration available
in order to allow an efficient sampling), or you have chosen a combination of beam structure
functions that do not make sense physically. Here is an example for the latter (lepton collider
ISR applied to protons, then proton PDFs):

beams = p, p => isr => pdf_builtin



3.4. TROUBLESHOOTING 53

Mismatch in beams

Sometimes you get a rather long error output statement followed by a fatal error:

Evaluator product
First interaction
Interaction: 6
Virtual:
Particle 1
[momentum undefined]

[.......]
State matrix: norm = 1.000000000000E+00
[f(2212)]

[f(11)]
[f(92) c(1 )]

[f(-6) c(-1 )] => ME(1) = ( 0.000000000000E+00, 0.000000000000E+00)
[.......]
******************************************************************************
******************************************************************************
*** FATAL ERROR: Product of density matrices is empty
*** --------------------------------------------
*** This happens when two density matrices are convoluted
*** but the processes they belong to (e.g., production
*** and decay) do not match. This could happen if the
*** beam specification does not match the hard
*** process. Or it may indicate a WHIZARD bug.
******************************************************************************
******************************************************************************

As WHIZARD indicates, this could have happened because the hard process setup did not match
the specification of the beams as in:

process neutral_current_DIS = e1, u => e1, u
beams_momentum = 27.5 GeV, 920 GeV
beams = p, e => pdf_builtin, none
integrate (neutral_current_DIS)

In that case, the order of the beam particles simply was wrong, exchange proton and elec-
tron (together with the structure functions) into beams = e, p => none, pdf_builtin, and
WHIZARD will be happy.

Unstable heavy beam particles

If you try to use unstable particles as beams that can potentially decay into the final state
particles, you might encounter the following error message:

******************************************************************************
******************************************************************************
*** FATAL ERROR: Phase space: Initial beam particle can decay
******************************************************************************
******************************************************************************



54 CHAPTER 3. WORKING WITH WHIZARD

This happens basically only for processes in testing/validation (like tt̄ → bb̄). In principle, it
could also happen in a real physics setup, e.g. when simulating electron pairs at a muon collider:

process mmee = "mu-", "mu+" => "e-", "e+"

However, WHIZARD at the moment does not allow a muon width, and so WHIZARD is not able to
decay a muon in a scattering process. A possibile decay of the beam particle into (part of) the
final state might lead to instabilities in the phase space setup. Hence, WHIZARD do not let you
perform such an integration right away. When you nevertheless encounter such a rare occasion
in your setup, there is a possibility to convert this fatal error into a simple warning by setting
the flag:

?fatal_beam_decay = false

Impossible beam polarization

If you specify a beam polarization that cannot correspond to any physically allowed spin density
matrix, e.g.,

beams = e1, E1
beams_pol_density = @(-1), @(1:1:.5, -1, 1:-1)

WHIZARD will throw a fatal error like this:
Trace of matrix square = 1.4444444444444444
Polarization: spin density matrix

spin type = 2
multiplicity = 2
massive = F
chirality = 0
pol.degree = 1.0000000
pure state = F
@(+1: +1: ( 3.333333333333E-01, 0.000000000000E+00))
@(-1: -1: ( 6.666666666667E-01, 0.000000000000E+00))
@(-1: +1: ( 6.666666666667E-01, 0.000000000000E+00))

******************************************************************************
******************************************************************************
*** FATAL ERROR: Spin density matrix: not permissible as density matrix
******************************************************************************
******************************************************************************

Beams with crossing angle

Specifying a crossing angle (e.g. at a linear lepton collider) without explicitly setting the beam
momenta,

sqrts = 1 TeV
beams = e1, E1
beams_theta = 0, 10 degree

triggers a fatal:



3.4. TROUBLESHOOTING 55

******************************************************************************
******************************************************************************
*** FATAL ERROR: Beam structure: angle theta/phi specified but momentum/a p undefined
******************************************************************************
******************************************************************************

In that case the single beam momenta have to be explicitly set:

beams = e1, E1
beams\_momentum = 500 GeV, 500 GeV
beams\_theta = 0, 10 degree

Phase-space generation failed

Sometimes an error might be issued that WHIZARD could not generate a valid phase-space
parameterization:

| Phase space: ... failed. Increasing phs_off_shell ...
| Phase space: ... failed. Increasing phs_off_shell ...
| Phase space: ... failed. Increasing phs_off_shell ...
| Phase space: ... failed. Increasing phs_off_shell ...
******************************************************************************
******************************************************************************
*** FATAL ERROR: Phase-space: generation failed
******************************************************************************
******************************************************************************

You see that WHIZARD tried to increase the number of off-shell lines that are taken into account
for the phase-space setup. The second most important parameter for the phase-space setup,
phs_t_channel, however, is not increased automatically. Its default value is 6, so e.g. for the
process e+e− → 8γ you will run into the problem above. Setting

phs_off_shell = <n>-1

where <n> is the number of final-state particles will solve the problem.

Non-converging process integration

There could be several reasons for this to happen. The most prominent one is that no cuts have
been specified for the process (WHIZARD2 does not apply default cuts), and there are singular
regions in the phase space over which the integration stumbles. If cuts have been specified,
it could be that they are not sufficient. E.g. in pp → jj a distance cut between the two jets
prevents singular collinear splitting in their generation, but if no pT cut have been set, there is
still singular collinear splitting from the beams.



56 CHAPTER 3. WORKING WITH WHIZARD

Why is there no event file?

If no event file has been generated, WHIZARD stumled over some error and should have told
you, or, you simply forgot to set a simulate command for your process. In case there was a
simulate command but the process under consideration is not possible (e.g. a typo, e1, E1
=> e2, E3 instead of e1, E1 => e3, E3), then you get an error like that:

******************************************************************************
*** ERROR: Simulate: no process has a valid matrix element.
******************************************************************************

Why is the event file empty?

In order to get events, you need to set either a desired number of events:
n_events = <integer>

or you have to specify a certain integrated luminosity (the default unit being inverse femtobarn:
luminosity = <real> / 1 fbarn

In case you set both, WHIZARD will take the one that leads to the higher number of events.

Parton showering fails

For BSM models containing massive stable or long-lived particles parton showering with PYTHIA6
fails:

Advisory warning type 3 given after 0 PYEXEC calls:
(PYRESD:) Failed to decay particle 1000022 with mass 15.000

******************************************************************************
******************************************************************************
*** FATAL ERROR: Simulation: failed to generate valid event after 10000 tries
******************************************************************************
******************************************************************************

The solution to that problem is discussed in Sec. 10.7.3.

3.4.3 Debugging, testing, and validation

Catching/tracking arithmetic exceptions

Catching arithmetic exceptions is not automatically supported by Fortran compilers. In general,
flags that cause the compiler to keep track of arithmetic exceptions are diminishing the maximally
possible performance, and hence they should not be used in production runs. Hence, we refrained
from making these flags a default. They can be added using the FCFLAGS = <flags> settings
during configuration. For the NAG Fortran compiler we use the flags -C=all -nan -gline for de-
bugging purposes. For the gfortran compilers, the flags -ffpe-trap=invalid,zero,overflow



3.4. TROUBLESHOOTING 57

are the corresponding debugging flags. For tests, debugging or first sanity checks on your setup,
you might want to make use of these flags in order to track possible numerical exceptions in the
produced code. Some compilers started to include IEEE exception handling support (Fortran
2008 status), but we do not use these implementations in the WHIZARD code (yet).



58 CHAPTER 3. WORKING WITH WHIZARD



Chapter 4

Steering WHIZARD: SINDARIN Overview

4.1 The command language for WHIZARD
A conventional physics application program gets its data from a set of input files. Alternatively,
it is called as a library, so the user has to write his own code to interface it, or it combines
these two approaches. WHIZARD 1 was built in this way: there were some input files which were
written by the user, and it could be called both stand-alone or as an external library.

WHIZARD 2 is also a stand-alone program. It comes with its own full-fledged script lan-
guage, called SINDARIN. All interaction between the user and the program is done in SINDARIN
expressions, commands, and scripts. Two main reasons led us to this choice:

• In any nontrivial physics study, cuts and (parton- or hadron-level) analysis are of central
importance. The task of specifying appropriate kinematics and particle selection for a
given process is well defined, but it is impossible to cover all possiblities in a simple format
like the cut files of WHIZARD 1.

The usual way of dealing with this problem is to write analysis driver code (often in C++,
using external libraries for Lorentz algebra etc. However, the overhead of writing correct
C++ or Fortran greatly blows up problems that could be formulated in a few lines of text.

• While many problems lead to a repetitive workflow (process definition, integration, simula-
tion), there are more involved tasks that involve parameter scans, comparisons of different
processes, conditional execution, or writing output in widely different formats. This is
easily done by a steering script, which should be formulated in a complete language.

The SINDARIN language is built specifically around event analysis, suitably extended to support
steering, including data types, loops, conditionals, and I/O.

It would have been possible to use an established general-purpose language for these tasks.
For instance, OCaml which is a functional language would be a suitable candidate, and the
matrix-element generator O’Mega is written in that language. Another candidate would be a
popular scripting language such as PYTHON.

We started to support interfaces for commonly used languages: prime examples for C,
C++, and PYTHON are found in the share/interfaces subdirectory. However, introducing a

59



60 CHAPTER 4. STEERING WHIZARD: SINDARIN OVERVIEW

special-purpose language has the three distinct advantages: First, it is compiled and executed
by the very Fortran code that handles data and thus accesses it without interfaces. Second, it
can be designed with a syntax especially suited to the task of event handling and Monte-Carlo
steering, and third, the user is not forced to learn all those features of a generic language that
are of no relevance to the application he/she is interested in.

4.2 SINDARIN scripts
A SINDARIN script tells the WHIZARD program what it has to do. Typically, the script is contained
in a file which you (the user) create. The file name is arbitrary; by convention, it has the
extension ‘.sin’. WHIZARD takes the file name as its argument on the command line and executes
the contained script:

/home/user$ whizard script.sin

Alternatively, you can call WHIZARD interactively and execute statements line by line; we describe
this below in Sec.14.2.

A SINDARIN script is a sequence of statements, similar to the statements in any imperative
language such as Fortran or C. Examples of statements are commands like integrate, variable
declarations like logical ?flag or assigments like mH = 130 GeV.

The script is free-form, i.e., indentation, extra whitespace and newlines are syntactically
insignificant. In contrast to most languages, there is no statement separator. Statements simply
follow each other, just separated by whitespace.

statement1 statement2
statement3

statement4

Nevertheless, for clarity we recommend to write one statement per line where possible, and to
use proper indentation for longer statements, nested and bracketed expressions.

A command may consist of a keyword, a list of arguments in parantheses (. . . ), and an
option script which itself is a sequence of statements.

command
command_with_args (arg1, arg2)
command_with_option { option }
command_with_options (arg) {

option_statement1
option_statement2

}

As a rule, parentheses () enclose arguments and expressions, as you would expect. Arguments
enclosed in square brackets [] also exist. They have a special meaning, they denote subevents
(collections of momenta) in event analysis. Braces {} enclose blocks of SINDARIN code. In
particular, the option script associated with a command is a block of code that may contain
local parameter settings, for instance. Braces always indicate a scoping unit, so parameters will
be restored their previous values when the execution of that command is completed.

The script can contain comments. Comments are initiated by either a # or a ! character
and extend to the end of the current line.



4.3. ERRORS 61

statement
# This is a comment
statement ! This is also a comment

4.3 Errors

Before turning to proper SINDARIN syntax, let us consider error messages. SINDARIN distinguishes
syntax errors and runtime errors.

Syntax errors are recognized when the script is read and compiled, before any part is executed.
Look at this example:

process foo = u, ubar => d, dbar
md = 10
integrade (foo)

WHIZARD will fail with the error message

sqrts = 1 TeV
integrade (foo)

^^
| Expected syntax: SEQUENCE <cmd_num> = <var_name> ’=’ <expr>
| Found token: KEYWORD: ’(’
******************************************************************************
******************************************************************************
*** FATAL ERROR: Syntax error (at or before the location indicated above)
******************************************************************************
******************************************************************************
WHIZARD run aborted.

which tells you that you have misspelled the command integrate, so the compiler tried to
interpret it as a variable.

Runtime errors are categorized by their severity. A warning is simply printed:

Warning: No cuts have been defined.

This indicates a condition that is suspicious, but may actually be intended by the user.
When an error is encountered, it is printed with more emphasis

******************************************************************************
*** ERROR: Variable ’md’ set without declaration
******************************************************************************

and the program tries to continue. However, this usually indicates that there is something
wrong. (The d quark is defined massless, so md is not a model parameter.) WHIZARD counts
errors and warnings and tells you at the end

| There were 1 error(s) and no warnings.



62 CHAPTER 4. STEERING WHIZARD: SINDARIN OVERVIEW

just in case you missed the message.
Other errors are considered fatal, and execution stops at this point.

******************************************************************************
******************************************************************************
*** FATAL ERROR: Colliding beams: sqrts is zero (please set sqrts)
******************************************************************************
******************************************************************************

Here, WHIZARD was unable to do anything sensible. But at least (in this case) it told the user
what to do to resolve the problem.

4.4 Statements
SINDARIN statements are executed one by one. For an overview, we list the most common
statements in the order in which they typically appear in a SINDARIN script, and quote the basic
syntax and simple examples. This should give an impression on the WHIZARD’s capabilities and
on the user interface. The list is not complete. Note that there are no mandatory commands
(although an empty SINDARIN script is not really useful). The details and options are explained
in later sections.

4.4.1 Process Configuration

model

model = ⟨model-name ⟩
This assignment sets or resets the current physics model. The Standard Model is already
preloaded, so the model assignment applies to non-default models. Obviously, the model must
be known to WHIZARD. Example:

model = MSSM

See Sec. 5.3.

alias

alias ⟨alias-name ⟩ = ⟨alias-definition ⟩

Particles are specified by their names. For most particles, there are various equivalent names.
Names containing special characters such as a + sign have to be quoted. The alias assignment
defines an alias for a list of particles. This is useful for setting up processes with sums over
flavors, cut expressions, and more. The alias name is then used like a simple particle name.
Example:

alias jet = u:d:s:U:D:S:g

See Sec. 5.2.1.



4.4. STATEMENTS 63

process

process ⟨tag ⟩ = ⟨incoming ⟩ => ⟨outgoing ⟩

Define a process. You give the process a name ⟨tag⟩ by which it is identified later, and specify
the incoming and outgoing particles, and possibly options. You can define an arbitrary number
of processes as long as they are distinguished by their names. Example:

process w_plus_jets = g, g => "W+", jet, jet

See Sec. 5.4.

sqrts

sqrts = ⟨energy-value ⟩

Define the center-of-mass energy for collision processes. The default setup will assume head-on
central collisions of two beams. Example:

sqrts = 500 GeV

See Sec. 5.5.1.

beams

beams = ⟨beam-particles ⟩
beams = ⟨beam-particles ⟩ => ⟨structure-function-setup ⟩

Declare beam particles and properties. The current value of sqrts is used, unless specified
otherwise. Example:

beams = u:d:s, U:D:S => lhapdf

With options, the assignment allows for defining beam structure in some detail. This includes
beamstrahlung and ISR for lepton colliders, precise structure function definition for hadron
colliders, asymmetric beams, beam polarization, and more. See Sec. 5.5.

4.4.2 Parameters

Parameter settings

⟨parameter ⟩ = ⟨value ⟩
⟨type ⟩ ⟨user-parameter ⟩
⟨type ⟩ ⟨user-parameter ⟩ = ⟨value ⟩

Specify a value for a parameter. There are predefined parameters that affect the behavior of a
command, model-specific parameters (masses, couplings), and user-defined parameters. The
latter have to be declared with a type, which may be int (integer), real, complex, logical,
string, or alias. Logical parameter names begin with a question mark, string parameter
names with a dollar sign. Examples:



64 CHAPTER 4. STEERING WHIZARD: SINDARIN OVERVIEW

mb = 4.2 GeV
?rebuild_grids = true
real mass_sum = mZ + mW
string $message = "This is a string"

The value need not be a literal, it can be an arbitrary expression of the correct type. See
Sec. 4.7.

read_slha

read_slha (⟨filename ⟩)

This is useful only for supersymmetric models: read a parameter file in the SUSY Les Houches
Accord format. The file defines parameter values and, optionally, decay widths, so this command
removes the need for writing assignments for each of them.

read_slha ("sps1a.slha")

See Sec. 10.2.

show

show (⟨data-objects ⟩)

Print the current value of some data object. This includes not just variables, but also models,
libraries, cuts, etc. This is rather a debugging aid, so don’t expect the output to be concise in
the latter cases. Example:

show (mH, wH)

See Sec. 5.10.

printf

printf ⟨format-string ⟩ (⟨data-objects ⟩)

Pretty-print the data objects according to the given format string. If there are no data objects,
just print the format string. This command is borrowed from the C programming language;
it is actually an interface to the system’s printf(3) function. The conversion specifiers are
restricted to d,i,e,f,g,s, corresponding to the output of integer, real, and string variables.
Example:

printf "The Higgs mass is %f GeV" (mH)

See Sec. 5.10.



4.4. STATEMENTS 65

4.4.3 Integration

cuts

cuts = ⟨logical-cut-expression ⟩

The cut expression is a logical macro expression that is evaluated for each phase space point during
integration and event generation. You may construct expressions out of various observables
that are computed for the (partonic) particle content of the current event. If the expression
evaluates to true, the matrix element is calculated and the event is used. If it evaluates to
false, the matrix element is set zero and the event is discarded. Note that for collisions the
expression is evaluated in the lab frame, while for decays it is evaluated in the rest frame of the
decaying particle. In case you want to impose cuts on a factorized process, i.e. a combination of
a production process and one or more decay processes, you have to use the selection keyword
instead.

Example for the keyword cuts:
cuts = all Pt > 20 GeV [jet]

and all mZ - 10 GeV < M < mZ + 10 GeV [lepton, lepton]
and no abs (Eta) < 2 [jet]

See Sec. 5.2.5.

integrate

integrate (⟨process-tags ⟩)

Compute the total cross section for a process. The command takes into account the definition
of the process, the beam setup, cuts, and parameters as defined in the script. Parameters may
also be specified as options to the command.

Integration is necessary for each process for which you want to know total or differential
cross sections, or event samples. Apart from computing a value, it sets up and adapts phase
space and integration grids that are used in event generation. If you just need an event sample,
you can omit an explicit integrate command; the simulate command will call it automatically.
Example:

integrate (w_plus_jets, z_plus_jets)

See Sec. 5.7.1.

?phs_only/n_calls_test

integrate (⟨process-tag ⟩) { ?phs_only = true n_calls_test = 1000 }

These are just optional settings for the integrate command discussed just a second ago. The
?phs_only = true (note that variables starting with a question mark are logicals) option tells
WHIZARD to prepare a process for integration, but instead of performing the integration, just
to generate a phase space parameterization. n_calls_test = <num> evaluates the sampling
function for random integration channels and random momenta. VAMP integration grids are
neither generated nor used, so the channel selection corresponds to the first integration pass,



66 CHAPTER 4. STEERING WHIZARD: SINDARIN OVERVIEW

before any grids or channel weights are adapted. The number of sampling points is given by
<num>. The output contains information about the timing, number of sampling points that
passed the kinematics selection, and the number of matrix-element values that were actually
evaluated. This command is useful mainly for debugging and diagnostics. Example:

integrate (some_large_process) { ?phs_only = true n_calls_test = 1000 }

(Note that there used to be a separate command matrix_element_test until version 2.1.1 of
WHIZARD which has been discarded in order to simplify the SINDARIN syntax.)

4.4.4 Events

histogram

histogram ⟨tag ⟩ (⟨lower-bound ⟩, ⟨upper-bound ⟩)
histogram ⟨tag ⟩ (⟨lower-bound ⟩, ⟨upper-bound ⟩, ⟨step ⟩)

Declare a histogram for event analysis. The histogram is filled by an analysis expression, which
is evaluated once for each event during a subsequent simulation step. Example:

histogram pt_distribution (0, 150 GeV, 10 GeV)

See Sec. 5.9.3.

plot

plot ⟨tag ⟩
Declare a plot for displaying data points. The plot may be filled by an analysis expression that
is evaluated for each event; this would result in a scatter plot. More likely, you will use this
feature for displaying data such as the energy dependence of a cross section. Example:

plot total_cross_section

See Sec. 5.9.4.

selection

selection = ⟨selection-expression ⟩
The selection expression is a logical macro expression that is evaluated once for each event. It is
applied to the event record, after all decays have been executed (if any). It is therefore intended
e.g. for modelling detector acceptance cuts etc. For unfactorized processes the usage of cuts or
selection leads to the same results. Events for which the selection expression evaluates to false
are dropped; they are neither analyzed nor written to any user-defined output file. However,
the dropped events are written to WHIZARD’s native event file. For unfactorized processes it is
therefore preferable to implement all cuts using the cuts keyword for the integration, see cuts
above. Example:

selection = all Pt > 50 GeV [lepton]

The syntax is generically the same as for the cuts expression, see Sec. 5.2.5. For more
information see also Sec. 5.9.



4.4. STATEMENTS 67

analysis

analysis = ⟨analysis-expression ⟩

The analysis expression is a logical macro expression that is evaluated once for each event that
passes the integration and selection cuts in a subsequent simulation step. The expression has
type logical in analogy with the cut expression; however, its main use will be in side effects
caused by embedded record expressions. The record expression books a value, calculated
from observables evaluated for the current event, in one of the predefined histograms or plots.
Example:

analysis = record pt_distribution (eval Pt [photon])
and record mval (eval M [lepton, lepton])

See Sec. 5.9.

unstable

unstable ⟨particle ⟩ (⟨decay-channels ⟩)

Specify that a particle can decay, if it occurs in the final state of a subsequent simulation step.
(In the integration step, all final-state particles are considered stable.) The decay channels
are processes which should have been declared before by a process command (alternatively,
there are options that WHIZARD takes care of this automatically; cf. Sec. 5.8.2). They may be
integrated explicitly, otherwise the unstable command will take care of the integration before
particle decays are generated. Example:

unstable Z (z_ee, z_jj)

Note that the decay is an on-shell approximation. Alternatively, WHIZARD is capable of generating
the final state(s) directly, automatically including the particle as an internal resonance together
with irreducible background. Depending on the physical problem and on the complexity of the
matrix-element calculation, either option may be more appropriate.

See Sec. 5.8.2.

n_events

n_events = ⟨integer ⟩

Specify the number of events that a subsequent simulation step should produce. By default,
simulated events are unweighted. (Unweighting is done by a rejection operation on weighted
events, so the usual caveats on event unweighting by a numerical Monte-Carlo generator do
apply.) Example:

n_events = 20000

See Sec. 5.8.1.



68 CHAPTER 4. STEERING WHIZARD: SINDARIN OVERVIEW

simulate

simulate (⟨process-tags ⟩)
Generate an event sample. The command allows for analyzing the generated events by the
analysis expression. Furthermore, events can be written to file in various formats. Optionally,
the partonic events can be showered and hadronized, partly using included external (PYTHIA) or
truly external programs called by WHIZARD. Example:

simulate (w_plus_jets) { sample_format = lhef }

See Sec. 5.8.1 and Chapter 11.

graph

graph (⟨tag ⟩) = ⟨histograms-and-plots ⟩
Combine existing histograms and plots into a common graph. Also useful for pretty-printing
single histograms or plots. Example:

graph comparison {
$title = "$p_T$ distribution for two different values of $m_h$"

} = hist1 & hist2

See Sec. 12.4.

write_analysis

write_analysis (⟨analysis-objects ⟩)
Writes out data tables for the specified analysis objects (plots, graphs, histograms). If the
argument is empty or absent, write all analysis objects currently available. The tables are
available for feeding external programs. Example:

write_analysis

See Sec. 5.9.

compile_analysis

compile_analysis (⟨analysis-objects ⟩)
Analogous to write_analysis, but the generated data tables are processed by LATEX and
gamelan, which produces Postscript and PDF versions of the displayed data. Example:

compile_analysis

See Sec. 5.9.

4.5 Control Structures
Like any complete programming language, SINDARIN provides means for branching and looping
the program flow.



4.5. CONTROL STRUCTURES 69

4.5.1 Conditionals

if

if ⟨logical_expression ⟩ then ⟨statements ⟩
elsif ⟨logical_expression ⟩ then ⟨statements ⟩
else ⟨statements ⟩
endif

Execute statements conditionally, depending on the value of a logical expression. There may be
none or multiple elsif branches, and the else branch is also optional. Example:

if (sqrts > 2 * mtop) then
integrate (top_pair_production)

else
printf "Top pair production is not possible"

endif

The current SINDARIN implementation puts some restriction on the statements that can appear
in a conditional. For instance, process definitions must be done unconditionally.

4.5.2 Loops

scan

scan ⟨variable ⟩ = (⟨value-list ⟩) { ⟨statements ⟩ }

Execute the statements repeatedly, once for each value of the scan variable. The statements are
executed in a local context, analogous to the option statement list for commands. The value list
is a comma-separated list of expressions, where each item evaluates to the value that is assigned
to ⟨variable ⟩ for this iteration.

The type of the variable is not restricted to numeric, scans can be done for various object
types. For instance, here is a scan over strings:

scan string $str = ("%.3g", "%.4g", "%.5g") { printf $str (mW) }

The output:

[user variable] $str = "%.3g"
80.4
[user variable] $str = "%.4g"
80.42
[user variable] $str = "%.5g"
80.419

For a numeric scan variable in particular, there are iterators that implement the usual func-
tionality of for loops. If the scan variable is of type integer, an iterator may take one of the
forms



70 CHAPTER 4. STEERING WHIZARD: SINDARIN OVERVIEW

⟨start-value ⟩ => ⟨end-value ⟩
⟨start-value ⟩ => ⟨end-value ⟩ /+ ⟨add-step ⟩
⟨start-value ⟩ => ⟨end-value ⟩ /- ⟨subtract-step ⟩
⟨start-value ⟩ => ⟨end-value ⟩ /* ⟨multiplicator ⟩
⟨start-value ⟩ => ⟨end-value ⟩ // ⟨divisor ⟩

The iterator can be put in place of an expression in the ⟨value-list ⟩. Here is an example:
scan int i = (1, (3 => 5), (10 => 20 /+ 4))

which results in the output

[user variable] i = 1
[user variable] i = 3
[user variable] i = 4
[user variable] i = 5
[user variable] i = 10
[user variable] i = 14
[user variable] i = 18

[Note that the ⟨statements ⟩ part of the scan construct may be empty or absent.]
For real scan variables, there are even more possibilities for iterators:

⟨start-value ⟩ => ⟨end-value ⟩
⟨start-value ⟩ => ⟨end-value ⟩ /+ ⟨add-step ⟩
⟨start-value ⟩ => ⟨end-value ⟩ /- ⟨subtract-step ⟩
⟨start-value ⟩ => ⟨end-value ⟩ /* ⟨multiplicator ⟩
⟨start-value ⟩ => ⟨end-value ⟩ // ⟨divisor ⟩
⟨start-value ⟩ => ⟨end-value ⟩ /+/ ⟨n-points-linear ⟩
⟨start-value ⟩ => ⟨end-value ⟩ /*/ ⟨n-points-logarithmic ⟩

The first variant is equivalent to /+ 1. The /+ and /- operators are intended to add or subtract
the given step once for each iteration. Since in floating-point arithmetic this would be plagued
by rounding ambiguities, the actual implementation first determines the (integer) number of
iterations from the provided step value, then recomputes the step so that the iterations are
evenly spaced with the first and last value included.

The /* and // operators are analogous. Here, the initial value is intended to be multiplied
by the step value once for each iteration. After determining the integer number of iterations,
the actual scan values will be evenly spaced on a logarithmic scale.

Finally, the /+/ and /*/ operators allow to specify the number of iterations (not counting
the initial value) directly. The ⟨start-value ⟩ and ⟨end-value ⟩ are always included, and the
intermediate values will be evenly spaced on a linear (/+/) or logarithmic (/*/) scale.

Example:
scan real mh = (130 GeV,

(140 GeV => 160 GeV /+ 5 GeV),
180 GeV,
(200 GeV => 1 TeV /*/ 10))

{ integrate (higgs_decay) }



4.6. EXPRESSIONS 71

4.5.3 Including Files

include

include (⟨file-name ⟩)

Include a SINDARIN script from the specified file. The contents must be complete commands;
they are compiled and executed as if they were part of the current script. Example:

include ("default_cuts.sin")

4.6 Expressions
SINDARIN expressions are classified by their types. The type of an expression is verified when
the script is compiled, before it is executed. This provides some safety against simple coding
errors.

Within expressions, grouping is done using ordinary brackets (). For subevent expressions,
use square brackets [].

4.6.1 Numeric

The language supports the classical numeric types

• int for integer: machine-default, usually 32 bit;

• real, usually double precision or 64 bit;

• complex, consisting of real and imaginary part equivalent to a real each.

SINDARIN supports arithmetic expressions similar to conventional languages. In arithmetic
expressions, the three numeric types can be mixed as appropriate. The computation essentially
follows the rules for mixed arithmetic in Fortran. The arithmetic operators are +, -, *, /, ^.
Standard functions such as sin, sqrt, etc. are available. See Sec. 5.1.1 to Sec. 5.1.3.

Numeric values can be associated with units. Units evaluate to numerical factors, and their
use is optional, but they can be useful in the physics context for which WHIZARD is designed.
Note that the default energy/mass unit is GeV, and the default unit for cross sections is fbarn.

4.6.2 Logical and String

The language also has the following standard types:

• logical (a.k.a. boolean). Logical variable names have a ? (question mark) as prefix.

• string (arbitrary length). String variable names have a $ (dollar) sign as prefix.

There are comparisons, logical operations, string concatenation, and a mechanism for formatting
objects as strings for output.



72 CHAPTER 4. STEERING WHIZARD: SINDARIN OVERVIEW

4.6.3 Special

Furthermore, SINDARIN deals with a bunch of data types tailored specifically for Monte Carlo
applications:

• alias objects denote a set of particle species.

• subevt objects denote a collection of particle momenta within an event. They have their
uses in cut and analysis expressions.

• process object are generated by a process statement. There are no expressions involving
processes, but they are referred to by integrate and simulate commands.

• model: There is always a current object of type and name model. Several models can be
used concurrently by appropriately defining processes, but this happens behind the scenes.

• beams: Similarly, the current implementation allows only for a single object of this type
at a given time, which is assigned by a beams = statement and used by integrate.

In the current implementation, SINDARIN has no container data types derived from basic
types, such as lists, arrays, or hashes, and there are no user-defined data types. (The subevt
type is a container for particles in the context of events, but there is no type for an individual
particle: this is represented as a one-particle subevt). There are also containers for inclusive
processes which are however simply handled as an expansion into several components of a master
process tag.

4.7 Variables
SINDARIN supports global variables, variables local to a scoping unit (the option body of a
command, the body of a scan loop), and variables local to an expression.

Some variables are predefined by the system (intrinsic variables). They are further separated
into independent variables that can be reset by the user, and derived or locked variables that
are automatically computed by the program, but not directly user-modifiable. On top of that,
the user is free to introduce his own variables (user variables).

The names of numerical variables consist of alphanumeric characters and underscores. The
first character must not be a digit. Logical variable names are furthermore prefixed by a ?
(question mark) sign, while string variable names begin with a $ (dollar) sign.

Character case does matter. In this manual we follow the convention that variable names
consist of lower-case letters, digits, and underscores only, but you may also use upper-case letters
if you wish.

Physics models contain their own, specific set of numeric variables (masses, couplings). They
are attached to the model where they are defined, so they appear and disappear with the model
that is currently loaded. In particular, if two different models contain a variable with the same
name, these two variables are nevertheless distinct: setting one doesn’t affect the other. This
feature might be called, in computer-science jargon, a mixin.



4.7. VARIABLES 73

User variables – global or local – are declared by their type when they are introduced, and
acquire an initial value upon declaration. Examples:

int i = 3
real my_cut_value = 10 GeV
complex c = 3 - 4 * I
logical ?top_decay_allowed = mH > 2 * mtop
string $hello = "Hello world!"
alias q = d:u:s:c

An existing user variable can be assigned a new value without a declaration:

i = i + 1

and it may also be redeclared if the new declaration specifies the same type, this is equivalent
to assigning a new value.

Variables local to an expression are introduced by the let ... in contruct. Example:

real a = let int n = 2 in
x^n + y^n

The explicit int declaration is necessary only if the variable n has not been declared before. An
intrinsic variable must not be declared: let mtop = 175.3 GeV in ...

let constructs can be concatenated if several local variables need to be assigned: let a =
3 in let b = 4 in expression .

Variables of type subevt can only be defined in let constructs.
Exclusively in the context of particle selections (event analysis), there are observables as

special numeric objects. They are used like numeric variables, but they are never declared or
assigned. They get their value assigned dynamically, computed from the particle momentum
configuration. Hence, they may be understood as (intrinsic and predefined) macros. By
convention, observable names begin with a capital letter.

Further macros are

• cuts and analysis. They are of type logical, and can be assigned an expression by the
user. They are evaluated once for each event.

• scale, factorization_scale and renormalization_scale are real numeric macros
which define the energy scale(s) of an event. The latter two override the former. If no
scale is defined, the partonic energy is used as the process scale.

• weight is a real numeric macro. If it is assigned an expression, the expression is evaluated
for each valid phase-space point, and the result multiplies the matrix element.



74 CHAPTER 4. STEERING WHIZARD: SINDARIN OVERVIEW



Chapter 5

SINDARIN in Details

5.1 Data and expressions

5.1.1 Real-valued objects

Real literals have their usual form, mantissa and, optionally, exponent:

0. 3.14 -.5 2.345e-3 .890E-023

Internally, real values are treated as double precision. The values are read by the Fortran
library, so details depend on its implementation.

A special feature of SINDARIN is that numerics (real and integer) can be immediately followed
by a physical unit. The supported units are presently hard-coded, they are

meV eV keV MeV GeV TeV
nbarn pbarn fbarn abarn

rad mrad degree
%

If a number is followed by a unit, it is automatically normalized to the corresponding default
unit: 14.TeV is transformed into the real number 14000. Default units are GeV, fbarn, and
rad. The % sign after a number has the effect that the number is multiplied by 0.01. Note that
no checks for consistency of units are done, so you can add 1 meV + 3 abarn if you absolutely
wish to. Omitting units is always allowed, in that case, the default unit is assumed.

Units are not treated as variables. In particular, you can’t write theta / degree, the
correct form is theta / 1 degree.

There is a single predefined real constant, namely π which is referred to by the keyword pi.
In addition, there is a single predefined complex constant, which is the complex unit i, being
referred to by the keyword I.

The arithmetic operators are

+ - * / ^

75



76 CHAPTER 5. SINDARIN IN DETAILS

with their obvious meaning and the usual precedence rules.
SINDARIN supports a bunch of standard numerical functions, mostly equivalent to their

Fortran counterparts:

abs conjg sgn mod modulo
sqrt exp log log10

sin cos tan asin acos atan
sinh cosh tanh

(Unlike Fortran, the sgn function takes only one argument and returns 1., or −1.) The function
argument is enclosed in brackets: sqrt (2.), tan (11.5 degree).

There are two functions with two real arguments:

max min

Example: real lighter_mass = min (mZ, mH)
The following functions of a real convert to integer:

int nint floor ceiling

and this converts to complex type:

complex

Real values can be compared by the following operators, the result is a logical value:

== <>
> < >= <=

In SINDARIN, it is possible to have more than two operands in a logical expressions. The
comparisons are done from left to right. Hence,

115 GeV < mH < 180 GeV

is valid SINDARIN code and evaluates to true if the Higgs mass is in the given range.
Tests for equality and inequality with machine-precision real numbers are notoriously

unreliable and should be avoided altogether. To deal with this problem, SINDARIN has the
possibility to make the comparison operators “fuzzy” which should be read as “equal (unequal)
up to an absolute tolerance”, where the tolerance is given by the real-valued intrinsic variable
tolerance. This variable is initially zero, but can be set to any value (for instance, tolerance
= 1.e-13 by the user. Note that for non-zero tolerance, operators like == and <> or < and > are
not mutually exclusive1.

1In older versions of WHIZARD, until v2.1.1, there used to be separate comparators for the comparisons up to
a tolerance, namely ==˜ and <>˜. These have been discarded from v2.2.0 on in order to simplify the syntax.



5.1. DATA AND EXPRESSIONS 77

5.1.2 Integer-valued objects

Integer literals are obvious:

1 -98765 0123

Integers are always signed. Their range is the default-integer range as determined by the
Fortran compiler.

Like real values, integer values can be followed by a physical unit: 1 TeV, 30 degree. This
actually transforms the integer into a real.

Standard arithmetics is supported:

+ - * / ^

It is important to note that there is no fraction datatype, and pure integer arithmetics does not
convert to real. Hence 3/4 evaluates to 0, but 3 GeV / 4 GeV evaluates to 0.75.

Since all arithmetics is handled by the underlying Fortran library, integer overflow is not
detected. If in doubt, do real arithmetics.

Integer functions are more restricted than real functions. We support the following:

abs sgn mod modulo
max min

and the conversion functions

real complex

Comparisons of integers among themselves and with reals are possible using the same set of
comparison operators as for real values. This includes the operators with a finite tolerance.

5.1.3 Complex-valued objects

Complex variables and values are currently not yet used by the physics models implemented in
WHIZARD. There complex input coupling constants are always split into their real and imaginary
parts (or modulus and phase). They are exclusively available for arithmetic calculations.

There is no form for complex literals. Complex values must be created via an arithmetic
expression,

complex c = 1 + 2 * I

where the imaginary unit I is predefined as a constant.
The standard arithmetic operations are supported (also mixed with real and integer). Support

for functions is currently still incomplete, among the supported functions there are sqrt, log,
exp.



78 CHAPTER 5. SINDARIN IN DETAILS

5.1.4 Logical-valued objects

There are two predefined logical constants, true and false. Logicals are not equivalent to
integers (like in C) or to strings (like in PERL), but they make up a type of their own. Only in
printf output, they are treated as strings, that is, they require the %s conversion specifier.

The names of logical variables begin with a question mark ?. Here is the declaration of a
logical user variable:

logical ?higgs_decays_into_tt = mH > 2 * mtop

Logical expressions use the standard boolean operations

or and not

The results of comparisons (see above) are logicals.
There is also a special logical operator with lower priority, concatenation by a semicolon:

lexpr1 ; lexpr2

This evaluates lexpr1 and throws its result away, then evaluates lexpr2 and returns that result.
This feature is to used with logical expressions that have a side effect, namely the record
function within analysis expressions.

The primary use for intrinsic logicals are flags that change the behavior of commands. For
instance, ?unweighted = true and ?unweighted = false switch the unweighting of simulated
event samples on and off.

5.1.5 String-valued objects and string operations

String literals are enclosed in double quotes: "This is a string." The empty string is "".
String variables begin with the dollar sign: $. There is only one string operation, concatenation

string $foo = "abc" & "def"

However, it is possible to transform variables and values to a string using the sprintf
function. This function is an interface to the system’s C function sprintf with some restrictions
and modifications. The allowed conversion specifiers are

%d %i (integer)
%e %f %g %E %F %G (real)

%s (string and logical)

The conversions can use flag parameter, field width, and precision, but length modifiers are not
supported since they have no meaning for the application. (See also Sec. 5.10.)

The sprintf function has the syntax

sprintf format-string (arg-list)



5.2. PARTICLES AND (SUB)EVENTS 79

This is an expression that evaluates to a string. The format string contains the mentioned
conversion specifiers. The argument list is optional. The arguments are separated by commas.
Allowed arguments are integer, real, logical, and string variables, and numeric expressions.
Logical and string expressions can also be printed, but they have to be dressed as anonymous
variables. A logical anonymous variable has the form ?(logical_expr) (example: ?(mH > 115
GeV)). A string anonymous variable has the form $(string-expr).

Example:

string $unit = "GeV"
string $str = sprintf "mW = %f %s" (mW, $unit)

The related printf command with the same syntax prints the formatted string to standard
output2.

5.2 Particles and (sub)events

5.2.1 Particle aliases

A particle species is denoted by its name as a string: "W+". Alternatively, it can be addressed
by an alias. For instance, the W+ boson has the alias Wp. Aliases are used like variables in a
context where a particle species is expected, and the user can specify his/her own aliases.

An alias may either denote a single particle species or a class of particles species. A colon :
concatenates particle names and aliases to yield multi-species aliases:

alias quark = u:d:s
alias wboson = "W+":"W-"

Such aliases are used for defining processes with summation over flavors, and for defining classes
of particles for analysis.

Each model files define both names and (single-particle) aliases for all particles it contains.
Furthermore, it defines the class aliases colored and charged which are particularly useful for
event analysis.

5.2.2 Subevents

Subevents are sets of particles, extracted from an event. The sets are unordered by default,
but may be ordered by appropriate functions. Obviously, subevents are meaningful only in a
context where an event is available. The possible context may be the specification of a cut,
weight, scale, or analysis expression.

To construct a simple subevent, we put a particle alias or an expression of type particle alias
into square brackets:

2In older versions of WHIZARD, until v2.1.1, there also used to be a sprintd function and a printd command
for default formats without a format string. They have been discarded in order to simplify the syntax from
version v2.2.0 on.



80 CHAPTER 5. SINDARIN IN DETAILS

["W+"] [u:d:s] [colored]

These subevents evaluate to the set of all W+ bosons (to be precise, their four-momenta), all u,
d, or s quarks, and all colored particles, respectively.

A subevent can contain pseudoparticles, i.e., particle combinations. That is, the four-
momenta of distinct particles are combined (added conmponent-wise), and the results become
subevent elements just like ordinary particles.

The (pseudo)particles in a subevent are non-overlapping. That is, for any of the particles in
the original event, there is at most one (pseudo)particle in the subevent in which it is contained.

Sometimes, variables (actually, named constants) of type subevent are useful. Subevent
variables are declared by the subevt keyword, and their names carry the prefix @. Subevent
variables exist only within the scope of a cuts (or scale, analysis, etc.) macro, which is
evaluated in the presence of an actual event. In the macro body, they are assigned via the let
construct:

cuts =
let subevt @jets = select if Pt > 10 GeV [colored]
in
all Theta > 10 degree [@jets, @jets]

In this expression, we first define @jets to stand for the set of all colored partons with
pT > 10 GeV. This abbreviation is then used in a logical expression, which evaluates to true if
all relative angles between distinct jets are greater than 10 degree.

We note that the example also introduces pairs of subevents: the square bracket with two
entries evaluates to the list of all possible pairs which do not overlap. The objects within square
brackets can be either subevents or alias expressions. The latter are transformed into subevents
before they are used.

As a special case, the original event is always available as the predefined subevent @evt.

5.2.3 Subevent functions

There are several functions that take a subevent (or an alias) as an argument and return a new
subevent. Here we describe them:

collect

collect [particles ]
collect if condition [particles ]
collect if condition [particles, ref_particles ]

First version: collect all particle momenta in the argument and combine them to a single four-
momentum. The particles argument may either be a subevt expression or an alias expression.
The result is a one-entry subevt. In the second form, only those particles are collected which
satisfy the condition, a logical expression. Example: collect if Pt > 10 GeV [colored]

The third version is useful if you want to put binary observables (i.e., observables constructed
from two different particles) in the condition. The ref_particles provide the second argument for



5.2. PARTICLES AND (SUB)EVENTS 81

binary observables in the condition. A particle is taken into account if the condition is true with
respect to all reference particles that do not overlap with this particle. Example: collect if
Theta > 5 degree [photon, charged]: combine all photons that are separated by 5 degrees
from all charged particles.

cluster

cluster [particles ]
cluster if condition [particles ]

First version: collect all particle momenta in the argument and cluster them to a set of jets.
The particles argument may either be a subevt expression or an alias expression. The result
is a one-entry subevt. In the second form, only those particles are clustered which satisfy the
condition, a logical expression. Example: cluster if Pt > 10 GeV [colored]

This command is available from WHIZARD version 2.2.1 on, and only if the FastJet package
has been installed and linked with WHIZARD (cf. Sec.2.2.12); in a future version of WHIZARD it
is foreseen to have also an intrinsic clustering package inside WHIZARD which will be able to
support some of the clustering algorithms below. To use it in an analysis, you have to set the
variable jet_algorithm to one of the predefined jet-algorithm values (integer constants):

kt_algorithm
cambridge_algorithm
antikt_algorithm
genkt_algorithm
cambridge_for_passive_algorithm
genkt_for_passive_algorithm
ee_kt_algorithm
ee_genkt_algorithm
plugin_algorithm

and the variable jet_r to the desired R parameter value, as appropriate for the analysis and
the jet algorithm. Example:

jet_algorithm = antikt_algorithm
jet_r = 0.7
cuts = all Pt > 15 GeV [cluster if Pt > 5 GeV [colored]]

select_b_jet, select_non_b_jet, select_c_jet, select_light_jet

This command is available from WHIZARD version 2.8.1 on, and it only generates anything
non-trivial if the FastJet package has been installed and linked with WHIZARD (cf. Sec.2.2.12).
It only returns sensible results when it is applied to subevents after the cluster command (cf.
the paragraph before). It is similar to the select command, and accepts a logical expression as
a possible condition. The four commands select_b_jet, select_non_b_jet, select_c_jet,
and select_light_jet select b jets, non-b jets (anything lighter than bs), c jets (neither b nor
light) and light jets (anything besides b and c), respectively. An example looks like this:



82 CHAPTER 5. SINDARIN IN DETAILS

alias lightjet = u:U:d:D:s:S:c:C:gl
alias jet = b:B:lightjet
process eebbjj = e1, E1 => b, B, lightjet, lightjet
jet_algorithm = antikt_algorithm
jet_r = 0.5
cuts = let subevt @clustered_jets = cluster [jet] in

let subevt @bjets = select_b_jet [@clustered_jets] in
....

photon_isolation

This command is available from WHIZARD version 2.8.1 on. It provides isolation of photons
from hadronic (and possibly electromagnetic) activity in the event to define a (especially) NLO
cross section that is completely perturbative. The isolation criterion according to Frixione,
cf. [61], removes the non-perturbative contribution from the photon fragmentation function.
This command can in principle be applied to elementary hard process partons (and leptons),
but generates something sensible only if the FastJet package has been installed and linked
with WHIZARD (cf. Sec.2.2.12). There are three parameters which allow to tune the isolation,
photon_iso_r0, which is the radius R0

γ of the isolation cone, photon_iso_eps, which is the
fraction ϵγ of the photon (transverse) energy that enters the isolation criterion, and the exponent
of the isolation cone, photon_iso_n, nγ. For more information cf. [61]. The command allows
also a conditional cut on the photon which is applied before the isolation takes place. The first
argument are the photons in the event, the second the particles from which they should be
isolated. If also the electromagnetic activity is to be isolated, photons need to be isolated from
themselves and must be included in the second argument. This is mandatory if leptons appear
in the second argument. Two examples look like this:

alias jet = u:U:d:D:s:S:c:C:gl
process eeaajj = e1, E1 => A, A, jet, jet
jet_algorithm = antikt_algorithm
jet_r = 0.5
cuts = photon_isolation if Pt > 10 GeV [A, jet]

....
cuts = let subevt @jets = cluster [jet] in

photon_isolation if Pt > 10 GeV [A, @jets]
....

process eeajmm = e1, E1 => A, jet, e2, E2
cuts = let subevt @jets = cluster [jet] in

let subevt @iso = join [@jets, A:e2:E2]
photon_isolation [A, @iso]

photon_recombination

photon_recombination [particles ]
photon_recombination if condition [particles ]

This function, which maps a subevent into another subevent, is used for electroweak (and
mixed coupling) higher order calculations. It takes the selection of photons in particles (for



5.2. PARTICLES AND (SUB)EVENTS 83

the moment, WHIZARD restricts this to one explicit photon in the final state) and recombines
it with the closest non-photon particle from particles in R-distance, if the R-distance is
smaller than the parameter set by photon_rec_r0. Otherwise the particles subevent is
left unchanged so that it may contain possibly non-recombined photons. The logical variable
?keep_flavors_when_recombining determines whether WHIZARD keeps the flavor of the particle
with which the photon is recombined into the pseudoparticle, the default being true. An example
for photon recombination is shown here:

alias lep = e1:e2:e3:E1:E2:E3
process eevv = e1, E1 => A, lep, lep, lep, lep
photon_rec_r0 = 0.15
cuts = let subevt @reco =

photon_recombination if abs (Eta) < 2.5 [A:lep] in
....

combine

combine [particles_1, particles_2 ]
combine if condition [particles_1, particles_2 ]

Make a new subevent of composite particles. The composites are generated by combining all
particles from subevent particles_1 with all particles from subevent particles_2 in all possible
combinations. Overlapping combinations are excluded, however: if a (composite) particle in the
first argument has a constituent in common with a composite particle in the second argument,
the combination is dropped. In particular, this applies if the particles are identical.

If a condition is provided, the combination is done only when the logical expression, applied
to the particle pair in question, returns true. For instance, here we reconstruct intermediate
W− bosons:

let @W_candidates = combine if 70 GeV < M < 80 GeV ["mu-", "numubar"]
in ...

Note that the combination may fail, so the resulting subevent could be empty.

operator +

If there is no condition, the + operator provides a convenient shorthand for the combine
command. In particular, it can be used if there are several particles to combine. Example:

cuts = any 170 GeV < M < 180 GeV [b + lepton + invisible]

select

select if condition [particles ]
select if condition [particles, ref_particles ]

One argument: select all particles in the argument that satisfy the condition and drop the rest.
Two arguments: the ref_particles provide a second argument for binary observables. Select
particles if the condition is satisfied for all reference particles.



84 CHAPTER 5. SINDARIN IN DETAILS

extract

extract [particles ]
extract index index-value [particles ]

Return a single-particle subevent. In the first version, it contains the first particle in the
subevent particles. In the second version, the particle with index index-value is returned, where
index-value is an integer expression. If its value is negative, the index is counted from the end
of the subevent.

The order of particles in an event or subevent is not always well-defined, so you may wish to
sort the subevent before applying the extract function to it.

sort

sort [particles ]
sort by observable [particles ]
sort by observable [particles, ref_particle ]

Sort the subevent according to some criterion. If no criterion is supplied (first version), the
subevent is sorted by increasing PDG code (first particles, then antiparticles). In the second
version, the observable is a real expression which is evaluated for each particle of the subevent
in turn. The subevent is sorted by increasing value of this expression, for instance:

let @sorted_evt = sort by Pt [@evt]
in ...

In the third version, a reference particle is provided as second argument, so the sorting can be
done for binary observables. It doesn’t make much sense to have several reference particles at
once, so the sort function uses only the first entry in the subevent ref-particle, if it has more
than one.

join

join [particles, new_particles ]
join if condition [particles, new_particles ]

This commands appends the particles in subevent new_particles to the subevent particles, i.e.,
it joins the two particle sets. To be precise, a (pseudo)particle from new_particles is only
appended if it does not overlap with any of the (pseudo)particles present in particles, so the
function will not produce overlapping entries.

In the second version, each particle from new_particles is also checked with all particles
in the first set whether condition is fulfilled. If yes, and there is no overlap, it is appended,
otherwise it is dropped.



5.2. PARTICLES AND (SUB)EVENTS 85

operator &

Subevents can also be concatenated by the operator &. This effectively applies join to all
operands in turn. Example:

let @visible =
select if Pt > 10 GeV and E > 5 GeV [photon]

& select if Pt > 20 GeV and E > 10 GeV [colored]
& select if Pt > 10 GeV [lepton]

in ...

5.2.4 Calculating observables

Observables (invariant mass M, energy E, . . . ) are used in expressions just like ordinary numeric
variables. By convention, their names start with a capital letter. They are computed using a
particle momentum (unary observables), or two particle momenta (binary observables) or all
momenta of the particles (n-ary/subeventary observables) which are taken from a subsequent
subevent argument.

We can extract the value of an observable for an event and make it available for computing
the scale value, or for histogramming etc.:

eval

eval expr [particles ]
eval expr [particles_1, particles_2 ]

The function eval takes an expression involving observables and evaluates it for the first
momentum (or momentum pair) of the subevent (or subevent pair) in square brackets that
follows the expression. For example,

eval Pt [colored]

evaluates to the transverse momentum of the first colored particle,

eval M [@jets, @jets]

evaluates to the invariant mass of the first distinct pair of jets (assuming that @jets has been
defined in a let construct), and

eval E - M [combine [e1, N1]]

evaluates to the difference of energy and mass of the combination of the first electron-neutrino
pair in the event.

The last example illustrates why observables are treated like variables, even though they are
functions of particles: the eval construct with the particle reference in square brackets after
the expression allows to compute derived observables – observables which are functions of new
observables – without the need for hard-coding them as new functions.

For subeventary observables, e.g. Ht, the momenta of all particles in the subevent are taken
to evaluate the observables, e.g.



86 CHAPTER 5. SINDARIN IN DETAILS

eval Ht/2 [t:T:Z:jet]

takes the (half of) the transverse mass of all tops, Zs and jets in the final state.

sum

This SINDARIN statement works similar to the eval statement above, with the syntax

sum <expr> [<subevt>]

It sums the <expr> over all elements of the subevents <subevt>, e.g.

sum sqrt(Pt^2 + M^2)/2 [t:T:H:Z]

would calculate the transverse mass (square root of the sum of squared transverse momentum
and squared mass) of all tops, Higgs and Z bosons in the final state.

prod

Identical to sum, but takes the product, not the sum of the expression <expr> evaluated over
the full subevent. Syntax:

prod <expr> [<subevt>]

5.2.5 Cuts and event selection

Instead of a numeric value, we can use observables to compute a logical value.

all

all logical_expr [particles ]
all logical_expr [particles_1, particles_2 ]

The all construct expects a logical expression and one or two subevent arguments in square
brackets.

all Pt > 10 GeV [charged]
all 80 GeV < M < 100 GeV [lepton, antilepton]

In the second example, lepton and antilepton should be aliases defined in a let construct.
(Recall that aliases are promoted to subevents if they occur within square brackets.)

This construction defines a cut. The result value is true if the logical expression evaluates
to true for all particles in the subevent in square brackets. In the two-argument case it must
be true for all non-overlapping combinations of particles in the two subevents. If one of the
arguments is the empty subevent, the result is also true.



5.2. PARTICLES AND (SUB)EVENTS 87

any

any logical_expr [particles ]
any logical_expr [particles_1, particles_2 ]

The any construct is true if the logical expression is true for at least one particle or non-
overlapping particle combination:

any E > 100 GeV [photon]

This defines a trigger or selection condition. If a subevent argument is empty, it evaluates to
false

no

no logical_expr [particles ]
no logical_expr [particles_1, particles_2 ]

The no construct is true if the logical expression is true for no single one particle or non-
overlapping particle combination:

no 5 degree < Theta < 175 degree ["e-":"e+"]

This defines a veto condition. If a subevent argument is empty, it evaluates to true. It is
equivalent to not any..., but included for notational convenience.

5.2.6 More particle functions

count

count [particles ]
count [particles_1, particles_2 ]
count if logical-expr [particles ]
count if logical-expr [particles, ref_particles ]

This counts the number of events in a subevent, the result is of type int. If there is a conditional
expression, it counts the number of particle in the subevent that pass the test. If there are
two arguments, it counts the number of non-overlapping particle pairs (that pass the test, if
any).

Predefined observables

The following real-valued observables are available in SINDARIN for use in eval, all, any, no,
and count constructs. The argument is always the subevent or alias enclosed in square brackets.

• M2

– One argument: Invariant mass squared of the (composite) particle in the argument.



88 CHAPTER 5. SINDARIN IN DETAILS

– Two arguments: Invariant mass squared of the sum of the two momenta.

• M

– Signed square root of M2: positive if M2 > 0, negative if M2 < 0.

• E

– One argument: Energy of the (composite) particle in the argument.

– Two arguments: Sum of the energies of the two momenta.

• Px, Py, Pz

– Like E, but returning the spatial momentum components.

• P

– Like E, returning the absolute value of the spatial momentum.

• Pt, Pl

– Like E, returning the transversal and longitudinal momentum, respectively.

• Theta

– One argument: Absolute polar angle in the lab frame

– Two arguments: Angular distance of two particles in the lab frame.

• Theta_star Only with two arguments, gives the relative polar angle of the two momenta
in the rest system of the momentum sum (i.e. mother particle).

• Phi

– One argument: Absolute azimuthal angle in the lab frame

– Two arguments: Azimuthal distance of two particles in the lab frame

• Rap, Eta

– One argument: rapidity / pseudorapidity

– Two arguments: rapidity / pseudorapidity difference

• Dist

– Two arguments: Distance on the η-ϕ cylinder, i.e.,
√
∆η2 +∆ϕ2

• kT

– Two arguments: kT jet clustering variable: 2min(E2
j1, E

2
j2)/Q

2 × (1− cos θj1,j2). At
the moment, Q2 = 1 GeV2.



5.3. PHYSICS MODELS 89

There are also integer-valued observables:

• PDG

– One argument: PDG code of the particle. For a composite particle, the code is
undefined (value 0). For flavor sums in the cuts statement, this observable always
returns the same flavor, i.e. the first one from the flavor list. It is thus only sensible
to use it in an analysis or selection statement when simulating events.

• Ncol

– One argument: Number of open color lines. Only count color lines, not anticolor
lines. This is defined only if the global flag ?colorize_subevt is true.

• Nacl

– One argument: Number of open anticolor lines. Only count anticolor lines, not color
lines. This is defined only if the global flag ?colorize_subevt is true.

5.3 Physics Models

A physics model is a combination of particles, numerical parameters (masses, couplings, widths),
and Feynman rules. Many physics analyses are done in the context of the Standard Model (SM).
The SM is also the default model for WHIZARD. Alternatively, you can choose a subset of the SM
(QED or QCD), variants of the SM (e.g., with or without nontrivial CKM matrix), or various
extensions of the SM. The complete list is displayed in Table 10.1.

The model definitions are contained in text files with filename extension .mdl, e.g., SM.mdl,
which are located in the share/models subdirectory of the WHIZARD installation. These files
are easily readable, so if you need details of a model implementation, inspect their contents.
The model file contains the complete particle and parameter definitions as well as their default
values. It also contains a list of vertices. This is used only for phase-space setup; the vertices
used for generating amplitudes and the corresponding Feynman rules are stored in different files
within the O’Mega source tree.

In a SINDARIN script, a model is a special object of type model. There is always a current
model. Initially, this is the SM, so on startup WHIZARD reads the SM.mdl model file and assigns
its content to the current model object. (You can change the default model by the –model
option on the command line. Also the preloading of a model can be switched off with the
–no-model option) Once the model has been loaded, you can define processes for the model,
and you have all independent model parameters at your disposal. As noted before, these are
intrinsic parameters which need not be declared when you assign them a value, for instance:

mW = 80.33 GeV
wH = 243.1 MeV



90 CHAPTER 5. SINDARIN IN DETAILS

Other parameters are derived. They can be used in expressions like any other parameter, they
are also intrinsic, but they cannot be modified directly at all. For instance, the electromagnetic
coupling ee is a derived parameter. If you change either GF (the Fermi constant), mW (the W
mass), or mZ (the Z mass), this parameter will reflect the change, but setting it directly is an
error. In other words, the SM is defined within WHIZARD in the GF -mW -mZ scheme. (While
this scheme is unusual for loop calculations, it is natural for a tree-level event generator where
the Z and W poles have to be at their experimentally determined location3.)

The model also defines the particle names and aliases that you can use for defining processes,
cuts, or analyses.

If you would like to generate a SUSY process instead, for instance, you can assign a different
model (cf. Table 10.1) to the current model object:

model = MSSM

This assignment has the consequence that the list of SM parameters and particles is replaced by
the corresponding MSSM list (which is much longer). The MSSM contains essentially all SM
parameters by the same name, but in fact they are different parameters. This is revealed when
you say

model = SM
mb = 5.0 GeV
model = MSSM
show (mb)

After the model is reassigned, you will see the MSSM value of mb which still has its default
value, not the one you have given. However, if you revert to the SM later,

model = SM
show (mb)

you will see that your modification of the SM’s mb value has been remembered. If you want
both mass values to agree, you have to set them separately in the context of their respective
model. Although this might seem cumbersome at first, it is nevertheless a sensible procedure
since the parameters defined by the user might anyhow not be defined or available for all chosen
models.

When using two different models which need an SLHA input file, these have to be provided
for both models.

Within a given scope, there is only one current model. The current model can be reset
permanently as above. It can also be temporarily be reset in a local scope, i.e., the option body
of a command or the body of a scan loop. It is thus possible to use several models within the
same script. For instance, you may define a SUSY signal process and a pure-SM background
process. Each process depends only on the respective model’s parameter set, and a change to a
parameter in one of the models affects only the corresponding process.

3In future versions of WHIZARD it is foreseen to implement other electroweak schemes.



5.4. PROCESSES 91

5.4 Processes

The purpose of WHIZARD is the integration and simulation of high-energy physics processes:
scatterings and decays. Hence, process objects play the central role in SINDARIN scripts.

A SINDARIN script may contain an arbitrary number of process definitions. The initial states
need not agree, and the processes may belong to different physics models.

5.4.1 Process definition

A process object is defined in a straightforward notation. The definition syntax is straightforward:

process process-id = incoming-particles => outgoing-particles

Here are typical examples:

process w_pair_production = e1, E1 => "W+", "W-"
process zdecay = Z => u, ubar

Throughout the program, the process will be identified by its process-id, so this is the name of
the process object. This identifier is arbitrary, chosen by the user. It follows the rules for variable
names, so it consists of alphanumeric characters and underscores, where the first character is not
numeric. As a special rule, it must not contain upper-case characters. The reason is that this
name is used for identifying the process not just within the script, but also within the Fortran
code that the matrix-element generator produces for this process.

After the equals sign, there follow the lists of incoming and outgoing particles. The number
of incoming particles is either one or two: scattering processes and decay processes. The number
of outgoing particles should be two or larger (as 2 → 1 processes are proportional to a δ function
they can only be sensibly integrated when using a structure function like a hadron collider
PDF or a beamstrahlung spectrum.). There is no hard upper limit; the complexity of processes
that WHIZARD can handle depends only on the practical computing limitations (CPU time and
memory). Roughly speaking, one can assume that processes up to 2 → 6 particles are safe,
2 → 8 processes are feasible given sufficient time for reaching a stable integration, while more
complicated processes are largely unexplored.

We emphasize that in the default setup, the matrix element of a physics process is computed
exactly in leading-order perturbation theory, i.e., at tree level. There is no restriction of
intermediate states, the result always contains the complete set of Feynman graphs that connect
the initial with the final state. If the result would actually be expanded in Feynman graphs
(which is not done by the O’Mega matrix element generator that WHIZARD uses), the number of
graphs can easily reach several thousands, depending on the complexity of the process and on
the physics model.

More details about the different methods for quantum field-theoretical matrix elements can
be found in Chap. 9. In the following, we will discuss particle names, options for processes
like restrictions on intermediate states, parallelization, flavor sums and process components for
inclusive event samples (process containers).



92 CHAPTER 5. SINDARIN IN DETAILS

5.4.2 Particle names

The particle names are taken from the particle definition in the current model file. Looking at
the SM, for instance, the electron entry in share/models/SM.mdl reads

particle E_LEPTON 11
spin 1/2 charge -1 isospin -1/2
name "e-" e1 electron e
anti "e+" E1 positron
tex_name "e^-"
tex_anti "e^+"
mass me

This tells that you can identify an electron either as "e-", e1, electron, or simply e. The
first version is used for output, but needs to be quoted, because otherwise SINDARIN would
interpret the minus sign as an operator. (Technically, unquoted particle identifiers are aliases,
while the quoted versions – you can say either e1 or "e1" – are names. On input, this makes no
difference.) The alternative version e1 follows a convention, inherited from CompHEP [64], that
particles are indicated by lower case, antiparticles by upper case, and for leptons, the generation
index is appended: e2 is the muon, e3 the tau. These alternative names need not be quoted
because they contain no special characters.

In Table 5.1, we list the recommended names as well as mass and width parameters for all
SM particles. For other models, you may look up the names in the corresponding model file.

Where no mass or width parameters are listed in the table, the particle is assumed to be
massless or stable, respectively. This is obvious for particles such as the photon. For neutrinos,
the mass is meaningless to particle physics collider experiments, so it is zero. For quarks, the
u or d quark mass is unobservable directly, so we also set it zero. For the heavier quarks, the
mass may play a role, so it is kept. (The s quark is borderline; one may argue that its mass is
also unobservable directly.) On the other hand, the electron mass is relevant, e.g., in photon
radiation without cuts, so it is not zero by default.

It pays off to set particle masses to zero, if the approximation is justified, since fewer helicity
states will contribute to the matrix element. Switching off one of the helicity states of an
external fermion speeds up the calculation by a factor of two. Therefore, script files will usually
contain the assignments

me = 0 mmu = 0 ms = 0 mc = 0

unless they deal with processes where this simplification is phenomenologically unacceptable.
Often mτ and mb can also be neglected, but this excludes processes where the Higgs couplings
of τ or b are relevant.

Setting fermion masses to zero enables, furthermore, the possibility to define multi-flavor
aliases

alias q = d:u:s:c
alias Q = D:U:S:C

and handle processes such as



5.4. PROCESSES 93

Particle Output name Alternative names Mass Width
Leptons e− e- e1 electron me

e+ e+ E1 positron me
µ− mu- e2 muon mmu
µ+ mu+ E2 mmu
τ− tau- e3 tauon mtau
τ+ tau+ E3 mtau

Neutrinos νe nue n1
ν̄e nuebar N1
νµ numu n2
ν̄µ numubar N2
ντ nutau n3
ν̄τ nutaubar N3

Quarks d d down
d̄ dbar D
u u up
ū ubar U
s s strange ms
s̄ sbar S ms
c c charm mc
c̄ cbar C mc
b b bottom mb
b̄ bbar B mb
t t top mtop wtop
t̄ tbar T mtop wtop

Vector bosons g gl g G gluon
γ A gamma photon
Z Z mZ wZ
W+ W+ Wp mW wW
W− W- Wm mW wW

Scalar bosons H H h Higgs mH wH

Table 5.1: Names that can be used for SM particles. Also shown are the intrinsic variables that
can be used to set mass and width, if applicable.



94 CHAPTER 5. SINDARIN IN DETAILS

process two_jets_at_ilc = e1, E1 => q, Q
process w_pairs_at_lhc = q, Q => Wp, Wm

where a sum over all allowed flavor combination is automatically included. For technical reasons,
such flavor sums are possible only for massless particles (or more general for mass-degenerate
particles). If you want to generate inclusive processes with sums over particles of different
masses (e.g. summing over W/Z in the final state etc.), confer below the section about process
components, Sec. 5.4.4.

Assignments of masses, widths and other parameters are actually in effect when a process is
integrated, not when it is defined. So, these assignments may come before or after the process
definition, with no significant difference. However, since flavor summation requires masses to be
zero, the assignments may be put before the alias definition which is used in the process.

The muon, tau, and the heavier quarks are actually unstable. However, the width is set to
zero because their decay is a macroscopic effect and, except for the muon, affected by hadron
physics, so it is not described by WHIZARD. (In the current WHIZARD setup, all decays occur at
the production vertex. A future version may describe hadronic physics and/or macroscopic
particle propagation, and this restriction may be eventually removed.)

5.4.3 Options for processes

The process definition may contain an optional argument:

process process-id = incoming-particles => outgoing-particles {options...}

The options are a SINDARIN script that is executed in a context local to the process command.
The assignments it contains apply only to the process that is defined. In the following, we
describe the set of potentially useful options (which all can be also set globally):

Model reassignment

It is possible to locally reassign the model via a model = statment, permitting the definition
of process using a model other than the globally selected model. The process will retain this
association during integration and event generation.

Restrictions on matrix elements

Another useful option is the setting

$restrictions = string

This option allows to select particular classes of Feynman graphs for the process when using the
O’Mega matrix element generator. The $restrictions string specifies e.g. propagators that
the graph must contain. Here is an example:

process zh_invis = e1, E1 => n1:n2:n3, N1:N2:N3, H { $restrictions = "1+2 ~ Z" }



5.4. PROCESSES 95

The complete process e−e+ → νν̄H, summed over all neutrino generations, contains both ZH
pair production (Higgs-strahlung) and W+W− → H fusion. The restrictions string selects the
Higgs-strahlung graph where the initial electrons combine to a Z boson. Here, the particles
in the process are consecutively numbered, starting with the initial particles. An alternative
for the same selection would be $restrictions = "3+4 ~ Z". Restrictions can be combined
using &&, for instance

$restrictions = "1+2 ~ Z && 3 + 4 ~ Z"

which is redundant here, however.
The restriction keeps the full energy dependence in the intermediate propagator, so the Breit-

Wigner shape can be observed in distributions. This breaks gauge invariance, in particular if the
intermediate state is off shell, so you should use the feature only if you know the implications.
For more details, cf. the Chap. 9 and the O’Mega manual.

Other restrictions that can be combined with the restrictions above on intermediate propa-
gators allow to exclude certain particles from intermediate propagators, or to exclude certain
vertices from the matrix elements. For example,

process eemm = e1, E1 => e2, E2 { $restrictions = "!A" }

would exclude all photon propagators from the matrix element and leaves only the Z exchange
here. In the same way, $restrictions = "!gl" would exclude all gluon exchange. This
exclusion of internal propagators works also for lists of particles, like

$restrictions = "!Z:H"

excludes all Z and H propagators from the matrix elements.
Besides excluding certain particles as internal lines, it is also possible to exclude certain

vertices using the restriction command

process eeww = e1, E1 => Wp, Wm { $restrictions = "^[W+,W-,Z]" }

This would generate the matrix element for the production of two W bosons at LEP without
the non-Abelian vertex W+W−Z. Again, these restrictions are able to work on lists, so

$restrictions = "^[W+,W-,A:Z]"

would exclude all triple gauge boson vertices from the above process and leave only the t-channel
neutrino exchange.

It is also possible to exlude vertices by their coupling constants, e.g. the photon exchange in
the process e+e− → µ+µ− can also be removed by the following restriction:

$restrictions = "^qlep"

Here, qlep is the Fortran variable for the coupling constant of the electron-positron-photon
vertex.

The Tab. 5.2 gives a list of options that can be applied to the O’Mega matrix elements.



96 CHAPTER 5. SINDARIN IN DETAILS

3+4~Z external particles 3 and 4 must come from intermediate Z
&& logical “and”, e.g. in 3+5~t && 4+6~tbar
!A exclude all γ propagators
!e+:nue exclude a list of propagators, here γ, νe

^qlep:gnclep exclude all vertices with qlep,gnclep coupling constants
^[A:Z,W+,W-] exclude all vertices W+W−Z, W+W−γ
^c1:c2:c3[H,H,H] exclude all triple Higgs couplings with ci constants

Table 5.2: List of possible restrictions that can be applied to O’Mega matrix elements.

Other options

There are some further options that the O’Mega matrix-element generator can take. If desired,
any string of options that is contained in this variable

$omega_flags = string

will be copied verbatim to the O’Mega call, after all other options.
One important application is the scheme of treating the width of unstable particles in the

t-channel. This is modified by the model: class of O’Mega options.
It is well known that for some processes, e.g., single W production from photon-W fusion,

gauge invariance puts constraints on the treatment of the unstable-particle width. By default,
O’Mega puts a nonzero width in the s channel only. This correctly represents the resummed
Dyson series for the propagator, but it violates QED gauge invariance, although the effect is
only visible if the cuts permit the photon to be almost on-shell.

An alternative is

$omega_flags = "-model:fudged_width" ,

which puts zero width in the matrix element, so that gauge cancellations hold, and reinstates
the s-channel width in the appropriate places by an overall factor that multiplies the whole
matrix element. Note that the fudged width option only applies to charged unstable particles,
such as the W boson or top quark. Another possibility is

$omega_flags = "-model:constant_width" ,

which puts the width both in the s- and in the t-channel like diagrams. A third option is
provided by the running width scheme

$omega_flags = "-model:running_width" ,

which applies the width only for s-channel like diagrams and multiplies it by a factor of p2/M2.
The additional p2-dependent factor mimicks the momentum dependence of the imaginary part
of a vacuum polarization for a particle decaying into massles decay products. It is noted that
none of the above options preserves gauge invariance.

For a gauge preserving approach (at least at tree level), O’Mega provides the complex-mass
scheme



5.4. PROCESSES 97

$omega_flags = "-model:cms_width .

However, in this case, one also has to modify the model in usage. For example, the parameter
setting for the Standard Model can be changed by,

model = SM (Complex_Mass_Scheme) .

Multithreaded calculation of helicity sums via OpenMP

On multicore and / or multiprocessor systems, it is possible to speed up the calculation by
using multiple threads to perform the helicity sum in the matrix element calculation. As the
processing time used by WHIZARD is not used up solely in the matrix element, the speedup thus
achieved varies greatly depending on the process under consideration; while simple processes
without flavor sums do not profit significantly from this parallelization, the computation time
for processes involving flavor sums with four or more particles in the final state is typically
reduced by a factor between two and three when utilizing four parallel threads.

The parallization is implemented using OpenMP and requires WHIZARD to be compiled with
an OpenMP aware compiler and the appropiate compiler flags This is done in the configuration
step, cf. Sec. 2.3.

As with all OpenMP programs, the default number of threads used at runtime is up to the
compiler runtime support and typically set to the number of independent hardware threads (cores
/ processors / hyperthreads) available in the system. This default can be adjusted by setting the
OMP_NUM_THREADS environment variable prior to calling WHIZARD. Alternatively, the available
number of threads can be reset anytime by the SINDARIN parameter openmp_num_threads.
Note however that the total number of threads that can be sensibly used is limited by the
number of nonvanishing helicity combinations.

5.4.4 Process components

It was mentioned above that processes with flavor sums (in the initial or final state or both) have
to be mass-degenerate (in most cases massless) in all particles that are summed over at a certain
position. This condition is necessary in order to use the same phase-space parameterization and
integration for the flavor-summed process. However, in many applications the user wants to
handle inclusive process definitions, e.g. by defining inclusive decays, inclusive SUSY samples at
hadron colliders (gluino pairs, squark pairs, gluino-squark associated production), or maybe
lepton-inclusive samples where the tau and muon mass should be kept at different values. In
WHIZARD from version v2.2.0 on, there is the possibility to define such inclusive process containers.
The infrastructure for this feature is realized via so-called process components: processes are
allowed to contain several process components. Those components need not be provided by
the same matrix element generator, e.g. internal matrix elements, O’Mega matrix elements,
external matrix element (e.g. from a one-loop program, OLP) can be mixed. The very same
infrastructure can also be used for next-to-leading order (NLO) calculations, containing the
born with real emission, possible subtraction terms to make the several components infrared-
and collinear finite, as well as the virtual corrections.



98 CHAPTER 5. SINDARIN IN DETAILS

Here, we want to discuss the use for inclusive particle samples. There are several options, the
simplest of which to add up different final states by just using the + operator in SINDARIN, e.g.:

process multi_comp = e1, E1 => (e2, E2) + (e3, E3) + (A, A)

The brackets are not only used for a better grouping of the expressions, they are not mandatory
for WHIZARD to interpret the sum correctly. When integrating, WHIZARD tells you that this a
process with three different components:

| Initializing integration for process multi_comp_1_p1:
| ------------------------------------------------------------------------
| Process [scattering]: ’multi_comp’
| Library name = ’default_lib’
| Process index = 1
| Process components:
| 1: ’multi_comp_i1’: e-, e+ => m-, m+ [omega]
| 2: ’multi_comp_i2’: e-, e+ => t-, t+ [omega]
| 3: ’multi_comp_i3’: e-, e+ => A, A [omega]
| ------------------------------------------------------------------------

A different phase-space setup is used for each different component. The integration for each
different component is performed separately, and displayed on screen. At the end, a sum of all
components is shown. All files that depend on the components are being attached an _i<n>
where <n> is the number of the process component that appears in the list above: the Fortran
code for the matrix element, the .phs file for the phase space parameterization, and the grid
files for the VAMP Monte-Carlo integration (or any other integration method). However, there
will be only one event file for the inclusive process, into which a mixture of events according to
the size of the individual process component cross section enter.

More options are to specify additive lists of particles. WHIZARD then expands the final states
according to tensor product algebra:

process multi_tensor = e1, E1 => e2 + e3 + A, E2 + E3 + A

This gives the same three process components as above, but WHIZARD recognized that e.g.
e−e+ → µ−γ is a vanishing process, hence the numbering is different:

| Process component ’multi_tensor_i2’: matrix element vanishes
| Process component ’multi_tensor_i3’: matrix element vanishes
| Process component ’multi_tensor_i4’: matrix element vanishes
| Process component ’multi_tensor_i6’: matrix element vanishes
| Process component ’multi_tensor_i7’: matrix element vanishes
| Process component ’multi_tensor_i8’: matrix element vanishes
| ------------------------------------------------------------------------
| Process [scattering]: ’multi_tensor’
| Library name = ’default_lib’
| Process index = 1
| Process components:
| 1: ’multi_tensor_i1’: e-, e+ => m-, m+ [omega]
| 5: ’multi_tensor_i5’: e-, e+ => t-, t+ [omega]
| 9: ’multi_tensor_i9’: e-, e+ => A, A [omega]
| ------------------------------------------------------------------------



5.4. PROCESSES 99

Identical copies of the same process that would be created by expanding the tensor product of
final states are eliminated and appear only once in the final sum of process components.

Naturally, inclusive process definitions are also available for decays:

process multi_dec = Wp => E2 + E3, n2 + n3

This yields:
| Process component ’multi_dec_i2’: matrix element vanishes
| Process component ’multi_dec_i3’: matrix element vanishes
| ------------------------------------------------------------------------
| Process [decay]: ’multi_dec’
| Library name = ’default_lib’
| Process index = 2
| Process components:
| 1: ’multi_dec_i1’: W+ => mu+, numu [omega]
| 4: ’multi_dec_i4’: W+ => tau+, nutau [omega]
| ------------------------------------------------------------------------

5.4.5 Compilation

Once processes have been set up, to make them available for integration they have to be compiled.
More precisely, the matrix-element generator O’Mega (and it works similarly if a different matrix
element method is chosen) is called to generate matrix element code, the compiler is called
to transform this Fortran code into object files, and the linker is called to collect this in a
dynamically loadable library. Finally, this library is linked to the program. From version v2.2.0
of WHIZARD this is no longer done by system calls of the OS but steered via process library
Makefiles. Hence, the user can execute and manipulate those Makefiles in order to manually
intervene in the particular steps, if he/she wants to do so.

All this is done automatically when an integrate, unstable, or simulate command is
encountered for the first time. You may also force compilation explicitly by the command

compile

which performs all steps as listed above, including loading the generated library.
The Fortran part of the compilation will be done using the Fortran compiler specified by the

string variable $fc and the compiler flags specified as $fcflags. The default settings are those
that have been used for compiling WHIZARD itself during installation. For library compatibility,
you should stick to the compiler. The flags may be set differently. They are applied in the
compilation and loading steps, and they are processed by libtool, so libtool-specific flags
can also be given.

WHIZARD has some precautions against unnecessary repetitions. Hence, when a compile
command is executed (explicitly, or implicitly by the first integration), the program checks first
whether the library is already loaded, and whether source code already exists for the requested
processes. If yes, this code is used and no calls to O’Mega (or another matrix element method) or
to the compiler are issued. Otherwise, it will detect any modification to the process configuration
and regenerate the matrix element or recompile accordingly. Thus, a SINDARIN script can be



100 CHAPTER 5. SINDARIN IN DETAILS

executed repeatedly without rebuilding everything from scratch, and you can safely add more
processes to a script in a subsequent run without having to worry about the processes that have
already been treated.

This default behavior can be changed. By setting

?rebuild_library = true

code will be re-generated and re-compiled even if WHIZARD would think that this is unncessary.
The same effect is achieved by calling WHIZARD with a command-line switch,

/home/user$ whizard --rebuild_library

There are further rebuild switches which are described below. If everything is to be rebuilt,
you can set a master switch ?rebuild or the command line option --rebuild. The latter can
be abbreviated as a short command-line option:

/home/user$ whizard -r

Setting this switch is always a good idea when starting a new project, just in case some old
files clutter the working directory. When re-running the same script, possibly modified, the -r
switch should be omitted, so the existing files can be reused.

5.4.6 Process libraries

Processes are collected in libraries. A script may use more than one library, although for most
applications a single library will probably be sufficient.

The default library is default_lib. If you do not specify anything else, the processes you
compile will be collected by a driver file default_lib.f90 which is compiled together with the
process code and combined as a libtool archive default_lib.la, which is dynamically linked
to the running WHIZARD process.

Once in a while, you work on several projects at once, and you didn’t care about opening
a new working directory for each. If the -r option is given, a new run will erase the existing
library, which may contain processes needed for the other project. You could omit -r, so all
processes will be collected in the same library (this does not hurt), but you may wish to cleanly
separate the projects. In that case, you should open a separate library for each project.

Again, there are two possibilities. You may start the script with the specification

library = "my_lhc_proc"

to open a library my_lhc_proc in place of the default library. Repeating the command with
different arguments, you may introduce several libraries in the script. The active library is
always the one specified last. It is possible to issue this command locally, so a particular process
goes into its own library.

Alternatively, you may call WHIZARD with the option

/home/user$ whizard --library=my_lhc_proc



5.5. BEAMS 101

If several libraries are open simultaneously, the compile command will compile all libraries
that the script has referenced so far. If this is not intended, you may give the command an
argument,

compile ("my_lhc_proc", "my_other_proc")

to compile only a specific subset.
The command

show (library)

will display the contents of the actually loaded library together with a status code which indicates
the status of the library and the processes within.

5.4.7 Stand-alone WHIZARD with precompiled processes

Once you have set up a process library, it is straightforward to make a special stand-alone
WHIZARD executable which will have this library preloaded on startup. This is a matter of
convenience, and it is also useful if you need a statically linked executable for reasons of profiling,
batch processing, etc.

For this task, there is a variant of the compile command:

compile as "my_whizard" ()

which produces an executable my_whizard. You can omit the library argument if you simply
want to include everything. (Note that this command will not load a library into the current
process, it is intended for creating a separate program that will be started independently.)

As an example, the script

process proc1 = e1, E1 => e1, E1
process proc2 = e1, E1 => e2, E2
process proc3 = e1, E1 => e3, E3
compile as "whizard-leptons" ()

will make a new executable program whizard-leptons. This program behaves completely
identical to vanilla WHIZARD, except for the fact that the processes proc1, proc2, and proc3
are available without configuring them or loading any library.

5.5 Beams

Before processes can be integrated and simulated, the program has to know about the collider
properties. They can be specified by the beams statement.

In the command script, it is irrelevant whether a beams statement comes before or after
process specification. The integrate or simulate commands will use the beams statement
that was issued last.



102 CHAPTER 5. SINDARIN IN DETAILS

5.5.1 Beam setup

If the beams have no special properties, and the colliding particles are the incoming particles in
the process themselves, there is no need for a beams statement at all. You only must specify
the center-of-momentum energy of the collider by setting the value of

√
s, for instance

sqrts = 14 TeV

The beams statement comes into play if

• the beams have nontrivial structure, e.g., parton structure in hadron collision or photon
radiation in lepton collision, or

• the beams have non-standard properties: polarization, asymmetry, crossing angle.

Note that some of the abovementioned beam properties had not yet been reimplemented in the
WHIZARD2 release series. From version v2.2.0 on all options of the legacy series WHIZARD1 are
available again. From version v2.1 to version v2.2 of WHIZARD there has also been a change in
possible options to the beams statement: in the early versions of WHIZARD2 (v2.0/v2.1), local
options could be specified within the beam settings, e.g. beams = p, p sqrts = 14 TeV
=> pdf_builtin. These possibility has been abandoned from version v2.2 on, and the beams
command does not allow for any optional arguments any more.

Hence, beam parameters can – with the exception of the specification of structure functions
– be specified only globally:

sqrts = 14 TeV
beams = p, p => lhapdf

It does not make any difference whether the value of sqrts is set before or after the beams
statement, the last value found before an integrate or simulate is the relevant one. This in
particularly allows to specify the beam structure, and then after that perform a loop or scan
over beam energies, beam parameters, or structure function settings.

The beams statement also applies to particle decay processes, where there is only a single
beam. Here, it is usually redundant because no structure functions are possible, and the energy
is fixed to the decaying particle’s mass. However, it is needed for computing polarized decay,
e.g.

beams = Z
beams_pol_density = @(0)

where for a boson at rest, the polarization axis is defined to be the z axis.
Beam polarization is described in detail below in Sec. 5.6.
Note also that future versions of WHIZARD might give support for single-beam events, where

structure functions for single particles indeed do make sense.
In the following sections we list the available options for structure functions or spectra

inside WHIZARD and explain their usage. More about the physics of the implemented structure
functions can be found in Chap. 9.



5.5. BEAMS 103

5.5.2 Asymmetric beams and Crossing angles

WHIZARD not only allows symmetric beam collisions, but basically arbitrary collider setups. In
the case there are two different beam energies, the command

beams_momentum = <beam_mom1>, <beam_mom2>

allows to specify the momentum (or as well energies for massless particles) for the beams. Note
that for scattering processes both values for the beams must be present. So the following to
setups for 14 TeV LHC proton-proton collisions are equivalent:

beams = p, p => pdf_builtin
sqrts = 14 TeV

and

beams = p, p => pdf_builtin
beams_momentum = 7 TeV, 7 TeV

Asymmetric setups can be set by using different values for the two beam momenta, e.g. in a
HERA setup:

beams = e, p => none, pdf_builtin beams_momentum = 27.5 GeV, 920 GeV

or for the BELLE experiment at the KEKB accelerator:

beams = e1, E1 beams_momentum = 8 GeV, 3.5 GeV

WHIZARD lets you know about the beam structure and calculates for you that the center of mass
energy corresponds to 10.58 GeV:

| Beam structure: e-, e+
| momentum = 8.000000000000E+00, 3.500000000000E+00
| Beam data (collision):
| e- (mass = 5.1099700E-04 GeV)
| e+ (mass = 5.1099700E-04 GeV)
| sqrts = 1.058300530253E+01 GeV
| Beam structure: lab and c.m. frame differ

It is also possible to specify beams for decaying particles, where beams_momentum then only
has a single argument, e.g.:

process zee = Z => "e-", "e+"
beams = Z
beams_momentum = 500 GeV
simulate (zee) { n_events = 100 }



104 CHAPTER 5. SINDARIN IN DETAILS

This would correspond to a beam of Z bosons with a momentum of 500 GeV. Note, however, that
WHIZARD will always do the integration of the particle width in the particle’s rest frame, while
the moving beam is then only taken into account for the frame of reference for the simulation.

Further options then simply having different beam energies describe a non-vanishing between
the two incoming beams. Such concepts are quite common e.g. for linear colliders to improve
the beam properties in the collimation region at the beam interaction points. Such crossing
angles can be specified in the beam setup, too, using the beams_theta command:

beams = e1, E1
beams_momentum = 500 GeV, 500 GeV
beams_theta = 0, 10 degree

It is important that when a crossing angle is being specified, and the collision system consequently
never is the center-of-momentum system, the beam momenta have to explicitly set. Besides a
planar crossing angle, one is even able to rotate an azimuthal distance:

beams = e1, E1
beams_momentum = 500 GeV, 500 GeV
beams_theta = 0, 10 degree
beams_phi = 0, 45 degree

5.5.3 LHAPDF

For incoming hadron beams, the beams statement specifies which structure functions are used.
The simplest example is the study of parton-parton scattering processes at a hadron-hadron
collider such as LHC or Tevatron. The LHAPDF structure function set is selected by a syntax
similar to the process setup, namely the example already shown above:

beams = p, p => lhapdf

Note that there are slight differences in using the LHAPDF release series 6 and the older Fortran
LHAPDF release series 5, at least concerning the naming conventions for the PDF sets 4. The
above beams statement selects a default LHAPDF structure-function set for both proton beams
(which is the CT10 central set for LHAPDF 6, and cteq6ll.LHpdf central set for LHAPDF5). The
structure function will apply for all quarks, antiquarks, and the gluon as far as supported by
the particular LHAPDF set. Choosing a different set is done by adding the filename as a local
option to the lhapdf keyword:

beams = p, p => lhapdf
$lhapdf_file = "MSTW2008lo68cl"

for the actual LHAPDF 6 series, and

beams = p, p => lhapdf
$lhapdf_file = "MSTW2008lo68cl.LHgrid"

4Until WHIZARD version 2.2.1 including, only the LHAPDF series 5 was supported, while from version 2.2.2 on
also the LHAPDF release series 6 has been supported.



5.5. BEAMS 105

for LHAPDF5.Similarly, a member within the set is selected by the numeric variable lhapdf_member
(for both release series of LHAPDF).

In some cases, different structure functions have to be chosen for the two beams. For instance,
we may look at ep collisions:

beams = "e-", p => none, lhapdf

Here, there is a list of two independent structure functions (each with its own option set, if
applicable) which applies to the two beams.

Another mixed case is pγ collisions, where the photon is to be resolved as a hadron. The
simple assignment

beams = p, gamma => lhapdf, lhapdf_photon

will be understood as follows: WHIZARD selects the appropriate default structure functions (here
we are using LHAPDF 5 as an example as the support of photon and pion PDFs in LHAPDF 6 has
been dropped), cteq6ll.LHpdf for the proton and GSG960.LHgrid for the photon. The photon
case has an additional integer-valued parameter lhapdf_photon_scheme. (There are also pion
structure functions available.) For modifying the default, you have to specify separate structure
functions

beams = p, gamma => lhapdf, lhapdf_photon
$lhapdf_file = ...
$lhapdf_photon_file = ...

Finally, the scattering of elementary photons on partons is described by

beams = p, gamma => lhapdf, none

Note that for LHAPDF version 5.7.1 or higher and for PDF sets which support it, photons
can be used as partons.

There is one more option for the LHAPDF PDFs, namely to specify the path where the LHAPDF
PDF sets reside: this is done with the string variable $lhapdf_dir = "<path-to-lhapdf>".
Usually, it is not necessary to set this because WHIZARD detects this path via the lhapdf-config
script during configuration, but in the case paths have been moved, or special files/special
locations are to be used, the user can specify this location explicitly.

5.5.4 Built-in PDFs

In addition to the possibility of linking against LHAPDF, WHIZARD comes with a couple of built-in
PDFs which are selected via the pdf_builtin keyword

beams = p, p => pdf_builtin

The default PDF set is CTEQ6L, but other choices are also available by setting the string
variable $pdf_builtin_set to an appropiate value. E.g, modifying the above setup to

beams = p, p => pdf_builtin
$pdf_builtin_set = "mrst2004qedp"



106 CHAPTER 5. SINDARIN IN DETAILS

Tag Name Notes References
cteq6l CTEQ6L — [65]
cteq6l1 CTEQ6L1 — [65]
cteq6d CTEQ6D — [65]
cteq6m CTEQ6M — [65]
mrst2004qedp MRST2004QED (proton) includes photon [66]
mrst2004qedn MRST2004QED (neutron) includes photon [66]
mstw2008lo MSTW2008LO — [67]
mstw2008nlo MSTW2008NLO — [67]
mstw2008nnlo MSTW2008NNLO — [67]
ct10 CT10 — [68]
CJ12_max CJ12_max — [69]
CJ12_mid CJ12_mid — [69]
CJ12_min CJ12_min — [69]
CJ15LO CJ15LO — [70]
CJ15NLO CJ15NLO — [70]
mmht2014lo MMHT2014LO — [71]
mmht2014nlo MMHT2014NLO — [71]
mmht2014nnlo MMHT2014NNLO — [71]
CT14LL CT14LLO — [72]
CT14L CT14LO — [72]
CT14N CT1414NLO — [72]
CT14NN CT14NNLO — [72]

Table 5.3: All PDF sets available as builtin sets. The two MRST2004QED sets also contain a
photon.



5.5. BEAMS 107

would select the proton PDF from the MRST2004QED set. A list of all currently available
PDFs can be found in Table 5.3.

The two MRST2004QED sets also contain the photon as a parton, which can be used in the
same way as for LHAPDF from v5.7.1 on. Note, however, that there is no builtin PDF that contains
a photon structure function. There is a beams structure function specifier pdf_builtin_photon,
but at the moment this throws an error. It just has been implemented for the case that in future
versions of WHIZARD a photon structure function might be included.

Note that in general only the data sets for the central values of the different PDFs ship
with WHIZARD. Using the error sets is possible, i.e. it is supported in the syntax of the code,
but you have to download the corresponding data sets from the web pages of the PDF fitting
collaborations.

5.5.5 HOPPET b parton matching

When the HOPPET tool [73] for hadron-collider PDF structure functions and their manipulations
are correctly linked to WHIZARD, it can be used for advanced calculations and simulations of
hadron collider physics. Its main usage inside WHIZARD is for matching schemes between 4-flavor
and 5-flavor schemes in b-parton initiated processes at hadron colliders. Note that in versions
2.2.0 and 2.2.1 it only worked together with LHAPDF version 5, while with the LHAPDF version 6
interface from version 2.2.2 on it can be used also with the modern version of PDFs from LHAPDF.
Furthermore, from version 2.2.2, the HOPPET b parton matching also works for the builtin PDFs.

It depends on the corresponding process and the energy scales involved whether it is a better
description to use the g → bb̄ splitting from the DGLAP evolution inside the PDF and just
take the b parton content of a PDF, e.g. in BSM Higgs production for large tan β: pp → H
with a partonic subprocess bb̄ → H, or directly take the gluon PDFs and use pp → bb̄H with
a partonic subprocess gg → bb̄H. Elaborate schemes for a proper matching between the two
prescriptions have been developed and have been incorporated into the HOPPET interface.

Another prime example for using these matching schemes is single top production at hadron
colliders. Let us consider the following setup:

process proc1 = b, u => t, d
process proc2 = u, b => t, d
process proc3 = g, u => t, d, B { $restrictions = "2+4 ~ W+" }
process proc4 = u, g => t, d, B { $restrictions = "1+4 ~ W+" }

beams = p,p => pdf_builtin
sqrts = 14 TeV
?hoppet_b_matching = true

$sample = "single_top_matched"
luminosity = 1 / 1 fbarn
simulate (proc1, proc2, proc3, proc4)

The first two processes are single top production from b PDFs, the last two processes contain an
explicit g → bb̄ splitting (the restriction, cf. Sec. 5.4.3 has been placed in order to single out the



108 CHAPTER 5. SINDARIN IN DETAILS

single top production signal process). PDFs are then chosen from the default builtin PDF (which
is CTEQ6L), and the HOPPET matching routines are switched on by the flag ?hoppet_b_matching.

5.5.6 Lepton Collider ISR structure functions

Initial state QED radiation off leptons is an important feature at all kinds of lepton colliders:
the radiative return to the Z resonance by ISR radiation was in fact the largest higher-order
effect for the SLC and LEP I colliders. The soft-collinear and soft photon radiation can indeed
be resummed/exponentiated to all orders in perturbation theory [7], while higher orders in
hard-collinear photons have to be explicitly calculated order by order [8,9]. WHIZARD has an
intrinsic implementation of the lepton ISR structure function that includes all orders of soft
and soft-collinear photons as well as up to the third order in hard-collinear photons. It can be
switched on by the following statement:

beams = e1, E1 => isr

As the ISR structure function is a single-beam structure function, this expression is synonymous
for

beams = e1, E1 => isr, isr

The ISR structure function can again be applied to only one of the two beams, e.g. in a
HERA-like setup:

beams = e1, p => isr, pdf_builtin

Their are several options for the lepton-collider ISR structure function that are summarized
in the following:

Parameter Default Meaning
isr_alpha 0/intrinsic value of αQED for ISR
isr_order 3 max. order of hard-collinear photon emission
isr_mass 0/intrinsic mass of the radiating lepton
isr_q_max 0/

√
s upper cutoff for ISR

?isr_recoil false flag to switch on recoil/pT (deprecated)
?isr_keep_energy false recoil flag: conserve energy in splitting (deprecated)

The maximal order of the hard-collinear photon emission taken into account by WHIZARD
is set by the integer variable isr_order; the default is the maximally available order of three.
With the variable isr_alpha, the value of the QED coupling constant αQED used in the ISR
structure function can be set. The default is taken from the active physics model. The mass of
the radiating lepton (in most cases the electron) is set by isr_mass; again the default is taken
from the active physics model. Furthermore, the upper integration border for the ISR structure
function which acts roughly as an upper hardness cutoff for the emitted photons, can be set
through isr_q_max; if not set, the collider energy (possibly after beamstrahlung, cf. Sec. 5.5.7)√
s (or

√
ŝ) is taken. Note that WHIZARD accounts for the exclusive effects of ISR radiation



5.5. BEAMS 109

at the moment by a single (hard, resolved) photon in the event; a more realistic treatment of
exclusive ISR photons in simulation is foreseen for a future version.

While the ISR structure function is evaluated in the collinear limit, it is possible to generate
transverse momentum for both the radiated photons and the recoiling partonic system. We
recommend to stick to the collinear approximation for the integration step. Integration cuts
should be set up such that they do not significantly depend on photon transverse momentum. In
a subsequent simulation step, it is possible to transform the events with collinear ISR radiation
into more realistic events with non-collinear radiation. To this end, WHIZARD provides a separate
ISR photon handler which can be activated in the simulation step. The algorithm operates on
the partonic event: it takes the radiated photons and the partons entering the hard process,
and applies a pT distribution to those particles and their interaction products, i.e., all outgoing
particles. Cuts that depend on photon pT may be applied to the modified events. For details on
the ISR photon handler, cf. Sec. 10.4.

The flag ?isr_recoil switches on pT recoil of the emitting lepton against photon radiation during integration;
per default it is off. The flag ?isr_keep_energy controls the mode of on-shell projection for the splitting process
with pT . Note that this feature is kept for backwards compatibility, but should not be used for new simulations.
The reason is as follows: For a fraction of events, pT will become significant, and (i) energy/momentum non-
conservation, applied to both beams separately, can lead to unexpected and unphysical effects, and (ii) the
modified momenta enter the hard process, so the collinear approximation used in the ISR structure function
computation does not hold.

5.5.7 Lepton Collider Beamstrahlung

At linear lepton colliders, the macroscopic electromagnetic interaction of the bunches leads to a
distortion of the spectrum of the bunches that is important for an exact simulation of the beam
spectrum. There are several methods to account for these effects. The most important tool to
simulate classical beam-beam interactions in lepton-collider physics is GuineaPig++ [10,11,12].
A direct interface between this tool GuineaPig++ and WHIZARD had existed as an inofficial add-on
to the legacy branch WHIZARD1, but is no longer applicable in WHIZARD2. A WHIZARD-internal
interface is foreseen for the very near future, most probably within this v2.2 release. Other
options are to use parameterizations of the beam spectrum that have been included in the
package CIRCE1 [6] which has been interfaced to WHIZARD since version v1.20 and been included
in the WHIZARD2 release series. Another option is to generate a beam spectrum externally and
then read it in as an ASCII data file, cf. Sec. 5.5.8. More about this can be found in a dedicated
section on lepton collider spectra, Sec. 10.3.

In this section, we discuss the usage of beamstrahlung spectra by means of the CIRCE1
package. The beamstrahlung spectra are true spectra, so they have to be applied to pairs of
beams, and an application to only one beam is meaningless. They are switched on by this beams
statement including structure functions:

beams = e1, E1 => circe1

It is important to note that the parameterization of the beamstrahlung spectra within CIRCE1
contain also processes where e → γ conversions have been taking place, i.e. also hard processes



110 CHAPTER 5. SINDARIN IN DETAILS

with one (or two) initial photons can be simulated with beamstrahlung switched on. In that
case, the explicit photon flags, ?circe1_photon1 and ?circe1_photon2, for the two beams
have to be properly set, e.g. (ordering in the final state does not play a role):

process proc1 = A, e1 => A, e1
sqrts = 500 GeV
beams = e1, E1 => circe1
?circe1_photon1 = true
integrate (proc1)

process proc2 = e1, A => A, e1
sqrts = 1000 GeV
beams = e1, A => circe1
?circe1_photon2 = true

or

process proc1 = A, A => Wp, Wm
sqrts = 200 GeV
beams = e1, E1 => circe1
?circe1_photon1 = true
?circe1_photon2 = true
?circe1_generate = false

In all cases (one or both beams with photon conversion) the beam spectrum applies to both
beams simultaneously.

In the last example (γγ → W+W−) the default CIRCE1 generator mode was turned off by
unsetting ?circe1_generate. In the other examples this flag is set, by default. For standard use
cases, CIRCE1 implements a beam-event generator inside the WHIZARD generator, which provides
beam-event samples with correctly distributed probability. For electrons, the beamstrahlung
spectrum sharply peaks near maximum energy. This distribution is most efficiently handled by the
generator mode. By contrast, in the γγ mode, the beam-event c.m. energy is concentrated at low
values. For final states with low invariant mass, which are typically produced by beamstrahlung
photons, the generator mode is appropriate. However, the W+W− system requires substantial
energy, and such events will be very rare in the beam-event sample. Switching off the CIRCE1
generator mode solves this problem.

This is an overview over all options and flags for the CIRCE1 setup for lepton collider
beamstrahlung:



5.5. BEAMS 111

Parameter Default Meaning
?circe1_photon1 false e → γ conversion for beam 1
?circe1_photon2 false e → γ conversion for beam 2
circe1_sqrts

√
s collider energy for the beam spectrum

?circe1_generate true flag for the CIRCE1 generator mode
?circe1_map true flag to apply special phase-space mapping
circe1_mapping_slope 2. value of PS mapping exponent
circe1_eps 1E-5 parameter for mapping of spectrum peak position
circe1_ver 0 internal version of CIRCE1 package
circe1_rev 0/most recent internal revision of CIRCE1
$circe1_acc SBAND accelerator type
circe1_chat 0 chattiness/verbosity of CIRCE1

The collider energy relevant for the beamstrahlung spectrum is set by circe1_sqrts. As a
default, this is always the value of sqrts set in the SINDARIN script. However, sometimes these
values do not match, e.g. the user wants to simulate tt̄h at sqrts = 550 GeV, but the only
available beam spectrum is for 500 GeV. In that case, circe1_sqrts = 500 GeV has to be set
to use the closest possible available beam spectrum.

As mentioned in the discussion of the examples above, in CIRCE1 there are two options to
use the beam spectra for beamstrahlung: intrinsic semi-analytic approximation formulae for the
spectra, or a Monte-Carlo sampling of the sampling. The second possibility always give a better
description of the spectra, and is the default for WHIZARD. It can, however, be switched off by
setting the flag ?circe1_generate to false.

As the beamstrahlung spectra are sharply peaked at the collider energy, but still having
long tails, a mapping of the spectra for an efficient phase-space sampling is almost mandatory.
This is the default in WHIZARD, which can be changed by the flag ?circe1_map. Also, the
default exponent for the mapping can be changed from its default value 2. with the variable
circe1_mapping_slope. It is important to efficiently sample the peak position of the spectrum;
the effective ratio of the peak to the whole sampling interval can be set by the parameter
circe1_eps. The integer parameter circe1_chat sets the chattiness or verbosity of the CIRCE1
package, i.e. how many messages and warnings from the beamstrahlung generation/sampling
will be issued.

The actual internal version and revision of the CIRCE1 package are set by the two integer
parameters circe1_ver and circe1_rev. The default is in any case always the newest version
and revision, while older versions are still kept for backwards compatibility and regression
testing.

Finally, the geometry and design of the accelerator type is set with the string variable
$circe1_acc: it contains the possible options for the old "SBAND" and "XBAND" setups, as well
as the "TESLA" and JLC/NLC SLAC design "JLCNLC". The setups for the most important
energies of the ILC as they are summarized in the ILC TDR [13,14,15,16] are available as ILC.
Beam spectra for the CLIC [18,19,20] linear collider are much more demanding to correctly
simulate (due to the drive beam concept; only the low-energy modes where the drive beam is
off can be simulated with the same setup as the abovementioned machines). Their setup will be



112 CHAPTER 5. SINDARIN IN DETAILS

supported soon in one of the upcoming WHIZARD versions within the CIRCE2 package.
An example of how to generate beamstrahlung spectra with the help of the package CIRCE2

(that is also a part of WHIZARD) is this:

process eemm = e1, E1 => e2, E2
sqrts = 500 GeV
beams = e1, E1 => circe2
$circe2_file = "ilc500.circe"
$circe2_design = "ILC"
?circe_polarized = false

Here, the ILC design is used for a beamstrahlung spectrum at 500 GeV nominal energy, with
polarization averaged (hence, the setting of polarization to false). A list of all available options
can be found in Sec. 5.5.13.

More technical details about the simulation of beamstrahlung spectra see the documented
source code of the CIRCE1 package, as well as Chap. 9. In the next section, we discuss how to
read in beam spectra from external files.

5.5.8 Beam events

As mentioned in the previous section, beamstrahlung is one of the crucial ingredients for a
realistic simulation of linear lepton colliders. One option is to take a pre-generated beam
spectrum for such a machine, and make it available for simulation within WHIZARD as an external
ASCII data file. Such files basically contain only pairs of energy fractions of the nominal collider
energy

√
s (x values). In WHIZARD they can be used in simulation with the following beams

statement:

beams = e1, E1 => beam_events
$beam_events_file = "<beam_spectrum_file>"

Note that beam spectra must always be pair spectra, i.e. they are automatically applied to
both beam simultaneously. Beam spectra via external files are expected to reside in the current
working directory. Alternatively, WHIZARD searches for them in the install directory of WHIZARD
in share/beam-sim. There you can find an example file, uniform_spread_2.5%.dat for such a
beam spectrum. The only possible parameter that can be set is the flag ?beam_events_warn_eof
whose default is true. This triggers the issuing of a warning when the end of file of an external
beam spectrum file is reached. In such a case, WHIZARD starts to reuse the same file again from
the beginning. If the available data points in the beam events file are not big enough, this could
result in an insufficient sampling of the beam spectrum.

5.5.9 Gaussian beam-energy spread

Real beams have a small energy spread. If beamstrahlung is small, the spread may be approxi-
mately described as Gaussian. As a replacement for the full simulation that underlies CIRCE2
spectra, it is possible to impose a Gaussian distributed beam energy, separately for each beam.



5.5. BEAMS 113

beams = e1, E1 => gaussian
gaussian_spread1 = 0.1\%
gaussian_spread2 = 0.2\%

(Note that the % sign means multiplication by 0.01, as it should.) The spread values are defined
as the σ value of the Gaussian distribution, i.e., 2/3 of the events are within ±1σ for each beam,
respectively.

5.5.10 Equivalent photon approximation

The equivalent photon approximation (EPA) uses an on-shell approximation for the e → eγ
collinear splitting to allow the simulation of photon-induced backgrounds in lepton collider
physics. The original concept is that of the Weizsäcker-Williams approximation [21,22,23].
This is a single-beam structure function that can be applied to both beams, or also to one
beam only. Usually, there are some simplifications being made in the derivation. The formula
which is implemented here and seems to be the best for the QCD background for low-pT
hadrons, corresponds to Eq. (6.17) of Ref. [23]. As this reference already found, this leads to an
"overshooting" of accuracy, and especially in the high-x (high-energy) region to wrong results.
This formula corresponds to

f(x) =
α

π

1

x

[(
x̄+

x2

2

)
log

Q2
max

Q2
min

−
(
1− x

2

)2

log
x2 + Q2

max
E2

x2 +
Q2

min
E2

− m2
ex

2

Q2
min

(
1− Q2

min

Q2
max

)]
. (5.1)

Here, x is the ratio of the photon energy (called frequency ω in [23] over the original electron (or
positron) beam energy E. The energy of the electron (or positron) after the splitting is given
by x̄ = 1− x.

The simplified version is the one that corresponds to many publications about the EPA
during SLC and LEP times, and corresponds to the q2 integration of Eq. (6.16e) in [23], where
q2 is the virtuality or momentum transfer of the photon in the EPA:

f(x) =
α

π

1

x

[(
x̄+

x2

2

)
log

Q2
max

Q2
min

− m2
ex

2

Q2
min

(
1− Q2

min

Q2
max

)]
. (5.2)

While Eq. (5.1) is supposed to be the better choice for simulating hadronic background like
low-pT hadrons and should be applied for the low-x region of the EPA, Eq. (5.2) seems better
suited for high-x simulations like the photoproduction of BSM resonances etc. Note that the first
term in Eqs. (5.1) and (5.2) is the standard Altarelli-Parisi QED splitting function of electron,
Pe→eγ(x) ∝ 1 + (1− x)2, while the last term in both equations is the default power correction.

The two parameters Q2
max and Q2

min are the integration boundaries of the photon virtuality
integration. Usually, they are given by the kinematic limits:

Q2
min =

m2
ex

2

x̄
Q2

max = 4E2x̄ = sx̄ . (5.3)

For low-pT hadron simulations, it is not a good idea to take the kinematic limit as an upper
limit, but one should cut the simulation off at a hadronic scale like e.g. a multiple of the ρ mass.

The user can switch between the two different options using the setting



114 CHAPTER 5. SINDARIN IN DETAILS

$epa_mode = "default"

or

$epa_mode = "Budnev_617"

for Eq. (5.1), while Eq. (5.2) can be chosen with

$epa_mode = "Budnev_616e"

Note that a thorough study for high-energy e+e− colliders regarding the suitability of different
EPA options is still lacking.

For testing purposes also three more variants or simplifications of Eq. (5.2) are implemented:
the first, steered by $epa_mode = log_power uses simply Q2

max = s. This is also the case for the
two other method. But the switch $epa_mode = log_simple uses just epa_mass (cf. below)
as Q2

min. The final simplification is to drop the power correction, which can be chosen with
$epa_mode = log. This corresponds to the simple formula:

f(x) =
α

2π

1

x
log

s

m2
. (5.4)

Examples for the application of the EPA in WHIZARD are:

beams = e1, E1 => epa

or for a single beam:

beams = e1, p => epa, pdf_builtin

The last process allows the reaction of (quasi-) on-shell photons with protons.
In the following, we collect the parameters and flags that can be adjusted when using the

EPA inside WHIZARD:
Parameter Default Meaning
epa_alpha 0/intrinsic value of αQED for EPA
epa_x_min 0. soft photon cutoff in x (mandatory)
epa_q_min 0. minimal γ momentum transfer
epa_mass 0/intrinsic mass of the radiating fermion (mandatory)
epa_q_max 0/

√
s upper cutoff for EPA

?epa_recoil false flag to switch on recoil/pT
?epa_keep_energy false recoil flag to conserve energy in splitting

The adjustable parameters are partially similar to the parameters in the QED initial-state
radiation (ISR), cf. Sec. 5.5.6: the parameter epa_alpha sets the value of the electromagnetic
coupling constant, αQED used in the EPA structure function. If not set, this is taken from the
value inside the active physics model. The same is true for the mass of the particle that radiates
the photon of the hard interaction, which can be reset by the user with the variable epa_mass.
There are two dimensionful scale parameters, the minimal momentum transfer to the photon,



5.5. BEAMS 115

epa_q_min, which must not be zero, and the upper momentum-transfer cutoff for the EPA
structure function, epa_q_max. The default for the latter value is the collider energy,

√
s, or

the energy reduced by another structure function like e.g. beamstrahlung,
√
ŝ. Furthermore,

there is a soft-photon regulator for the splitting function in x space, epa_x_min, which also has
to be explicitly set different from zero. Hence, a minimal viable scenario that will be accepted
by WHIZARD looks like this:

beams = e1, E1 => epa
epa_q_min = 5 GeV
epa_x_min = 0.01

Finally, like the ISR case in Sec. 5.5.6, there is a flag to consider the recoil of the photon
against the radiating electron by setting ?epa_recoil to true (default: false).

Though in principle processes like e+e− → e+e−γγ where the two photons have been created
almost collinearly and then initiate a hard process could be described by exact matrix elements
and exact kinematics. However, the numerical stability in the very far collinear kinematics is
rather challenging, such that the use of the EPA is very often an acceptable trade-off between
quality of the description on the one hand and numerical stability and speed on the other hand.

In the case, the EPA is set after a second structure function like a hadron collider PDF,
there is a flavor summation over the quark constituents inside the proton, which are then the
radiating fermions for the EPA. Here, the masses of all fermions have to be identical.

More about the physics of the equivalent photon approximation can be found in Chap. 9.

5.5.11 Effective W approximation

An approach similar to the equivalent photon approximation (EPA) discussed in the previous
section Sec. 5.5.10, is the usage of a collinear splitting function for the radiation of massive
electroweak vector bosons W/Z, the effective W approximation (EWA). It has been developed
for the description of high-energy weak vector-boson fusion and scattering processes at hadron
colliders, particularly the Superconducting Super-Collider (SSC). This was at a time when the
simulation of 2 → 4 processes war still very challenging and 2 → 6 processes almost impossible,
such that this approximation was the only viable solution for the simulation of processes like
pp → jjV V and subsequent decays of the bosons V ≡ W,Z.

Unlike the EPA, the EWA is much more involved as the structure functions do depend on
the isospin of the radiating fermions, and are also different for transversal and longitudinal
polarizations. Also, a truely collinear kinematics is never possible due to the finite W and
Z boson masses, which start becoming more and more negligible for energies larger than the
nominal LHC energy of 14 TeV.

Though in principle all processes for which the EWA might be applicable are technically
feasible in WHIZARD to be generated also via full matrix elements, the EWA has been implemented
in WHIZARD for testing purposes, backwards compatibility and comparison with older simulations.
Like the EPA, it is a single-beam structure function that can be applied to one or both beams.
We only give an example for both beams here, this is for a 3 TeV CLIC collider:



116 CHAPTER 5. SINDARIN IN DETAILS

sqrts = 3 TeV
beams = e1, E1 => ewa

And this is for LHC or a higher-energy follow-up collider (which also shows the concatenation
of the single-beam structure functions, applied to both beams consecutively, cf. Sec. 5.5.14:

sqrts = 14 TeV
beams = p, p => pdf_builtin => ewa

Again, we list all the options, parameters and flags that can be adapted for the EWA:

Parameter Default Meaning
ewa_x_min 0. soft W/Z cutoff in x (mandatory)
ewa_mass 0/intrinsic mass of the radiating fermion
ewa_pt_max 0/

√
ŝ upper cutoff for EWA

?ewa_recoil false recoil switch
?ewa_keep_energy false energy conservation for recoil in splitting

First of all, all coupling constants are taken from the active physics model as they have to
be consistent with electroweak gauge invariance. Like for EPA, there is a soft x cutoff for the
f → fV splitting, ewa_x_min, that has to be set different from zero by the user. Again, the
mass of the radiating fermion can be set explicitly by the user; and, also again, the masses for
the flavor sum of quarks after a PDF as radiators of the electroweak bosons have to be identical.
Also for the EWA, there is an upper cutoff for the pT of the electroweak boson, that can be set
via eta_pt_max. Indeed, the transversal W/Z structure function is logarithmically divergent in
that variable. If it is not set by the user, it is estimated from

√
s and the splitting kinematics.

For the EWA, there is a flag to switch on a recoil for the electroweak boson against the
radiating fermion, ?ewa_recoil. Note that this is an experimental feature that is not completely
tested. In any case, the non-collinear kinematics violates 4-four momentum conservation, so
there are two choices: either to conserve the energy (?ewa_keep_energy = true) or to conserve
3-momentum (?ewa_keep_energy = false). Momentum conservation for the kinematics is the
default. This is due to the fact that for energy conservation, there will be a net total momentum
in the event including the beam remnants (ISR/EPA/EWA radiated particles) that leeds to
unexpected or unphysical features in the energy distributions of the beam remnants recoiling
against the rest of the event.

More details about the physics can be found in Chap. 9.

5.5.12 Energy scans using structure functions

In WHIZARD, there is an implementation of a pair spectrum, energy_scan, that allows to scan
the energy dependence of a cross section without actually scanning over the collider energies.
Instead, only a single integration at the upper end of the scan interval over the process with
an additional pair spectrum structure function performed. The structure function is chosen in
such a way, that the distribution of x values of the energy scan pair spectrum translates in a
plot over the energy of the final state in an energy scan from 0 to sqrts for the process under
consideration.



5.5. BEAMS 117

The simplest example is the 1/s fall-off with the Z resonance in e+e− → µ+µ−, where the
syntax is very easy:

process eemm = e1, E1 => e2, E2
sqrts = 500 GeV
cuts = sqrts_hat > 50
beams = e1, E1 => energy_scan
integrate (eemm)

The value of sqrts = 500 GeV gives the upper limit for the scan, while the cut effectively lets
the scan start at 50 GeV. There are no adjustable parameters for this structure function. How
to plot the invariant mass distribution of the final-state muon pair to show the energy scan over
the cross section, will be explained in Sec. 5.9.

More details can be found in Chap. 9.

5.5.13 Photon collider spectra

One option that has been discussed as an alternative possibility for a high-energy linear lepton
collider is to convert the electron and positron beam via Compton backscattering off intense
laser beams into photon beams [24,25,26]. Naturally, due to the production of the photon beams
and the inherent electron spectrum, the photon beams have a characteristic spectrum. The
simulation of such spectra is possible within WHIZARD by means of the subpackage CIRCE2, which
have been mentioned already in Sec. 5.5.7. It allows to give a much more elaborate description
of a linear lepton collider environment than CIRCE1 (which, however, is not in all cases necessary,
as the ILC beamspectra for electron/positrons can be perfectly well described with CIRCE1).

Here is a typical photon collider setup where we take a photon-initiated process:

process aaww = A, A => Wp, Wm

beams = A, A => circe2
$circe2_file = "teslagg_500_polavg.circe"
$circe2_design = "TESLA/GG"
?circe2_polarized = false

Here, the photons are the initial states initiating the hard scattering. The structure function
is circe2 which always is a pair spectrum. The list of available options are:

Parameter Default Meaning
?circe2_polarized true spectrum respects polarization info
$circe2_file – name of beam spectrum data file
$circe2_design "*" collider design

The only logical flag ?circe2_polarized let WHIZARD know whether it should keep polar-
ization information in the beam spectra or average over polarizations. Naturally, because of the
Compton backscattering generation of the photons, photon spectra are always polarized. The
collider design can be specified by the string variable $circe2_design, where the default setting
"*" corresponds to the default of CIRCE2 (which is the TESLA 500 GeV machine as discussed



118 CHAPTER 5. SINDARIN IN DETAILS

in the TESLA Technical Design Report [27,28]). Note that up to now there have not been any
setups for a photon collider option for the modern linear collider concepts like ILC and CLIC.
The string variable $circe2_file then allows to give the name of the file containing the actual
beam spectrum; all files that ship with WHIZARD are stored in the directory circe2/share/data.

More details about the subpackage CIRCE2 and the physics it covers, can be found in its
own manual and the chapter Chap. 9.

5.5.14 Concatenation of several structure functions
As has been shown already in Sec. 5.5.10 and Sec. 5.5.11, it is possible within WHIZARD to
concatenate more than one structure function, irrespective of the fact, whether the structure
functions are single-beam structure functions or pair spectra. One important thing is whether
there is a phase-space mapping for these structure functions. Also, there are some combinations
which do not make sense from the physics point of view, for example using lepton-collider ISR
for protons, and then afterwards switching on PDFs. Such combinations will be vetoed by
WHIZARD, and you will find an error message like (cf. also Sec. 4.3):

******************************************************************************
******************************************************************************
*** FATAL ERROR: Beam structure: [....] not supported
******************************************************************************
******************************************************************************

Common examples for the concatenation of structure functions are linear collider applications,
where beamstrahlung (macroscopic electromagnetic beam-beam interactions) and electron QED
initial-state radiation are both switched on:

beams = e1, E1 => circe1 => isr

Another possibility is the simulation of photon-induced backgrounds at ILC or CLIC, using
beamstrahlung and equivalent photon approximation (EPA):

beams = e1, E1 => circe1 => epa

or with beam events from a data file:
beams = e1, E1 => beam_events => isr

In hadron collider physics, parton distribution functions (PDFs) are basically always switched
on, while afterwards the user could specify to use the effective W approximation (EWA) to
simulate high-energy vector boson scattering:

sqrts = 100 TeV
beams = p, p => pdf_builtin => ewa

Note that this last case involves a flavor sum over the five active quark (and anti-quark) species
u, d, c, s, b in the proton, all of which act as radiators for the electroweak vector bosons in the
EWA.

This would be an example with three structure functions:
beams = e1, E1 => circe1 => isr => epa



5.6. POLARIZATION 119

5.6 Polarization

5.6.1 Initial state polarization

WHIZARD supports polarizing the inital state fully or partially by assigning a nontrivial density
matrix in helicity space. Initial state polarization requires a beam setup and is initialized by
means of the beams_pol_density statement5:

beams_pol_density = @([<spin entries>]), @([<spin entries>])

The command beams_pol_fraction gives the degree of polarization of the two beams:

beams_pol_fraction = <degree beam 1>, <degree beam 2>

Both commands in the form written above apply to scattering processes, where the polarization of
both beams must be specified. The beams_pol_density and beams_pol_fraction are possible
with a single beam declaration if a decay process is considered, but only then.

While the syntax for the command beams_pol_fraction is pretty obvious, the syntax for
the actual specification of the beam polarization is more intricate. We start with the polarization
fraction: for each beam there is a real number between zero (unpolarized) and one (complete
polarization) that can be specified either as a floating point number like 0.4 or with a percentage:
40 %. Note that the actual arithmetics is sometimes counterintuitive: 80 % left-handed electron
polarization means that 80 % of the electron beam are polarized, 20 % are unpolarized, i.e. 20
% have half left- and half right-handed polarization each. Hence, 90 % of the electron beam is
left-handed, 10 % is right-handed.

How does the specification of the polarization work? If there are no entries at all in
the polarization constructor, @(), the beam is unpolarized, and the spin density matrix is
proportional to the unit/identity matrix. Placing entries into the @() constructor follows the
concept of sparse matrices, i.e. the entries that have been specified will be present, while the rest
remains zero. Single numbers do specify entries for that particular helicity on the main diagonal
of the spin density matrix, e.g. for an electron @(-1) means (100%) left-handed polarization.
Different entries are separated by commas: @(1,-1) sets the two diagonal entries at positions
(1, 1) and (−1,−1) in the density matrix both equal to one. Two remarks are in order already
here. First, note that you do not have to worry about the correct normalization of the spin
density matrix, WHIZARD is taking care of this automatically. Second, in the screen output for
the beam data, only those entries of the spin density matrix that have been specified by the
user, will be displayed. If a beams_pol_fraction statement appears, other components will
be non-zero, but might not be shown. E.g. ILC-like, 80 % polarization of the electrons, 30
% positron polarization will be specified like this for left-handed electrons and right-handed
positrons:

beams = e1, E1
beams_pol_density = @(-1), @(+1)
beams_pol_fraction = 80%, 30%

The screen output will be like this:
5Note that the syntax for the specification of beam polarization has changed from version v2.1 to v2.2 and is

incompatible between the two release series. The old syntax beam_polarization with its different polarization
constructors has been discarded in favor of a unified syntax.



120 CHAPTER 5. SINDARIN IN DETAILS

| ------------------------------------------------------------------------
| Beam structure: e-, e+
| polarization (beam 1):
| @(-1: -1: ( 1.000000000000E+00, 0.000000000000E+00))
| polarization (beam 2):
| @(+1: +1: ( 1.000000000000E+00, 0.000000000000E+00))
| polarization degree = 0.8000000, 0.3000000
| Beam data (collision):
| e- (mass = 0.0000000E+00 GeV) polarized
| e+ (mass = 0.0000000E+00 GeV) polarized

But because of the fraction of unpolarized electrons and positrons, the spin density matrices for
electrons and positrons are:

ρ(e−) = diag (0.10, 0.90) ρ(e+) = diag (0.65, 0.35) ,

respectively. So, in general, only the entries due to the polarized fraction will be displayed on
screen. We will come back to more examples below.

Again, the setting of a single entry, e.g. @(±m), which always sets the diagonal component
(±m,±m) of the spin density matrix equal to one. Here m can have the following values for the
different spins (in parentheses are entries that exist only for massive particles):

Spin j Particle type possible m values
0 Scalar boson 0
1/2 Spinor +1, -1
1 (Massive) Vector boson +1, (0), -1
3/2 (Massive) Vectorspinor +2, (+1), (-1), -2
2 (Massive) Tensor +2, (+1), (0), (-1), -2

Off-diagonal entries that are equal to one (up to the normalization) of the spin-density
matrix can be specified simply by the position, namely: @(m:m′, m′′). This would result in a
spin density matrix with diagonal entry 1 for the position (m′′,m′′), and an entry of 1 for the
off-diagonal position (m,m′).

Furthermore, entries in the density matrix different from 1 with a numerical value <val> can
be specified, separated by another colon: @(m:m′:<val>). Here, it does not matter whether
m and m′ are different or not. For m = m′ also diagonal spin density matrix entries different
from one can be specified. Note that because spin density matrices have to be Hermitian, only
the entry (m,m′) has to be set, while the complex conjugate entry at the transposed position
(m′,m) is set automatically by WHIZARD.

We will give some general density matrices now, and after that a few more definite examples.
In the general setups below, we always give the expression for the spin density matrix only for
one single beam.

• Unpolarized:

beams_pol_density = @()



5.6. POLARIZATION 121

This has the same effect as not specifying any polarization at all and is the only constructor
available for scalars and fermions declared as left- or right-handed (like the neutrino).
Density matrix:

ρ =
1

|m|I

(|m|: particle multiplicity which is 2 for massless, 2j + 1 for massive particles).

• Circular polarization:

beams_pol_density = @(±j) beams_pol_fraction = f

A fraction f (parameter range f ∈ [0 ; 1]) of the particles are in the maximum / minimum
helicity eigenstate ±j, the remainder is unpolarized. For spin 1

2
and massless particles of

spin > 0, only the maximal / minimal entries of the density matrix are populated, and
the density matrix looks like this:

ρ = diag

(
1± f

2
, 0 , . . . , 0 ,

1∓ f

2

)
• Longitudinal polarization (massive):

beams_pol_density = @(0) beams_pol_fraction = f

We consider massive particles with maximal spin component j, a fraction f of which
having longitudinal polarization, the remainder is unpolarized. Longitudinal polarization
is (obviously) only available for massive bosons of spin > 0. Again, the parameter range
for the fraction is: f ∈ [0 ; 1]. The density matrix has the form:

ρ = diag

(
1− f

|m| , . . . ,
1− f

|m| ,
1 + f (|m| − 1)

|m| ,
1− f

|m| , . . . ,
1− f

|m|

)
(|m| = 2j + 1: particle multiplicity)

• Transverse polarization (along an axis):

beams_pol_density = @(j, -j, j:-j:exp(-I*phi)) beams_pol_fraction = f

This so called transverse polarization is a polarization along an arbitrary direction in
the x − y plane, with ϕ = 0 being the positive x direction and ϕ = 90◦ the positive y
direction. Note that the value of phi has either to be set inside the beam polarization
expression explicitly or by a statement real phi = val degree before. A fraction f of
the particles are polarized, the remainder is unpolarized. Note that, although this yields a
valid density matrix for all particles with multiplicity > 1 (in which the only the highest
and lowest helicity states are populated), it is meaningful only for spin 1

2
particles and



122 CHAPTER 5. SINDARIN IN DETAILS

massless bosons of spin > 0. The range of the parameters are: f ∈ [0 ; 1] and ϕ ∈ R. This
yields a density matrix:

ρ =


1 0 · · · · · · f

2
e−iϕ

0 0
. . . 0

... . . . . . . . . . ...

0
. . . 0 0

f
2
eiϕ · · · · · · 0 1


(for antiparticles, the matrix is conjugated).

• Polarization along arbitrary axis (θ, ϕ):

beams_pol_density = @(j:j:1-cos(theta), j:-j:sin(theta)*exp(-I*phi),
-j:-j:1+cos(theta)) beams_pol_fraction = f

This example describes polarization along an arbitrary axis in polar coordinates (polar
axis in positive z direction, polar angle θ, azimuthal angle ϕ). A fraction f of the particles
are polarized, the remainder is unpolarized. Note that, although axis polarization defines
a valid density matrix for all particles with multiplicity > 1, it is meaningful only for
particles with spin 1

2
. Valid ranges for the parameters are f ∈ [0 ; 1], θ ∈ R, ϕ ∈ R. The

density matrix then has the form:

ρ =
1

2
·


1− f cos θ 0 · · · · · · f sin θ e−iϕ

0 0
. . . 0

... . . . . . . . . . ...

0
. . . 0 0

f sin θ eiϕ · · · · · · 0 1 + f cos θ


• Diagonal density matrix:

beams_pol_density = @(j:j:hj, j-1:j-1:hj−1, . . ., -j:-j:h−j)

This defines an arbitrary diagonal density matrix with entries ρj,j , . . . , ρ−j,−j.

• Arbitrary density matrix:

beams_pol_density = @({m : m′ : xm,m′}):

Here, {m : m′ : xm,m′} denotes a selection of entries at various positions somewhere in the
spin density matrix. WHIZARD will check whether this is a valid spin density matrix, but it
does e.g. not have to correspond to a pure state.



5.6. POLARIZATION 123

The beam polarization statements can be used both globally directly with the beams
specification, or locally inside the integrate or simulate command. Some more specific
examples are in order to show how initial state polarization works:

• beams = A, A
beams_pol_density = @(+1), @(1, -1, 1:-1:-I)

This declares the initial state to be composed of two incoming photons, where the first
photon is right-handed, and the second photon has transverse polarization in y direction.

• beams = A, A
beams_pol_density = @(+1), @(1, -1, 1:-1:-1)

Same as before, but this time the second photon has transverse polarization in x direction.

• beams = "W+"
beams_pol\_density = @(0)

This example sets up the decay of a longitudinal vector boson.

• beams = E1, e1
scan int hel_ep = (-1, 1) {

scan int hel_em = (-1, 1) {
beams_pol_density = @(hel_ep), @(hel_em)
integrate (eeww)

}
}
integrate (eeww)

This example loops over the different positron and electron helicity combinations and
calculates the respective integrals. The beams_pol_density statement is local to the scan
loop(s) and, therefore, the last integrate calculates the unpolarized integral.

Although beam polarization should be straightforward to use, some pitfalls exist for the
unwary:

• Once beams_pol_density is set globally, it persists and is applied every time beams is
executed (unless it is reset). In particular, this means that code like

process wwaa = Wp, Wm => A, A
process zee = Z => e1, E1

sqrts = 200 GeV
beams_pol_density = @(1, -1, 1:-1:-1), @()
beams = Wp, Wm
integrate (wwaa)
beams = Z
integrate (zee)
beams_pol_density = @(0)

will throw an error, because WHIZARD complains that the spin density matrix has the
wrong dimensionality for the second (the decay) process. This kind of trap can be avoided
be using beams_pol_density only locally in integrate or simulate statements.



124 CHAPTER 5. SINDARIN IN DETAILS

• On-the-fly integrations executed by simulate use the beam setup found at the point of
execution. This implies that any polarization settings you have previously done affect the
result of the integration.

• The unstable command also requires integrals of the selected decay processes, and
will compute them on-the-fly if they are unavailable. Here, a polarized integral is not
meaningful at all. Therefore, this command ignores the current beam setting and issues a
warning if a previous polarized integral is available; this will be discarded.

5.6.2 Final state polarization

Final state polarization is available in WHIZARD in the sense that the polarization of real final
state particles can be retained when generating simulated events. In order for the polarization
of a particle to be retained, it must be declared as polarized via the polarized statement

polarized particle [, particle, ...]

The effect of polarized can be reversed with the unpolarized statement which has the same
syntax. For example,

polarized "W+", "W-", Z

will cause the polarization of all final state W and Z bosons to be retained, while

unpolarized "W+", "W-", Z

will reverse the effect and cause the polarization to be summed over again. Note that polarized
and unpolarized are global statements which cannot be used locally as command arguments
and if you use them e.g. in a loop, the effects will persist beyond the loop body. Also, a particle
cannot be polarized and unstable at the same time (this restriction might be loosened in
future versions of WHIZARD).

After toggling the polarization flag, the generation of polarized events can be requested by
using the ?polarized_events option of the simulate command, e.g.

simulate (eeww) { ?polarized_events = true }

When simulate is run in this mode, helicity information for final state particles that have been
toggled as polarized is written to the event file(s) (provided that polarization is supported by
the selected event file format(s) ) and can also be accessed in the analysis by means of the Hel
observable. For example, an analysis definition like

analysis =
if (all Hel == -1 ["W+"] and all Hel == -1 ["W-"] ) then

record cta_nn (eval cos (Theta) ["W+"]) endif;
if (all Hel == -1 ["W+"] and all Hel == 0 ["W-"] )

then record cta_nl (eval cos (Theta) ["W+"]) endif



5.7. CROSS SECTIONS 125

can be used to histogram the angular distribution for the production of polarized W pairs
(obviously, the example would have to be extended to cover all possible helicity combinations).
Note, however, that helicity information is not available in the integration step; therefore, it is
not possible to use Hel as a cut observable.

While final state polarization is straightforward to use, there is a caveat when used in
combination with flavor products. If a particle in a flavor product is defined as polarized, then
all particles “originating” from the product will act as if they had been declared as polarized —
their polarization will be recorded in the generated events. E.g., the example

process test = u:d, ubar:dbar => d:u, dbar:ubar, u, ubar

! insert compilation, cuts and integration here

polarized d, dbar
simulate (test) {?polarized_events = true}

will generate events including helicity information for all final state d and d quarks, but only
for part of the final state u and u quarks. In this case, if you had wanted to keep the helicity
information also for all u and u, you would have had to explicitely include them into the
polarized statement.

5.7 Cross sections
Integrating matrix elements over phase space is the core of WHIZARD’s activities. For any process
where we want the cross section, distributions, or event samples, the cross section has to be
determined first. This is done by a doubly adaptive multi-channel Monte-Carlo integration. The
integration, in turn, requires a phase-space setup, i.e., a collection of phase-space channels, which
are mappings of the unit hypercube onto the complete space of multi-particle kinematics. This
phase-space information is encoded in the file xxx.phs, where xxx is the process tag. WHIZARD
generates the phase-space file on the fly and can reuse it in later integrations.

For each phase-space channel, the unit hypercube is binned in each dimension. The bin
boundaries are allowed to move during a sequence of iterations, each with a fixed number of
sampled phase-space points, so they adapt to the actual phase-space density as far as possible.
In addition to this intrinsic adaptation, the relative channel weights are also allowed to vary.

All these steps are done automatically when the integrate command is executed. At the
end of the iterative adaptation procedure, the program has obtained an estimate for the integral
of the matrix element over phase space, together with an error estimate, and a set of integration
grids which contains all information on channel weights and bin boundaries. This information is
stored in a file xxx.vg, where xxx is the process tag, and is used for event generation by the
simulate command.

5.7.1 Integration

Since everything can be handled automatically using default parameters, it often suffices to
write the command



126 CHAPTER 5. SINDARIN IN DETAILS

integrate (proc1)

for integrating the process with name tag proc1, and similarly

integrate (proc1, proc2, proc3)

for integrating several processes consecutively. Options to the integrate command are specified,
if not globally, by a local option string

integrate (proc1, proc2, proc3) { mH = 200 GeV }

(It is possible to place a beams statement inside the option string, if desired.)
If the process is configured but not compiled, compilation will be done automatically. If it is

not available at all, integration will fail.
The integration method can be specified by the string variable

$integration_method = "<method>"

The default method is called "vamp" and uses the VAMP algorithm and code. (At the moment,
there is only a single simplistic alternative, using the midpoint rule or rectangle method for
integration, "midpoint". This is mainly for testing purposes. In future versions of WHIZARD,
more methods like e.g. Gauss integration will be made available). VAMP, however, is clearly
the main integration method. It is done in several passes (usually two), and each pass consists
of several iterations. An iteration consists of a definite number of calls to the matrix-element
function.

For each iteration, WHIZARD computes an estimate of the integral and an estimate of the
error, based on the binned sums of matrix element values and squares. It also computes an
estimate of the rejection efficiency for generating unweighted events, i.e., the ratio of the average
sampling function value over the maximum value of this function.

After each iteration, both the integration grids (the binnings) and the relative weights of
the integration channels can be adapted to minimize the variance estimate of the integral.
After each pass of several iterations, WHIZARD computes an average of the iterations within the
pass, the corresponding error estimate, and a χ2 value. The integral, error, efficiency and χ2

value computed for the most recent integration pass, together with the most recent integration
grid, are used for any subsequent calculation that involves this process, in particular for event
generation.

In the default setup, during the first pass(es) both grid binnings and channel weights are
adapted. In the final (usually second) pass, only binnings are further adapted. Roughly speaking,
the final pass is the actual calculation, while the previous pass(es) are used for “warming up”
the integration grids, without using the numerical results. Below, in the section about the
specification of the iterations, Sec. 5.7.3, we will explain how it is possible to change the behavior
of adapting grids and weights.

Here is an example of the integration output, which illustrates these properties. The
SINDARIN script describes the process e+e− → qq̄qq̄ with q being any light quark, i.e., W+W−

and ZZ production and hadronic decay together will any irreducible background. We cut on pT
and energy of jets, and on the invariant mass of jet pairs. Here is the script:



5.7. CROSS SECTIONS 127

alias q = d:u:s:c
alias Q = D:U:S:C
process proc_4f = e1, E1 => q, Q, q, Q

ms = 0 mc = 0
sqrts = 500 GeV
cuts = all (Pt > 10 GeV and E > 10 GeV) [q:Q]

and all M > 10 GeV [q:Q, q:Q]

integrate (proc_4f)

After the run is finished, the integration output looks like

| Process library ’default_lib’: loading
| Process library ’default_lib’: ... success.
| Integrate: compilation done
| RNG: Initializing TAO random-number generator
| RNG: Setting seed for random-number generator to 12511
| Initializing integration for process proc_4f:
| ------------------------------------------------------------------------
| Process [scattering]: ’proc_4f’
| Library name = ’default_lib’
| Process index = 1
| Process components:
| 1: ’proc_4f_i1’: e-, e+ => d:u:s:c, dbar:ubar:sbar:cbar,
| d:u:s:c, dbar:ubar:sbar:cbar [omega]
| ------------------------------------------------------------------------
| Beam structure: [any particles]
| Beam data (collision):
| e- (mass = 5.1099700E-04 GeV)
| e+ (mass = 5.1099700E-04 GeV)
| sqrts = 5.000000000000E+02 GeV
| Phase space: generating configuration ...
| Phase space: ... success.
| Phase space: writing configuration file ’proc_4f_i1.phs’
| Phase space: 123 channels, 8 dimensions
| Phase space: found 123 channels, collected in 15 groves.
| Phase space: Using 195 equivalences between channels.
| Phase space: wood
| Applying user-defined cuts.
| OpenMP: Using 8 threads
| Starting integration for process ’proc_4f’
| Integrate: iterations not specified, using default
| Integrate: iterations = 10:10000:"gw", 5:20000:""
| Integrator: 15 chains, 123 channels, 8 dimensions
| Integrator: Using VAMP channel equivalences
| Integrator: 10000 initial calls, 20 bins, stratified = T
| Integrator: VAMP
|=============================================================================|
| It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] |
|=============================================================================|

1 9963 2.3797857E+03 3.37E+02 14.15 14.13* 4.02



128 CHAPTER 5. SINDARIN IN DETAILS

2 9887 2.8307603E+03 9.58E+01 3.39 3.37* 4.31
3 9815 3.0132091E+03 5.10E+01 1.69 1.68* 8.37
4 9754 2.9314937E+03 3.64E+01 1.24 1.23* 10.65
5 9704 2.9088284E+03 3.40E+01 1.17 1.15* 12.99
6 9639 2.9725788E+03 3.53E+01 1.19 1.17 15.34
7 9583 2.9812484E+03 3.10E+01 1.04 1.02* 17.97
8 9521 2.9295139E+03 2.88E+01 0.98 0.96* 22.27
9 9435 2.9749262E+03 2.94E+01 0.99 0.96 20.25

10 9376 2.9563369E+03 3.01E+01 1.02 0.99 21.10
|-----------------------------------------------------------------------------|

10 96677 2.9525019E+03 1.16E+01 0.39 1.22 21.10 1.15 10
|-----------------------------------------------------------------------------|

11 19945 2.9599072E+03 2.13E+01 0.72 1.02 15.03
12 19945 2.9367733E+03 1.99E+01 0.68 0.96* 12.68
13 19945 2.9487747E+03 2.03E+01 0.69 0.97 11.63
14 19945 2.9777794E+03 2.03E+01 0.68 0.96* 11.19
15 19945 2.9246612E+03 1.95E+01 0.67 0.94* 10.34

|-----------------------------------------------------------------------------|
15 99725 2.9488622E+03 9.04E+00 0.31 0.97 10.34 1.05 5

|=============================================================================|
| Time estimate for generating 10000 events: 0d:00h:00m:51s
| Creating integration history display proc_4f-history.ps and proc_4f-history.pdf

Each row shows the index of a single iteration, the number of matrix element calls for that
iteration, and the integral and error estimate. Note that the number of calls displayed are the
real calls to the matrix elements after all cuts and possible rejections. The error should be
viewed as the 1σ uncertainty, computed on a statistical basis. The next two columns display the
error in percent, and the accuracy which is the same error normalized by

√
ncalls. The accuracy

value has the property that it is independent of ncalls, it describes the quality of adaptation of
the current grids. Good-quality grids have a number of order one, the smaller the better. The
next column is the estimate for the rejection efficiency in percent. Here, the value should be as
high as possible, with 100% being the possible maximum.

In the example, the grids are adapted over ten iterations, after which the accuracy and
efficiency have saturated at about 1.0 and 10%, respectively. The asterisk in the accuracy
column marks those iterations where an improvement over the previous iteration is seen. The
average over these iterations exhibits an accuracy of 1.22, corresponding to 0.39% error, and
a χ2 value of 1.15, which is just right: apparently, the phase-space for this process and set of
cuts is well-behaved. The subsequent five iterations are used for obtaining the final integral,
which has an accuracy below one (error 0.3%), while the efficiency settles at about 10%. In
this example, the final χ2 value happens to be quite small, i.e., the individual results are closer
together than the error estimates would suggest. One should nevertheless not scale down the
error, but rather scale it up if the χ2 result happens to be much larger than unity: this often
indicates sub-optimally adapted grids, which insufficiently map some corner of phase space.

One should note that all values are subject to statistical fluctuations, since the number
of calls within each iterations is finite. Typically, fluctuations in the efficiency estimate are
considerably larger than fluctuations in the error/accuracy estimate. Two subsequent runs of
the same script should yield statistically independent results which may differ in all quantities,



5.7. CROSS SECTIONS 129

Integration Results Display

Process: proc_4f-history

1800

2000

2200

2400

2600

2800

3000

3200

2 4 6 8 10 12 14 16

Figure 5.1: Graphical output of the convergence of the adaptation during the integration of a
WHIZARD process.



130 CHAPTER 5. SINDARIN IN DETAILS

within the error estimates, since the seed of the random-number generator will differ by default.
It is possible to get exactly reproducible results by setting the random-number seed explicitly,

e.g.,

seed = 12345

at any point in the SINDARIN script. seed is a predefined intrinsic variable. The value can be any
32bit integer. Two runs with different seeds can be safely taken as statistically independent. In
the example above, no seed has been set, and the seed has therefore been determined internally
by WHIZARD from the system clock.

The concluding line with the time estimate applies to a subsequent simulation step with
unweighted events, which is not actually requested in the current example. It is based on the
timing and efficiency estimate of the most recent iteration.

As a default, a graphical output of the integration history will be produced (if both LATEX
and MetaPost have been available during configuration). Fig. 5.1 shows how this looks like, and
demonstrates how a proper convergence of the integral during the adaptation looks like. The
generation of these graphical history files can be switched off using the command ?vis_history
= false.

5.7.2 Integration run IDs

A single SINDARIN script may contain multiple calls to the integrate command with different
parameters. By default, files generated for the same process in a subsequent integration will
overwrite the previous ones. This is undesirable when the script is re-run: all results that have
been overwritten have to be recreated.

To avoid this, the user may identify a specific run by a string-valued ID, e.g.

integrate (foo) { $run_id = "first" }

This ID will become part of the file name for all files that are created specifically for this run.
Often it is useful to create a run ID from a numerical value using sprintf, e.g., in this scan:

scan real mh = (100 => 200 /+ 10) {
$run_id = sprintf "%e" (mh)
integrate (h_production)

}

With unique run IDs, a subsequent run of the same SINDARIN script will be able to reuse all
previous results, even if there is more than a single integration per process.

5.7.3 Controlling iterations

WHIZARD has some predefined numbers of iterations and calls for the first and second integration
pass, respectively, which depend on the number of initial and final-state particles. They are
guesses for values that yield good-quality grids and error values in standard situations, where no
exceptionally strong peaks or loose cuts are present in the integrand. Actually, the large number
of warmup iterations in the previous example indicates some safety margin in that respect.



5.7. CROSS SECTIONS 131

It is possible, and often advisable, to adjust the iteration and call numbers to the particular
situation. One may reduce the default numbers to short-cut the integration, if either less
accuracy is needed, or CPU time is to be saved. Otherwise, if convergence is bad, the number
of iterations or calls might be increased.

To set iterations manually, there is the iterations command:

iterations = 5:50000, 3:100000

This is a comma-separated list. Each pair of values corresponds to an integration pass. The
value before the colon is the number of iterations for this pass, the other number is the number
of calls per iteration.

While the default number of passes is two (one for warmup, one for the final result), you
may specify a single pass

iterations = 5:100000

where the relative channel weights will not be adjusted (because this is the final pass). This is
appropriate for well-behaved integrands where weight adaptation is not necessary.

You can also define more than two passes. That might be useful when reusing a previous
grid file with insufficient quality: specify the previous passes as-is, so the previous results will
be read in, and then a new pass for further adaptation.

In the final pass, the default behavior is to not adapt grids and weights anymore. Otherwise,
different iterations would be correlated, and a final reliable error estimate would not be possible.
For all but the final passes, the user can decide whether to adapt grids and weights by attaching
a string specifier to the number of iterations: "g" does adapt grids, but not weights, "w" the
other way round. "gw" or "wg" does adapt both. By the setting "", all adaptations are switched
off. An example looks like this:

iterations = 2:10000:"gw", 3:5000

Since it is often not known beforehand how many iterations the grid adaptation will need, it
is generally a good idea to give the first pass a large number of iterations. However, in many
cases these turn out to be not necessary. To shortcut iterations, you can set any of

accuracy_goal
error_goal
relative_error_goal

to a positive value. If this is done, WHIZARD will skip warmup iterations once all of the specified
goals are reached by the current iteration. The final iterations (without weight adaptation) are
always performed.

5.7.4 Phase space

Before integrate can start its work, it must have a phase-space configuration for the process
at hand. The method for the phase-space parameterization is determined by the string variable
$phs_method. At the moment there are only two options, "single", for testing purposes, that
is mainly used internally, and WHIZARD’s traditional method, "wood". This parameterization



132 CHAPTER 5. SINDARIN IN DETAILS

is particularly adapted and fine-tuned for electroweak processes and might not be the ideal
for for pure jet cross sections. In future versions of WHIZARD, more options for phase-space
parameterizations will be made available, e.g. the RAMBO algorithm and its massive cousin, and
phase-space parameterizations that take care of the dipole-like emission structure in collinear
QCD (or QED) splittings. For the standard method, the phase-space parameterization is laid out
in an ASCII file <process-name>_ i<comp>.phs. Here, <process-name> is the process name
chosen by the user while <comp> is the number of the process component of the corresponding
process. This immediately shows that different components of processes are getting different
phase space setups. This is necessary for inclusive processes, e.g. the sum of pp → Z + nj
and pp → W + nj, or in future versions of WHIZARD for NLO processes, where one component
is the interference between the virtual and the Born matrix element, and another one is the
subtraction terms. Normally, you do not have to deal with this file, since WHIZARD will generate
one automatically if it does not find one. (WHIZARD is careful to check for consistency of process
definition and parameters before using an existing file.)

Experts might find it useful to generate a phase-space file and inspect and/or modify it
before proceeding further. To this end, there is the parameter ?phs_only. If you set this
true, WHIZARD skips the actual integration after the phase-space file has been generated. There
is also a parameter ?vis_channels which can be set independently; if this is true, WHIZARD
will generate a graphical visualization of the phase-space parameterizations encoded in the
phase-space file. This file has to be taken with a grain of salt because phase space channels are
represented by sample Feynman diagrams for the corresponding channel. This does however
not mean that in the matrix element other Feynman diagrams are missing (the default matrix
element method, O’Mega, is not using Feynman-diagrammatic amplitudes at all).

Things might go wrong with the default phase-space generation, or manual intervention
might be necessary to improve later performance. There are a few parameters that control the
algorithm of phase-space generation. To understand their meaning, you should realize that
phase-space parameterizations are modeled after (dominant) Feynman graphs for the current
process.

The main phase space setup wood

For the main phase-space parameterization of WHIZARD, which is called "wood", there are many
different parameters and flags that allow to tune and customize the phase-space setup for every
certain process:

The parameter phs_off_shell controls the number of off-shell lines in those graphs, not
counting s-channel resonances and logarithmically enhanced s- and t-channel lines. The default
value is 2. Setting it to zero will drop everything that is not resonant or logarithmically enhanced.
Increasing it will include more subdominant graphs. (WHIZARD increases the value automatically
if the default value does not work.)

There is a similar parameter phs_t_channel which controls multiperipheral graphs in the
parameterizations. The default value is 6, so graphs with up to 6 t/u-channel lines are considered.
In particular cases, such as e+e− → nγ, all graphs are multiperipheral, and for n > 7 WHIZARD
would find no parameterizations in the default setup. Increasing the value of phs_t_channel



5.7. CROSS SECTIONS 133

solves this problem. (This is presently not done automatically.)
There are two numerical parameters that describe whether particles are treated like massless

particles in particular situations. The value of phs_threshold_s has the default value 50 GeV.
Hence, W and Z are considered massive, while b quarks are considered massless. This catego-
rization is used for deciding whether radiation of b quarks can lead to (nearly) singular behavior,
i.e., logarithmic enhancement, in the infrared and collinear regions. If yes, logarithmic mappings
are applied to phase space. Analogously, phs_threshold_t decides about potential t-channel
singularities. Here, the default value is 100 GeV, so amplitudes with W and Z in the t-channel
are considered as logarithmically enhanced. For a high-energy hadron collider of 40 or 100 TeV
energy, also W and Z in s-channel like situations might be necessary to be considered massless.

Such logarithmic mappings need a dimensionful scale as parameter. There are three such
scales, all with default value 10 GeV: phs_e_scale (energy), phs_m_scale (invariant mass),
and phs_q_scale (momentum transfer). If cuts and/or masses are such that energies, invari-
ant masses of particle pairs, and momentum transfer values below 10 GeV are excluded or
suppressed, the values can be kept. In special cases they should be changed: for instance, if
you want to describe γ∗ → µ+µ− splitting well down to the muon mass, no cuts, you may set
phs_m_scale = mmu. The convergence of the Monte-Carlo integration result will be considerably
faster.

There are more flags. These and more details about the phase space parameterization will
be described in Sec. 8.3.

5.7.5 Cuts

WHIZARD 2 does not apply default cuts to the integrand. Therefore, processes with massless
particles in the initial, intermediate, or final states may not have a finite cross section. This fact
will manifest itself in an integration that does not converge, or is unstable, or does not yield a
reasonable error or reweighting efficiency even for very large numbers of iterations or calls per
iterations. When doing any calculation, you should verify first that the result that you are going
to compute is finite on physical grounds. If not, you have to apply cuts that make it finite.

A set of cuts is defined by the cuts statement. Here is an example

cuts = all Pt > 20 GeV [colored]

This implies that events are kept only (for integration and simulation) if the transverse momenta
of all colored particles are above 20 GeV.

Technically, cuts is a special object, which is unique within a given scope, and is defined by
the logical expression on the right-hand side of the assignment. It may be defined in global scope,
so it is applied to all subsequent processes. It may be redefined by another cuts statement.
This overrides the first cuts setting: the cuts statement is not cumulative. Multiple cuts should
be specified by the logical operators of SINDARIN, for instance

cuts = all Pt > 20 GeV [colored]
and all E > 5 GeV [photon]

Cuts may also be defined local to an integrate command, i.e., in the options in braces. They
will apply only to the processes being integrated, overriding any global cuts.



134 CHAPTER 5. SINDARIN IN DETAILS

The right-hand side expression in the cuts statement is evaluated at the point where it is
used by an integrate command (which could be an implicit one called by simulate). Hence,
if the logical expression contains parameters, such as

mH = 120 GeV
cuts = all M > mH [b, bbar]
mH = 150 GeV
integrate (myproc)

the Higgs mass value that is inserted is the value in place when integrate is evaluated, 150 GeV
in this example. This same value will also be used when the process is called by a subsequent
simulate; it is integrate which compiles the cut expression and stores it among the process
data. This behavior allows for scanning over parameters without redefining the cuts every time.

The cut expression can make use of all variables and constructs that are defined at the point
where it is evaluated. In particular, it can make use of the particle content and kinematics of
the hard process, as in the example above. In addition to the predefined variables and those
defined by the user, there are the following variables which depend on the hard process:

integer: n_in, n_out, n_tot
real: sqrts, sqrts_hat

Example:

cuts = sqrts_hat > 150 GeV

The constants n_in etc. are sometimes useful if a generic set of cuts is defined, which applies to
various processes simultaneously.

The user is encouraged to define his/her own set of cuts, if possible in a process-independent
manner, even if it is not required. The include command allows for storing a set of cuts in a
separate SINDARIN script which may be read in anywhere. As an example, the system directories
contain a file default_cuts.sin which may be invoked by

include ("default_cuts.sin")

5.7.6 QCD scale and coupling

WHIZARD treats all physical parameters of a model, the coefficients in the Lagrangian, as constants.
As a leading-order program, WHIZARD does not make use of running parameters as they are
described by renormalization theory. For electroweak interactions where the perturbative
expansion is sufficiently well behaved, this is a consistent approach.

As far as QCD is concerned, this approach does not yield numerically reliable results, even
on the validity scale of the tree approximation. In WHIZARD2, it is therefore possible to replace
the fixed value of αs (which is accessible as the intrinsic model variable alphas), by a function
of an energy scale µ.

This is controlled by the parameter ?alphas_is_fixed, which is true by default. Setting it
to false enables running αs. The user has then to decide how αs is calculated.



5.7. CROSS SECTIONS 135

One option is to set ?alphas_from_lhapdf (default false). This is recommended if the
LHAPDF library is used for including structure functions, but it may also be set if LHAPDF is
not invoked. WHIZARD will then use the αs formula and value that matches the active LHAPDF
structure function set and member.

In the very same way, the αs running from the PDFs implemented intrinsically in WHIZARD
can be taken by setting ?alphas_from_pdf_builtin to true. This is the same running then
the one from LHAPDF, if the intrinsic PDF coincides with a PDF chosen from LHAPDF.

If this is not appropriate, there are again two possibilities. If ?alphas_from_mz is true,
the user input value alphas is interpreted as the running value αs(mZ), and for the particular
event, the coupling is evolved to the appropriate scale µ. The formula is controlled by the
further parameters alphas_order (default 0, meaning leading-log; maximum 2) and alphas_nf
(default 5).

Otherwise there is the option to set ?alphas_from_lambda_qcd = true in order to evaluate
αs from the scale ΛQCD, represented by the intrinsic variable lambda_qcd. The reference value
for the QCD scale is Λ_QCD = 200 MeV. alphas_order and alphas_nf apply analogously.

Note that for using one of the running options for αs, always ?alphas_is_fixed = false
has to be invoked.

In any case, if αs is not fixed, each event has to be assigned an energy scale. By default, this
is
√
ŝ, the partonic invariant mass of the event. This can be replaced by a user-defined scale,

the special object scale. This is assigned and used just like the cuts object. The right-hand
side is a real-valued expression. Here is an example:

scale = eval Pt [sort by -Pt [colored]]

This selects the pT value of the first entry in the list of colored particles sorted by decreasing pT ,
i.e., the pT of the hardest jet.

The scale definition is used not just for running αs (if enabled), but it is also the factorization
scale for the LHAPDF structure functions.

These two values can be set differently by specifying factorization_scale for the scale at
which the PDFs are evaluated. Analogously, there is a variable renormalization_scale that
sets the scale value for the running αs. Whenever any of these two values is set, it supersedes
the scale value.

Just like the cuts expression, the expressions for scale, factorization_scale and also
renormalization_scale are evaluated at the point where it is read by an explicit or implicit
integrate command.

5.7.7 Reweighting factor

It is possible to reweight the integrand by a user-defined function of the event kinematics. This
is done by specifying a weight expression. Syntax and usage is exactly analogous to the scale
expression. Example:

weight = eval (1 + cos (Theta) ^ 2) [lepton]



136 CHAPTER 5. SINDARIN IN DETAILS

We should note that the phase-space setup is not aware of this reweighting, so in complicated
cases you should not expect adaptation to achieve as accurate results as for plain cross sections.

Needless to say, the default weight is unity.

5.8 Events
After the cross section integral of a scattering process is known (or the partial-width integral of
a decay process), WHIZARD can generate event samples. There are two limiting cases or modes
of event generation:

1. For a physics simulation, one needs unweighted events, so the probability of a process and
a kinematical configuration in the event sample is given by its squared matrix element.

2. Monte-Carlo integration yields weighted events, where the probability (without any grid
adaptation) is uniformly distributed over phase space, while the weight of the event is
given by its squared matrix element.

The choice of parameterizations and the iterative adaptation of the integration grids gradually
shift the generation mode from option 2 to option 1, which obviously is preferred since it
simulates the actual outcome of an experiment. Unfortunately, this adaptation is perfect only
in trivial cases, such that the Monte-Carlo integration yields non-uniform probability still with
weighted events. Unweighted events are obtained by rejection, i.e., accepting an event with a
probability equal to its own weight divided by the maximal possible weight. Furthermore, the
maximal weight is never precisely known, so this probability can only be estimated.

The default generation mode of WHIZARD is unweighted. This is controlled by the parameter
?unweighted with default value true. Unweighted events are easy to interpret and can be
directly compared with experiment, if properly interfaced with detector simulation and analysis.

However, when applying rejection to generate unweighted events, the generator discards
information, and for a single event it needs, on the average, 1/ϵ calls, where the efficiency ϵ is
the ratio of the average weight over the maximal weight. If ?unweighted is false, all events
are kept and assigned their respective weights in histograms or event files.

5.8.1 Simulation

The simulate command generates an event sample. The number of events can be set either
by specifying the integer variable n_events, or by the real variable luminosity. (This holds
for unweighted events. If weighted events are requested, the luminosity value is ignored.) The
luminosity is measured in femtobarns, but other units can be used, too. Since the cross sections
for the processes are known at that point, the number of events is determined as the luminosity
multiplied by the cross section.

As usual, both parameters can be set either as global or as local parameters:

n_events = 10000
simulate (proc1)
simulate (proc2, proc3) { luminosity = 100 / 1 pbarn }



5.8. EVENTS 137

In the second example, both n_events and luminosity are set. In that case, WHIZARD chooses
whatever produces the larger number of events.

If more than one process is specified in the argument of simulate, events are distributed
among the processes with fractions proportional to their cross section values. The processes are
mixed randomly, as it would be the case for real data.

The raw event sample is written to a file which is named after the first process in the
argument of simulate. If the process name is proc1, the file will be named proc1.evx. You
can choose another basename by the string variable $sample. For instance,

simulate (proc1) { n_events = 4000 $sample = "my_events" }

will produce an event file my_events.evx which contains 4000 events.
This event file is in a machine-dependent binary format, so it is not of immediate use. Its

principal purpose is to serve as a cache: if you re-run the same script, before starting simulation,
it will look for an existing event file that matches the input. If nothing has changed, it will
find the file previously generated and read in the events, instead of generating them. Thus
you can modify the analysis or any further steps without repeating the time-consuming task of
generating a large event sample. If you change the number of events to generate, the program
will make use of the existing event sample and generate further events only when it is used
up. If necessary, you can suppress the writing/reading of the raw event file by the parameters
?write_raw and ?read_raw.

If you try to reuse an event file that has been written by a previous version of WHIZARD,
you may run into an incompatibility, which will be detected as an error. If this happens, you
may enforce a compatibility mode (also for writing) by setting $event_file_version to the
appropriate version string, e.g., "2.0". Be aware that this may break some more recent features
in the event analysis.

Generating an event sample can serve several purposes. First of all, it can be analyzed
directly, by WHIZARD’s built-in capabilities, to produce tables, histograms, or calculate inclusive
observables. The basic analysis features of WHIZARD are described below in Sec. 5.9. It can
be written to an external file in a standard format that a human or an external program can
understand. In Chap. 11, you will find a more thorough discussion of event generation with
WHIZARD, which also covers in detail the available event-file formats. Finally, WHIZARD can rescan
an existing event sample. The event sample may either be the result of a previous simulate
run or, under certain conditions, an external event sample produced by another generator or
reconstructed from data.

rescan "my_events" (proc1) { $pdf_builtin_set = "MSTW2008LO" }

The rescanning may apply different parameters and recalculate the matrix element, it may apply
a different event selection, it may reweight the events by a different PDF set (as above). The
modified event sample can again be analyzed or written to file. For more details, cf. Sec. 11.7.

5.8.2 Decays

Normally, the events generated by the simulate command will be identical in structure to
the events that the integrate command generates. This implies that for a process such as



138 CHAPTER 5. SINDARIN IN DETAILS

pp → W+W−, the final-state particles are on-shell and stable, so they appear explicitly in
the generated event files. If events are desired where the decay products of the W bosons
appear, one has to generate another process, e.g., pp → ud̄ūd. In this case, the intermediate
vector bosons, if reconstructed, are off-shell as dictated by physics, and the process contains all
intermediate states that are possible. In this example, the matrix element contains also ZZ,
photon, and non-resonant intermediate states. (This can be restricted via the $restrictions
option, cf. 5.4.3.

Another approach is to factorize the process in production (of W bosons) and decays
(W → qq̄). This is actually the traditional approach, since it is much less computing-intensive.
The factorization neglects all off-shell effects and irreducible background diagrams that do
not have the decaying particles as an intermediate resonance. While WHIZARD is able to deal
with multi-particle processes without factorization, the needed computing resources rapidly
increase with the number of external particles. Particularly, it is the phase space integration
that becomes the true bottleneck for a high multiplicity of final state particles.

In order to use the factorized approach, one has to specify particles as unstable. (Also, the
?allow_decays switch must be true; this is however its default value.) We give an example for
a pp → Wj final state:

process wj = u, gl => d, Wp
process wen = Wp => E1, n1

integrate (wen)

sqrts = 7 TeV
beams = p, p => pdf_builtin
unstable Wp (wen)
simulate (wj) { n_events = 1 }

This defines a 2 → 2 hard scattering process of W + j production at the 7 TeV LHC 2011 run.
The W+ is marked as unstable, with its decay process being W+ → e+νe. In the simulate
command both processes, the production process wj and the decay process wen will be integrated,
while the W decays become effective only in the final event sample. This event sample will
contain final states with multiplicity 3, namely e+νed. Note that here only one decay process is
given, hence the branching ratio for the decay will be taken to be 100% by WHIZARD.

A natural restriction of the factorized approach is the implied narrow-width approximation.
Theoretically, this restriction is necessary since whenever the width plays an important role,
the usage of the factorized approach will not be fully justified. In particular, all involved
matrix elements must be evaluated on-shell, or otherwise gauge-invariance issues could spoil
the calculation. (There are plans for a future WHIZARD version to also include Breit-Wigner or
Gaussian distributions when using the factorized approach.)

Decays can be concatenated, e.g. for top pair production and decay, e+e− → tt̄ with decay
t → W+b, and subsequent leptonic decay of the W as in W+ → µ+νµ:

process eett = e1, E1 => t, tbar
process t_dec = t => Wp, b
process W_dec = Wp => E2, n2

unstable t (t_dec)



5.8. EVENTS 139

unstable Wp (W_dec)

sqrts = 500
simulate (eett) { n_events = 1 }

Note that in this case the final state in the event file will consist of t̄bµ+νµ because the anti-top
is not decayed.

If more than one decay process is being specified like in
process eeww = e1, E1 => Wp, Wm
process w_dec1 = Wp => E2, n2
process w_dec2 = Wp => E3, n3

unstable Wp (w_dec1, w_dec2)

sqrts = 500
simulate (eeww) { n_events = 100 }

then WHIZARD takes the integrals of the specified decay processes and distributes the decays
statistically according to the calculated branching ratio. Note that this might not be the true
branching ratios if decay processes are missing, or loop corrections to partial widths give large(r)
deviations. In the calculation of the code above, WHIZARD will issue an output like

| Unstable particle W+: computed branching ratios:
| w_dec1: 5.0018253E-01 mu+, numu
| w_dec2: 4.9981747E-01 tau+, nutau
| Total width = 4.5496085E-01 GeV (computed)
| = 2.0490000E+00 GeV (preset)
| Decay options: helicity treated exactly

So in this case, WHIZARD uses 50 % muonic and 50 % tauonic decays of the positively charged W ,
while the W− appears directly in the event file. WHIZARD shows the difference between the preset
W width from the physics model file and the value computed from the two decay channels.

Note that a particle in a SINDARIN input script can be also explictly marked as being stable,
using the

stable <particle-tag>

constructor for the particle <particle-tag>.

Resetting branching fractions

As described above, decay processes that appear in a simulation must first be integrated by the
program, either explicitly via the integrate command, or implicitly by unstable. In either
case, WHIZARD will use the computed partial widths in order to determine branching fractions.
In the spirit of a purely leading-order calculation, this is consistent.

However, it may be desired to rather use different branching-fraction values for the decays of
a particle, for instance, NLO-corrected values. In fact, after WHIZARD has integrated any process,
the integration result becomes available as an ordinary SINDARIN variable. For instance, if a
decay process has the ID h_bb, the integral of this process – the partial width, in this case –
becomes the variable integral(h_bb). This variable may be reset just like any other variable:



140 CHAPTER 5. SINDARIN IN DETAILS

integral(h_bb) = 2.40e-3 GeV

The new value will be used for all subsequent Higgs branching-ratio calculations and decays, if
an unstable Higgs appears in a process for simulation.

Spin correlations in decays

By default, WHIZARD applies full spin and color correlations to the factorized processes, so it
keeps both color and spin coherence between productions and decays. Correlations between
decay products of distinct unstable particles in the same event are also fully retained. The
program sums over all intermediate quantum numbers.

Although this approach obviously yields the optimal description with the limits of production-
decay factorization, there is support for a simplified handling of particle decays. Essentially,
there are four options, taking a decay W_ud: W− → ūd as an example:

1. Full spin correlations: unstable Wp (W_ud)

2. Isotropic decay: unstable Wp (W_ud) { ?isotropic_decay = true }

3. Diagonal decay matrix: unstable Wp (W_ud) { ?diagonal_decay = true }

4. Project onto specific helicity: unstable Wp (W_ud) { decay_helicity = -1 }

Here, the isotropic option completely eliminates spin correlations. The diagonal-decays option
eliminates just the off-diagonal entries of the W spin-density matrix. This is equivalent to a
measurement of spin before the decay. As a result, spin correlations are still present in the
classical sense, while quantum coherence is lost. The definite-helicity option is similar and
additional selects only the specified helicity component for the decaying particle, so its decay
distribution assumes the shape for an accordingly polarized particle. All options apply in the
rest frame of the decaying particle, with the particle’s momentum as the quantization axis.

Automatic decays

A convenient option is if the user did not have to specify the decay mode by hand, but if they
were generated automatically. WHIZARD does have this option: the flag ?auto_decays can be set
to true, and is taking care of that. In that case the list for the decay processes of the particle
marked as unstable is left empty (we take a W− again as example):

unstable Wm () { ?auto_decays = true }

WHIZARD then inspects at the local position within the SINDARIN input file where that unstable
statement appears the masses of all the particles of the active physics model in order to determine
which decays are possible. It then calculates their partial widths. There are a few options
to customize the decays. The integer variable auto_decays_multiplicity allows to set the
maximal multiplicity of the final states considered in the auto decay option. The defaul value of
that variable is 2; please be quite careful when setting this to values larger than that. If you do
so, the flag ?auto_decays_radiative allows to specify whether final states simply containing
additional resolved gluons or photons are taken into account or not. For the example above,
you almost hit the PDG value for the W total width:



5.9. ANALYSIS AND VISUALIZATION 141

| Unstable particle W-: computed branching ratios:
| decay_a24_1: 3.3337068E-01 d, ubar
| decay_a24_2: 3.3325864E-01 s, cbar
| decay_a24_3: 1.1112356E-01 e-, nuebar
| decay_a24_4: 1.1112356E-01 mu-, numubar
| decay_a24_5: 1.1112356E-01 tau-, nutaubar
| Total width = 2.0478471E+00 GeV (computed)
| = 2.0490000E+00 GeV (preset)
| Decay options: helicity treated exactly

Future shorter notation for decays

In an upcoming WHIZARD version there will be a shorter and more concise notation already in
the process definition for such decays, which, however, is current not yet implemented. The two
first examples above will then be shorter and have this form:

process wj = u, gl => (Wp => E1, n1), d

as well as

process eett = e1, E1 => (t => (Wp => E2, n2), b), tbar

5.8.3 Event formats

As mentioned above, the internal WHIZARD event format is a machine-dependent event format.
There are a series of human-readable ASCII event formats that are supported: very verbose
formats intended for debugging, formats that have been agreed upon during the Les Houches
workshops like LHA and LHEF, or formats that are steered through external packages like
HepMC. More details about event formats can be found in Sec. 11.5.

5.9 Analysis and Visualization

SINDARIN natively supports basic methods of data analysis and visualization which are frequently
used in high-energy physics studies. Data generated during script execution, in particular
simulated event samples, can be analyzed to evaluate further observables, fill histograms, and
draw two-dimensional plots.

So the user does not have to rely on his/her own external graphical analysis method (like e.g.
gnuplot or ROOT etc.), but can use methods that automatically ship with WHIZARD. In many
cases, the user, however, clearly will use his/her own analysis machinery, especially experimental
collaborations.

In the following sections, we first summarize the available data structures, before we consider
their graphical display.



142 CHAPTER 5. SINDARIN IN DETAILS

5.9.1 Observables

Analyses in high-energy physics often involve averages of quantities other than a total cross
section. SINDARIN supports this by its observable objects. An observable is a container that
collects a single real-valued variable with a statistical distribution. It is declared by a command
of the form

observable analysis-tag

where analysis-tag is an identifier that follows the same rules as a variable name.
Once the observable has been declared, it can be filled with values. This is done via the

record command:

record analysis-tag (value )

To make use of this, after values have been filled, we want to perform the actual analysis and
display the results. For an observable, these are the mean value and the standard deviation.
There is the command write_analysis:

write_analysis (analysis-tag )

Here is an example:
observable obs
record obs (1.2) record obs (1.3) record obs (2.1) record obs (1.4)
write_analysis (obs)

The result is displayed on screen:
###############################################################################
# Observable: obs
average = 1.500000000000E+00
error[abs] = 2.041241452319E-01
error[rel] = 1.360827634880E-01
n_entries = 4

5.9.2 The analysis expression

The most common application is the computation of event observables – for instance, a forward-
backward asymmetry – during simulation. To this end, there is an analysis expression, which
behaves very similar to the cuts expression. It is defined either globally

analysis = logical-expr

or as a local option to the simulate or rescan commands which generate and handle event
samples. If this expression is defined, it is not evaluated immediately, but it is evaluated once
for each event in the sample.

In contrast to the cuts expression, the logical value of the analysis expression is discarded;
the expression form has been chosen just by analogy. To make this useful, there is a variant of
the record command, namely a record function with exactly the same syntax. As an example,
here is a calculation of the forward-backward symmetry in a process ee_mumu with final state
µ+µ−:



5.9. ANALYSIS AND VISUALIZATION 143

observable a_fb
analysis = record a_fb (eval sgn (Pz) ["mu-"])
simulate (ee_mumu) { luminosity = 1 / 1 fbarn }

The logical return value of record – which is discarded here – is true if the recording was
successful. In case of histograms (see below) it is true if the value falls within bounds, false
otherwise.

Note that the function version of record can be used anywhere in expressions, not just in
the analysis expression.

When record is called for an observable or histogram in simulation mode, the recorded
value is weighted appropriately. If ?unweighted is true, the weight is unity, otherwise it is the
event weight.

The analysis expression can involve any other construct that can be expressed as an
expression in SINDARIN. For instance, this records the energy of the 4th hardest jet in a
histogram pt_dist, if it is in the central region:

analysis =
record pt_dist (eval E [extract index 4

[sort by - Pt
[select if -2.5 < Eta < 2.5 [colored]]]])

Here, if there is no 4th jet in the event which satisfies the criterion, the result will be an
undefined value which is not recorded. In that case, record evaluates to false.

Selection cuts can be part of the analysis expression:

analysis =
if any Pt > 50 GeV [lepton] then

record jet_energy (eval E [collect [jet]])
endif

Alternatively, we can specify a separate selection expression:

selection = any Pt > 50 GeV [lepton]
analysis = record jet_energy (eval E [collect [jet]])

The former version writes all events to file (if requested), but applies the analysis expression
only to the selected events. This allows for the simultaneous application of different selections
to a single event sample. The latter version applies the selection to all events before they are
analyzed or written to file.

The analysis expression can make use of all variables and constructs that are defined at the
point where it is evaluated. In particular, it can make use of the particle content and kinematics
of the hard process, as in the example above. In addition to the predefined variables and those
defined by the user, there are the following variables which depend on the hard process. Some
of them are constants, some vary event by event:



144 CHAPTER 5. SINDARIN IN DETAILS

integer: event_index
integer: process_num_id
string: $process_id
integer: n_in, n_out, n_tot
real: sqrts, sqrts_hat
real: sqme, sqme_ref
real: event_weight, event_excess

The process_num_id is the numeric ID as used by external programs, while the process index
refers to the current library. By default, the two are identical. The process index itself is
not available as a predefined observable. The sqme and sqme_ref values indicate the squared
matrix element and the reference squared matrix element, respectively. The latter applies when
comparing with a reference sample (the rescan command).

record evaluates to a logical, so several record functions may be concatenated by the
logical operators and or or. However, since usually the further evaluation should not depend
on the return value of record, it is more advisable to concatenate them by the semicolon (;)
operator. This is an operator (not a statement separator or terminator) that connects two
logical expressions and evaluates both of them in order. The lhs result is discarded, the result is
the value of the rhs:

analysis =
record hist_pt (eval Pt [lepton]) ; record hist_ct (eval cos (Theta) [lepton])

5.9.3 Histograms

In SINDARIN, a histogram is declared by the command

histogram analysis-tag (lower-bound, upper-bound )

This creates a histogram data structure for an (unspecified) observable. The entries are organized
in bins between the real values lower-bound and upper-bound . The number of bins is given
by the value of the intrinsic integer variable n_bins, the default value is 20.

The histogram declaration supports an optional argument, so the number of bins can be
set locally, for instance

histogram pt_distribution (0 GeV, 500 GeV) { n_bins = 50 }

Sometimes it is more convenient to set the bin width directly. This can be done in a third
argument to the histogram command.

histogram pt_distribution (0 GeV, 500 GeV, 10 GeV)

If the bin width is specified this way, it overrides the setting of n_bins.
The record command or function fills histograms. A single call

record (real-expr )



5.9. ANALYSIS AND VISUALIZATION 145

puts the value of real-expr into the appropriate bin. If the call is issued during a simulation
where unweighted is false, the entry is weighted appropriately.

If the value is outside the range specified in the histogram declaration, it is put into one of
the special underflow and overflow bins.

The write_analysis command prints the histogram contents as a table in blank-separated
fixed columns. The columns are: x (bin midpoint), y (bin contents), ∆y (error), excess weight,
and n (number of entries). The output also contains comments initiated by a # sign, and
following the histogram proper, information about underflow and overflow as well as overall
contents is added.

5.9.4 Plots

While a histogram stores only summary information about a data set, a plot stores all data as
(x, y) pairs, optionally with errors. A plot declaration is as simple as

plot analysis-tag

Like observables and histograms, plots are filled by the record command or expression. To this
end, it can take two arguments,

record (x-expr, y-expr )

or up to four:

record (x-expr, y-expr, y-error )
record (x-expr, y-expr, y-error-expr, x-error-expr )

Note that the y error comes first. This is because applications will demand errors for the y
value much more often than x errors.

The plot output, again written by write_analysis contains the four values for each point,
again in the ordering x, y,∆y,∆x.

5.9.5 Analysis Output

There is a default format for piping information into observables, histograms, and plots. In older
versions of WHIZARD there was a first version of a custom format, which was however rather
limited. A more versatile custom output format will be coming soon.

1. By default, the write_analysis command prints all data to the standard output. The
data are also written to a default file with the name whizard_analysis.dat. Output is
redirected to a file with a different name if the variable $out_file has a nonempty value.
If the file is already open, the output will be appended to the file, and it will be kept open.
If the file is not open, write_analysis will open the output file by itself, overwriting any
previous file with the same name, and close it again after data have been written.

The command is able to print more than one dataset, following the syntax



146 CHAPTER 5. SINDARIN IN DETAILS

write_analysis (analysis-tag1, analysis-tag2, ...) { options }

The argument in brackets may also be empty or absent; in this case, all currently existing
datasets are printed.

The default data format is suitable for compiling analysis data by WHIZARD’s built-in
gamelan graphics driver (see below and particularly Chap. 12). Data are written in
blank-separated fixed columns, headlines and comments are initiated by the # sign, and
each data set is terminated by a blank line. However, external programs often require
special formatting.

The internal graphics driver gamelan of WHIZARD is initiated by the compile_analysis
command. Its syntax is the same, and it contains the write_analysis if that has not
been separately called (which is unnecessary). For more details about the gamelan graphics
driver and data visualization within WHIZARD, confer Chap. 12.

2. Custom format. Not yet (re-)implemented in a general form.

5.10 Custom Input/Output

WHIZARD is rather chatty. When you run examples or your own scripts, you will observe that
the program echoes most operations (assignments, commands, etc.) on the standard output
channel, i.e., on screen. Furthermore, all screen output is copied to a log file which by default is
named whizard.log.

For each integration run, WHIZARD writes additional process-specific information to a file
⟨tag ⟩.log, where ⟨tag ⟩ is the process name. Furthermore, the write_analysis command
dumps analysis data – tables for histograms and plots – to its own set of files, cf. Sec. 5.9.

However, there is the occasional need to write data to extra files in a custom format.
SINDARIN deals with that in terms of the following commands:

5.10.1 Output Files

open_out

open_out (⟨filename ⟩)
open_out (⟨filename ⟩) { ⟨options ⟩ }

Open an external file for writing. If the file exists, it is overwritten without warning, otherwise
it is created. Example:

open_out ("my_output.dat")



5.10. CUSTOM INPUT/OUTPUT 147

close_out

close_out (⟨filename ⟩)
close_out (⟨filename ⟩) { ⟨options ⟩ }

Close an external file that is open for writing. Example:
close_out ("my_output.dat")

5.10.2 Printing Data

printf

printf ⟨format-string-expr ⟩
printf ⟨format-string-expr ⟩ (⟨data-objects ⟩)

Format ⟨data-objects ⟩ according to ⟨format-string-expr ⟩ and print the resulting string to
standard output if the string variable $out_file is undefined. If $out_file is defined and the
file with this name is open for writing, print to this file instead.

Print a newline at the end if ?out_advance is true, otherwise don’t finish the line.
The ⟨format-string-expr ⟩ must evaluate to a string. Formatting follows a subset of the

rules for the printf(3) command in the C language. The supported rules are:

• All characters are printed as-is, with the exception of embedded conversion specifications.

• Conversion specifications are initiated by a percent (%) sign and followed by an optional
prefix flag, an optional integer value, an optional dot followed by another integer, and a
mandatory letter as the conversion specifier.

• A percent sign immediately followed by another percent sign is interpreted as a single
percent sign, not as a conversion specification.

• The number of conversion specifiers must be equal to the number of data objects. The
data types must also match.

• The first integer indicates the minimum field width, the second one the precision. The
field is expanded as needed.

• The conversion specifiers d and i are equivalent, they indicate an integer value.

• The conversion specifier e indicates a real value that should be printed in exponential
notation.

• The conversion specifier f indicates a real value that should be printed in decimal notation
without exponent.

• The conversion specifier g indicates a real value that should be printed either in exponential
or in decimal notation, depending on its value.



148 CHAPTER 5. SINDARIN IN DETAILS

• The conversion specifier s indicates a logical or string value that should be printed as a
string.

• Possible prefixes are # (alternate form, mandatory decimal point for reals), 0 (zero padding),
- (left adjusted), + (always print sign), ‘ ’ (print space before a positive number).

For more details, consult the printf(3) manpage. Note that other conversions are not supported
and will be rejected by WHIZARD.

The data arguments are numeric, logical or string variables or expressions. Numeric expres-
sions must be enclosed in parantheses. Logical expressions must be enclosed in parantheses
prefixed by a question mark ?. String expressions must be enclosed in parantheses prefixed by a
dollar sign $. These forms behave as anonymous variables.

Note that for simply printing a text string, you may call printf with just a format string
and no data arguments.

Examples:
printf "The W mass is %8f GeV" (mW)

int i = 2
int j = 3
printf "%i + %i = %i" (i, j, (i+j))

string $directory = "/usr/local/share"
string $file = "foo.dat"
printf "File path: %s/%s" ($directory, $file)

There is a related sprintf function, cf. Sec. 5.1.5.

5.11 WHIZARD at next-to-leading order

5.11.1 Prerequisites

A full NLO computation requires virtual matrix elements obtained from loop diagrams. Since
O’Mega cannot calculate such diagrams, external programs are used. WHIZARD has a generic
interface to matrix-element generators that are BLHA-compatible. Explicit implementations
exist for Gosam, OpenLoops and Recola.

Setting up Gosam

The installation of Gosam is detailed on the HepForge page https://gosam/hepforge.org. We
mention here some of the steps necessary to get it to be linked with WHIZARD.

Bug in Gosam installation scripts: In many versions of Gosam there is a bug in the
installation scripts that is only relevant if Gosam is installed with superuser privileges. Then
all files in $installdir/share/golem do not have read privileges for normal users. These
privileges must be given manually to all files in that directory.

Prerequisites for Gosam to produce code for one-loop matrix elements are the scientific
algebra program form and the generator of loop topologies and diagrams, qgraf. These can

https://gosam/hepforge.org


5.11. WHIZARD AT NEXT-TO-LEADING ORDER 149

be accessed via their respective webpages http://www.nikhef.nl/~form/ and http://cfif.
ist.utl.pt/~paulo/qgraf.html. Note also that both Java and the Java runtime environment
have to be installed in order for Gosam to properly work. Furthermore, libtool needs to
be installed. A more convenient way to install Gosam, is the automatic installation script
https://gosam.hepforge.org/gosam_installer.py.

Setting up OpenLoops

The installation of OpenLoops is explained in detail on the HepForge page https://openloops.
hepforge.org. In the following, the main steps for usage with WHIZARD are summarized.

Please note that at the moment, OpenLoops cannot be installed such that in almost all cases
the explicit OpenLoops package directory has to be set via –with-openloops=<openloops_dir>.

OpenLoops can be checked out with

git clone https://gitlab.com/openloops/OpenLoops.git

Note that WHIZARD only supports OpenLoops version that are at least 2.1.1 or newer. Alter-
natively, one can use the public beta version of OpenLoops, which can be checked out by the
command

git clone -b public_beta https://gitlab.com/openloops/OpenLoops.git

The program can be build by running scons or ./scons, a local version that is included in the
OpenLoops directory. This produces the script ./openloops, which is the main hook for the
further usage of the program.

OpenLoops works by downloading prebuild process libraries, which have to be installed
for each individual process. This requires the file openloops.cfg, which should contain the
following content:

[OpenLoops]
process_repositories=public, whizard
compile_extra=1

The first line instructs OpenLoops to also look for process libraries in an additional lepton
collider repository. The second line triggers the inclusion of N + 1-particle tree-level matrix
elements in the process directory, so that a complete NLO calculation including real amplitudes
can be performed only with OpenLoops.

The libraries can then be installed via

./openloops libinstall proc_name

A list of supported library names can be found on the OpenLoops web page. Note that a process
library also includes all possible permutated processes. The process library ppllj, for example,
can also be used to compute the matrix elements for e+e− → qq̄ (massless quarks only). The
massive case of the top quark is handled in eett. Additionally, there are process libraries for
top and gauge boson decays, tbw, vjj, tbln and tbqq.

Finally, OpenLoops can be linked to WHIZARD during configuration by including

--enable-openloops --with-openloops=$OPENLOOPS_PATH,

http://www.nikhef.nl/~form/
http://cfif.ist.utl.pt/~paulo/qgraf.html
http://cfif.ist.utl.pt/~paulo/qgraf.html
https://gosam.hepforge.org/gosam_installer.py
https://openloops.hepforge.org
https://openloops.hepforge.org


150 CHAPTER 5. SINDARIN IN DETAILS

where $OPENLOOPS_PATH is the directory the OpenLoops executable is located in. OpenLoops
one-loop diagrams can then be used with the SINDARIN option

$loop_me_method = "openloops".

The functional tests which check the OpenLoops functionality require the libraries ppllj, eett
and tbw to be installed (note that eett is not contained in ppll). During the configura-
tion of WHIZARD, it is automatically checked that these two libraries, as well as the option
compile_extra=1, are present.

OpenLoops SINDARIN flags

Several SINDARIN options exist to control the behavior of OpenLoops.

• openloops_verbosity:
Decide how much OpenLoops output is printed. Can have values 0, 1 and 2.

• ?openloops_use_cms:
Activates the complex mass scheme. For computations with decaying resonances like the
top quark or W or Z bosons, this is the preferred option to avoid gauge-dependencies.

• openloops_phs_tolerance:
Controls the exponent of extra psp_tolerance in the BLHA interface, which is the
numerical tolerance for the on-shell condition of external particles

• openloops_switch_off_muon_yukawa:
Sets the Yukawa coupling of muons to zero in order to assure agreement with O’Mega,
which is possibly used for other components and per default does not take Hµµ couplings
into account.

• openloops_stability_log:
Creates the directory stability_log, which contains information about the performance
of the matrix elements. Possible values are

– 0: No output (default),

– 1: On finish() call,

– 2: Adaptive,

– 3: Always

• ?openloops_use_collier: Use Collier as the reduction method (default true).

Setting up Recola

The installation of Recola is explained in detail on the HepForge page https://recola.
hepforge.org. In the following the main steps for usage with WHIZARD are summarized. The
minimal required version number of Recola is 1.3.0.

Recola can be linked to WHIZARD during configuration by including

https://recola.hepforge.org
https://recola.hepforge.org


5.11. WHIZARD AT NEXT-TO-LEADING ORDER 151

--enable-recola

In case the Recola library is not in a standard path or a path accessible in the LD_LIBRARY_PATH
(or DYLD_LIBRARY_PATH) of the operating system, then the option

--with-recola=$RECOLA_PATH

can be set, where $RECOLA_PATH is the directory the Recola library is located in. Recola can
then be used with the SINDARIN option

$method = "recola"

or any other of the matrix element methods.
Note that there might be a clash of the Collier libraries when you have Collier installed

both via Recola and via OpenLoops, but have compiled them with different Fortran compilers.

5.11.2 NLO cross sections
An NLO computation can be switched on in SINDARIN with

process proc_nlo = in1, in2 => out1, ..., outN { nlo_calculation = <components> },

where the nlo_calculation can be followed by a list of strings specifying the desired NLO-
components to be integrated, i.e. born, real, virtual, dglap, (for hadron collisions) or
mismatch (for the soft mismatch in resonance-aware computations) and full. The full option
switches on all components and is required if the total NLO result is desired. For example,
specifying

nlo_calculation = born, virtual

will result in the computation of the Born and virtual component.
The integration can be carried out in two different modes: Combined and separate integration.

In the separate integration mode, each component is integrated individually, allowing for a
good overview of their contributions to the total cross section and a fine tuned control over the
iterations in each component. In the combined integration mode, all components are added
up during integration so that the sum of them is evaluated. Here, only one integration will be
displayed. The default method is the separate integration.

The convergence of the integration can crucially be influenced by the presence of resonances.
A better convergence is in this case achieved activating the resonance-aware FKS subtraction,

$fks_mapping_type = "resonances".

This mode comes with an additional integration component, the so-called soft mismatch.
Note that you can modify the number of iterations in each component with the multipliers:

• mult_call_real multiplies the number of calls to be used in the integration of the real
component. A reasonable choice is 10.0 as the real phase-space is more complicated than
the Born but the matrix elements evaluate faster than the virtuals.

• mult_call_virt multiplies the number of calls to be used in the integration of the virtual
component. A reasonable choice is 0.5 to make sure that the fast Born component only
contributes a negligible MC error compared to the real and virtual components.



152 CHAPTER 5. SINDARIN IN DETAILS

• mult_call_dglap multiplies the number of calls to be used in the integration of the
DGLAP component.

5.11.3 Fixed-order NLO events

Fixed-order NLO events can also be produced in three different modes: Combined weighted,
combined unweighted and separated weighted.

• Combined weighted
In the combined mode, one single integration grid is produced, from which events are
generated with the total NLO weight. The corresponding event file contains N events with
born-like kinematics and weight equal to B + V +

∑
αr

Cαr , where B is the Born matrix
element, V is the virtual matrix element and Cαr are the subtraction terms in each singular
region. For resonance-aware processes, also the mismatch value is added. Each born-like
event is followed by Nphs associated events with real kinematics, i.e. events where one
additional QCD particle is present. The corresponding real matrix elements Rα form the
weight of these events. Nphs is the number of distinct phase spaces. Two phase spaces are
distinct if they have different resonance histories and/or have different emitters. So, two
αr can share the same phase space index.
The combined event mode is activated by

?combined_nlo_integration = true
?unweighted = false
?fixed_order_nlo_events = true

Moreover, the process must be specified at next-to-leading-order in its definition using
nlo_calculation = full. WHIZARD then proceeds as in the usual simulation mode. I.e.
it first checks whether integration grids are already present and uses them if they fit.
Otherwise, it starts an integration.

• Combined unweighted
The unweighted combined events can be generated by using the POWHEG mode, cf. also
the next subsection, but disabling the additional radiation and Sudakov factors with the
?powheg_disable_sudakov switch:

?combined_nlo_integration = true
?powheg_matching = true
?powheg_disable_sudakov = true

This will produce events with Born kinematics and unit weights (as ?unweighted is true
by default). The events are unweighted by using B + V +

∑
αr
(Cαr +Rαr). Of course,

this only works when these weights are positive over the full phase-space, which is not
guaranteed for all scales and regions at NLO. However, for many processes perturbation
theory works nicely and this is not an issue.

• Separate weighted
In the separate mode, grids and events are generated for each individual component of



5.11. WHIZARD AT NEXT-TO-LEADING ORDER 153

the NLO process. This method is preferable for complicated processes, since it allows
to individually tune each grid generation. Moreover, the grid generation is then trivially
parallelized. The event files either contain only Born kinematics with weight B or V (and
mismatch in case of a resonance-aware process) or mixed Born and real kinematics for
the real component like in the combined mode. However, the Born events have only the
weight

∑
αr

Cαr in this case.
The separate event mode is activated by

?unweighted = false
?negative_weights = true
?fixed_order_nlo_events = true

Note that negative weights have to be switched on because, in contrast to the combined
mode, the total cross sections of the individual components can be negative.

Also, the desired component has to appear in the process NLO specification, e.g. using
nlo_calculation = real.

Weighted fixed-order NLO events are supported by any output format that supports weights like
the HepMC format and unweighted NLO events work with any format. The output can either be
written to disk or put into a FIFO to interface it to an analysis program without writing events
to file.

The weights in the real event output, both in the combined and separate weighted mode,
are divided by a factor Nphs + 1. This is to account for the fact that we artificially increase the
number of events in the output file. Thus, the sum of all event weights correctly reproduces the
total cross section.

5.11.4 POWHEG matching

To match the NLO events with a parton shower, WHIZARD supports the POWHEG matching. It
generates a distribution according to

dσ = dΦn B̄s

(
∆s(p

min
T

)
+ dΦrad ∆s(kT(Φrad)

)Rs

B

)
where (5.5)

B̄s = B + V + dΦrad Rs and (5.6)

∆s(pT ) = exp

[
−
∫

dΦrad
Rs

B
θ
(
k2
T (Φrad)− p2T

)]
. (5.7)

The subscript s refers to the singular part of the real component, cf. to the next subsection.
Eq. (5.5) produces either no or one additional emission. These events can then either be analyzed
directly or passed on to the parton shower6 for the full simulation. You activate this with

?fixed_order_nlo_events = false
?combined_nlo_integration = true
?powheg_matching = true

6E.g. PYTHIA8 has explicit examples for POWHEG input, see also http://home.thep.lu.se/Pythia/
pythia82html/POWHEGMerging.html.

http://home.thep.lu.se/Pythia/pythia82html/POWHEGMerging.html
http://home.thep.lu.se/Pythia/pythia82html/POWHEGMerging.html


154 CHAPTER 5. SINDARIN IN DETAILS

The pmin
T of Eq. (5.5) can be set with powheg_pt_min. It sets the minimal scale for the POWHEG

evolution and should be of order 1 GeV and set accordingly in the interfaced shower. The maximal
scale is currently given by sqrts but should in the future be changeable with powheg_pt_max.

Note that the POWHEG event generation needs an additional grid for efficient event generation
that is generated during integration if ?powheg_matching = true is set. Thus, this needs to
be set before the integrate statement. Further options that steer the efficiency of this grid are
powheg_grid_size_xi, powheg_grid_size_y and powheg_grid_sampling_points.

5.11.5 Separation of finite and singular contributions
For both the pure NLO computations as well as the POWHEG event generation, WHIZARD supports
the partitioning of the real into finite and singular contributions with the string variable

$real_partition_mode = "on"

The finite contributions, which by definition should not contain soft or collinear emissions, will
then integrate like an ordinary LO integration with one additional particle. Similarly, the event
generation will produce only real events without subtraction terms with Born kinematics for this
additional finite component. The POWHEG event generation will also only use the singular parts.

The current implementation uses the following parametrization

R = Rfin +Rsing , (5.8)
Rsing = RF (Φn+1) , (5.9)
Rfin = R(1− F (Φn+1)) , (5.10)

F (Φn+1) =

{
1 if ∃ (i, j) ∈ PFKS with

√
(pi + pj)2 < h+mi +mj

0 else
. (5.11)

Thus, a point is singular (F = 1), if any of the FKS tuples forms an invariant mass that is smaller
than the hardness scale h. This parameter is controlled in SINDARIN with real_partition_scale.
This simplifies in massless case to

F (Φn+1) =

{
1 if ∃ (i, j) ∈ PFKS with 2EiEj(1− cos θij) < h2

0 else
. (5.12)



Chapter 6

Random number generators

6.1 General remarks
The random number generators (RNG) are one of the crucialer points of Monte Carlo calculations,
hence, giving those their “randomness”. A decent multipurpose random generator covers

• reproducibility

• large period

• fast generation

• independence

of the random numbers. Therefore, special care is taken for the choice of the RNGs in WHIZARD.
It is stated that WHIZARD utilizes pseudo-RNGs, which are based on one (or more) recursive
algorithm(s) and start-seed(s) to have reproducible sequences of numbers. In contrast, a genuine
random generator relies on physical processes.

WHIZARD ships with two completely different random number generators which can be selected
by setting the SINDARIN option

$rng_method = "rng_tao"

Although, WHIZARD sets a default seed, it is adviced to use a different one
seed = 175368842

note that some RNGs do not allow certain seed values (e.g. zero seed).

6.2 The TAO Random Number Generator
The TAO (“The Art Of”) random number generator is a lagged Fibonacci generator based upon
(signed) 32-bit integer arithmetic and was proposed by Donald E. Knuth and is implemented in
the VAMP package. The TAO random number generator is the default RNG of WHIZARD, but
can additionally be set as SINDARIN option

155



156 CHAPTER 6. RANDOM NUMBER GENERATORS

$rng_method = rng_tao

The TAO random number generators is a subtractive lagged Fibonacci generator

xj = (xj−k − xj−L) mod 230

with lags k = 100 and l = 37 and period length ρ = 230 − 2.

6.3 The RNGStream Generator
The RNGStream [97] was originally implemented in C++ with floating point arithmetic and has
been ported to Fortran2003. The RNGstream can be selected by the SINDARIN option

$rng_method = "rng_stream"

The RNGstream supports multiple independent streams and substreams of random numbers
which can be directly accessed.

The main advantage of the RNGStream lies in the domain of parallelization where differ-
ent worker have to access different parts of the random number stream to ensure numerical
reproducibility. The RNGstream provides exactly this property with its (sub)stream-driven
model.

Unfortunately, the RNGStream can only be used in combination with VAMP2.



Chapter 7

Integration Methods

7.1 The Monte-Carlo integration routine: VAMP

VAMP [32] is a multichannel extension of the VEGAS [33] algorithm. For all possible singularities
in the integrand, suitable maps and integration channels are chosen which are then weighted and
superimposed to build the phase space parameterization. Both grids and weights are modified
in the adaption phase of the integration.

The multichannel integration algorithm is implemented as a Fortran95 library with the
task of mapping out the integrand and finding suitable parameterizations being completely
delegated to the calling program (WHIZARD core in this case). This makes the actual VAMP library
completely agnostic of the model under consideration.

7.2 The next generation integrator: VAMP2

VAMP2 is a modern implementation of the integrator package VAMP written in Fortran2003
providing the same features. The backbone integrator is still VEGAS [33], although implemented
differently as in VAMP.

The main advantage over VAMP is the overall faster integration due to the usage of Fortran2003,
the possible usage of different random number generators and the complete parallelization of
VEGAS and the multichannel integration.

VAMP2 can be set by the SINDARIN option
$integration_method = "vamp2"

It is said that the generated grids between VAMP and VAMP2 are incompatible.

7.2.1 Multichannel integration

The usual matrix elements do not factorise with respect to their integration variables, thus making
an direct integration ansatz with VEGAS unfavorable.1 Instead, we apply the multichannel

1One prerequisite for the VEGAS algorithm is that the integral factorises, and such produces only the best
results for those.

157



158 CHAPTER 7. INTEGRATION METHODS

ansatz and let VEGAS integrate each channel in a factorising mapping.
The different structures of the matrix element are separated by a partition of unity and the

respective mappings, such that each structure factorise at least once. We define the mappings
ϕi : U 7→ Ω, where U is the unit hypercube and Ω the physical phase space. We refer to each
mapping as a channel. Each channel then gives rise to a probability density gi : U 7→ [0,∞),
normalised to unity ∫ 1

0

gi(ϕ
−1
i (p))

∣∣∣∣∂ϕ−1
i

∂p

∣∣∣∣ dµ(p) = 1, gi(ϕ
−1
i (p)) ≥ 0,

written for a phase space point p using the mapping ϕi. The a-priori channel weights αi are
defined as partition of unity by

∑
i∈I αi = 1 and 0 ≤ αi ≤ 1. The overall probability density g

of a random sample is then obtained by

g(p) =
∑
i∈I

αigi(ϕ
−1
i (p))

∣∣∣∣∂ϕ−1
i

∂p

∣∣∣∣ ,
which is also a non-negative and normalized probability density.

We reformulate the integral

I(f) =
∑
i∈I

αi

∫
Ω

gi(ϕ
−1
i (p))

∣∣∣∣∂ϕ−1
i

∂p

∣∣∣∣ f(p)g(p)
dµ(p).

The actual integration of each channel is then done by VEGAS, which shapes the gi.

7.2.2 VEGAS

VEGAS is an adaptive and iterative Monte Carlo algorithm for integration using importance
sampling. After each iteration, VEGAS adapts the probability density gi using information
collected while sampling. For independent integration variables, the probability density factorises
gi =

∏d
j=1 gi,j for each integration axis and each (independent) gi,j is defined by a normalised

step function

gi,j(xj) =
1

N∆xj,k

, xj,k −∆xj,k ≤ xj < xj,k,

where the steps are 0 = xj,0 < · · · < xj,k < · · · < xj,N = 1 for each dimension j. The algorithm
randomly selects for each dimension a bin and a position inside the bin and calculates the
respective gi,j.

7.2.3 Channel equivalences

The automated mulitchannel phasespace configuration can lead to a surplus of degrees of
freedom, e.g. for a highly complex process with a large number of channels (VBS). In order
to marginalize the redundant degrees of freedom of phasespace configuration, the adaptation
distribution of the grids are aligned in accordance to their phasespace relation, hence the binning
of the grids is equialized. These equivalences are activated by default for VAMP and VAMP2, but
can be steered by:



7.2. THE NEXT GENERATION INTEGRATOR: VAMP2 159

?use_vamp_equivalences = true



160 CHAPTER 7. INTEGRATION METHODS



Chapter 8

Phase space parameterizations

8.1 General remarks

WHIZARD as a default performs an adaptive multi-channel Monte-Carlo integration. Besides its
default phase space algorithm, wood, to be detailed in Sec. 8.3, WHIZARD contains a phase space
method phs_none which is a dummy method that is intended for setups of processes where
no phase space integration is needed, but the program flow needs a (dummy) integrator for
internal consistency. Then, for testing purposes, there is a single-channel phase space integrator,
phs_single. From version 2.6.0 of WHIZARD on, there is also a second implementation of the wood
phase space algorithm, called fast_wood, cf. Sec. 8.4, whose implementation differs technically
and which therefore solves certain technical flaws of the wood implementation. Additionally,
WHIZARD supports single-channel, flat phase-space using RAMBO (on diet).

8.2 The flat method: rambo

The RAMBO algorithm produces a flat phase-space with constant volume for massless particles.
RAMBO was originally published in [100]. We use the slim version, called RAMBO on diet, published
in [98]. The overall weighting efficiency of the algorithm is unity for massless final-state particles.
For the massive case, the weighting efficiency of unity will decrease rendering the algorithm less
efficient. But in most cases, the invariants are in regions of phase space where they are much
larger than the masses of the final-state particles.

We provide the RAMBO mainly for cross checking our implementation and do not recommend
it for real world application, even though it can be used as one. The RAMBO method becomes
useful as a fall-back option if the standard algorithm fails for physical reasons, see, e.g., Sec. 8.6.

8.3 The default method: wood

The wood algorithm classifies different phase space channels according to their importance for a
full scattering or decay process following heuristic rules. For that purpose, WHIZARD investigates

161



162 CHAPTER 8. PHASE SPACE PARAMETERIZATIONS

the kinematics of the different channels depending on the total center-of-mass energy (or the
mass of the decaying particle) and the masses of the final-state particles.

The wood phase space inherits its name from the naming schemes of structures of increasing
complexities, namely trees, forests and groves. Simply stated, a phase-space forest is a collection
of phase-space trees. A phase-space tree is a parameterization for a valid channel in the multi-
channel adaptive integration, and each variable in the a tree corresponds to an integration
dimension, defined by an appropriate mapping of the (0, 1) interval of the unit hypercube to the
allowed range of the corresponding integration variable. The whole set of these phase-space trees,
collected in a phase-space forest object hence contains all parameterizations of the phase space
that WHIZARD will use for a single hard process. Note that processes might contain flavor sums
of particles in the final state. As WHIZARD will use the same phase space parameterization for
all channels for this set of subprocesses, all particles in those flavor sums have to have the same
mass. E.g. in the definition of a "light" jet consisting of the first five quarks and antiquarks,

alias jet = u:d:s:c:b:U:D:S:C:B

all quarks including strange, charm and bottom have to be massless for the phase-space
integration. WHIZARD can treat processes with subprocesses having final-state particles with
different masses in an "additive" way, where each subprocess will become a distinct component
of the whole process. Each process component will get its own phase-space parameterization,
such that they can allow for different masses. E.g. in a 4-flavor scheme for massless u, d, s, c
quarks one can write

alias jet = u:d:s:c:U:D:S:C
process eeqq = e1, E1 => (jet, jet) + (b, B)

In that case, the parameterizations will be for massless final state quarks for the first subprocess,
and for massive b quarks for the second subprocess. In general, for high-energy lepton colliders,
the difference would not matter much, but performing the integration e.g. for

√
s = 11 GeV,

the difference will be tremendous. WHIZARD avoids inconsistent phase-space parameterizations
in that way.

As a multi-particle process will contain hundred or thousands of different channels, the
different integration channels (trees) are grouped into so called groves. All channels/trees in the
same grove share a common weight for the phase-space integration, following the assumption that
they are related by some approximate symmetry. The VAMP adaptive multi-channel integrator
(cf. Sec. 7.1) allows for equivalences between different integration channels. This means that
trees/channels that are related by an exact symmetry are connected by an array of these
equivalences.

The phase-space setup, i.e. the detailed structure of trees and forests, are written by
WHIZARD into a phase-space file that has the same name as the corresponding process (or process
component) with the suffix .phs. For the wood phase-space method this file is written by a
Fortran module which constructs a similar tree-like structure as the directed acyclical graphs
(DAGs) in the O’Mega matrix element generator but in a less efficient way.

In some very rare cases with externally generated models (cf. Chapter 17) the phase-space
generation has been reported to fail as WHIZARD could not find a valid phase-space channel.
Such pathological cases cannot occur for the hard-coded model implementations inside WHIZARD.
They can only happen if there are in principle two different Feynman diagrams contributing to
the same phase-space channel and WHIZARD considers the second one as extremely subleading



8.3. THE DEFAULT METHOD: WOOD 163

(and would hence drop it). If for some reason however the first Feynman diagram is then
absent, no phase-space channel could be found. This problem cannot occur with the fast_wood
implementation discussed in the next section, cf. 8.4.

The wood algorithms orders the different groves of phase-space channels according to a
heuristic importance depending on the kinematic properties of the different phase-space channels
in the groves. A phase-space (.phs) file looks typically like this:

process sm_i1

! List of subprocesses with particle bincodes:
! 8 4 1 2
! e+ e- => mu+ mu-
! 8 4 1 2

md5sum_process = "1B3B7A30C24664A73D3D027382CFB4EF"
md5sum_model_par = "7656C90A0B2C4325AD911301DACF50EB"
md5sum_phs_config = "6F72D447E8960F50FDE4AE590AD7044B"
sqrts = 1.000000000000E+02
m_threshold_s = 5.000000000000E+01
m_threshold_t = 1.000000000000E+02
off_shell = 2
t_channel = 6
keep_nonresonant = T

! Multiplicity = 2, no resonances, 0 logs, 0 off-shell, s-channel graph
grove #1
! Channel #1

tree 3

! Multiplicity = 1, 1 resonance, 0 logs, 0 off-shell, s-channel graph
grove #2
! Channel #2

tree 3
map 3 s_channel 23 ! Z

The first line contains the process name, followed by a list of subprocesses with the external
particles and their binary codes. Then there are three lines of MD5 check sums, used for
consistency checks. WHIZARD (unless told otherwise) will check for the existence of a phase-
space file, and if the check sum matches, it will reuse the existing file and not generate it
again. Next, there are several kinematic parameters, namely the center-of-mass energy of the
process, sqrts, and two mass thresholds, m_threshold_s and m_threshold_t. The latter two
are kinematical thresholds, below which WHIZARD will consider s-channel and t-channel-like
kinematic configurations as effectively massless, respectively. The default values shown in
the example have turned out to be optimal values for Standard Model particles. The two
integers off_shell and t_channel give the number of off-shell lines and of t-channel lines that
WHIZARD will allow for finding valid phase-space channels, respectively. This neglects extremley
multi-peripheral background-like diagram constellations which are very subdominamnt compared
to resonant signal processes. The final flag specifies whether WHIZARD will keep non-resonant
phase-space channels (default), or whether it will focus only on resonant situations.



164 CHAPTER 8. PHASE SPACE PARAMETERIZATIONS

After this header, there is a list of all groves, i.e. collections of phase-space channels which
are connected by quasi-symmetries, together with the corresponding multiplicity of subchannels
in that grove. In the phase-space file behind the multiplicity, WHIZARD denotes the number of
(massive) resonances, logarithmcally enhanced kinematics (e.g. collinear regions), and number
of off-shell lines, respectively. The final entry in the grove header notifies whether the diagrams
in that grove have s-channel topologies, or count the number of corresponding t-channel lines.

Another example is shown here,
! Multiplicity = 3, no resonances, 2 logs, 0 off-shell, 1 t-channel line
grove #1
! Channel #1

tree 3 12
map 3 infrared 22 ! A
map 12 t_channel 2 ! u

! Channel #2
tree 3 11
map 3 infrared 22 ! A
map 11 t_channel 2 ! u

! Channel #3
tree 3 20
map 3 infrared 22 ! A
map 20 t_channel 2 ! u

! Channel #4
tree 3 19
map 3 infrared 22 ! A
map 19 t_channel 2 ! u

where WHIZARD notifies in different situations a photon exchange as infrared. So it detects a
possible infrared singularity where a particle can become arbitrarily soft. Such a situation can
tell the user that there might be a cut necessary in order to get a meaningful integration result.

The phase-space setup that is generated and used by the wood phase-space method can be
visualized using the SINDARIN option

?vis_channels = true

The wood phase-space method can be invoked with the SINDARIN command
$phs_method = "wood"

Note that this line is unnecessary, as wood is the default phase-space method of WHIZARD.

8.4 A new method: fast_wood
This method (which is available from version 2.6.0 on) is an alternative implementation of the
wood phase-space algorithm. It uses the recursive structures inside the O’Mega matrix element
generator to generate all the structures needed for the different phase-space channels. In that
way, it can avoid some of the bottlenecks of the wood Fortran implementation of the algorithm.
On the other hand, it is only available if the O’Mega matrix element generator has been enabled
(which is the default for WHIZARD). The fast_wood method is then invoked via

?omega_write_phs_output = true
$phs_method = "fast_wood"



8.5. PHASE SPACE RESPECTING RESTRICTIONS ON SUBDIAGRAMS 165

The first option is necessary in order to tell O’Mega to write out the output needed for the
fast_wood parser in order to generate the phase-space file. This is not enabled by default in
order not to generate unnecessary files in case the default method wood is used.

So the fast_wood implementation of the wood phase-space algorithm parses the tree-like
represenation of the recursive set of one-particle off-shell wave functions that make up the whole
amplitude inside O’Mega in the form of a directed acyclical graph (DAG) in order to generate
the phase-space (.phs) file (cf. Sec. 8.3). In that way, the algorithm makes sure that only
phase-space channels are generated for which there are indeed (sub)amplitudes in the matrix
elements, and this also allows to exclude vetoed channels due to restrictions imposed on the
matrix elements from the phase-space setup (cf. next Sec. 8.5).

8.5 Phase space respecting restrictions on subdiagrams

The Fortran implementation of the wood phase-space does not know anything about possible
restrictions that maybe imposed on the O’Mega matrix elements, cf. Sec. 5.4.3. Consequently,
the wood phase space also generates phase-space channels that might be absent when restrictions
are imposed. This is not a principal problem, as in the adaptation of the phase-space channels
WHIZARD’s integrator VAMP will recognize that there is zero weight in that channel and will
drop the channel (stop sampling in that channel) after some iterations. However, this is a
waste of ressources as it is in principle known that this channel is absent. Using the fast_wood
phase-space algorithm (cf. Sec. 8.4 will take restrictions into account, as O’Mega will not generate
trees for channels that are removed with the restrictions command. So it advisable for the user
in the case of very complicated processes with restrictions to use the fast_wood phase-space
method to make WHIZARD generation and integration of the phase space less cumbersome.

8.6 Phase space for processes forbidden at tree level

The phase-space generators wood and fast_wood are intended for tree-level processes with their
typical patterns of singularities, which can be read off from Feynman graphs. They can and
should be used for loop-induced or for externally provided matrix elements as long as WHIZARD
does not provide a dedicated phase-space module.

Some scattering processes do not occur at tree level but become allowed if loop effects are
included in the calculation. A simple example is the elastic QED process

A A −→ A A

which is mediated by a fermion loop. Similarly, certain applications provide externally provided
or hand-taylored matrix-element code that replaces the standard O’Mega code.

Currently, WHIZARD’s phase-space parameterization is nevertheless tied to the O’Mega gener-
ator, so for tree-level forbidden processes the phase-space construction process will fail.

There are two possible solutions for this problem:



166 CHAPTER 8. PHASE SPACE PARAMETERIZATIONS

1. It is possible to provide the phase-space parameterization information externally, by
supplying an appropriately formatted .phs file, bypassing the automatic algorithm. As-
suming that this phase-space file has been named my_phase_space.phs, the SINDARIN
code should contain the following:

?rebuild_phase_space = false
$phs_file = "my_phase_space.phs"

Regarding the contents of this file, we recommend to generate an appropriate .phs for a
similar setup, using the standard algorithm. The generated file can serve as a template,
which can be adapted to the particular case.

In detail, the .phs file consists of entries that specify the process, then a standard header
which contains MD5 sums and such – these variables must be present but their values
are irrelevant for the present case –, and finally at least one grove with tree entries that
specify the parameterization. Individual parameterizations are built from the final-state
and initial-state momenta (in this order) which we label in binary form as 1, 2, 4, 8, . . . .
The actual tree consists of iterative fusions of those external lines. Each fusion is indicated
by the number that results from adding the binary codes of the external momenta that
contribute to it.
For instance, a valid phase-space tree for the process AA → AA is given by the simple
entry

tree 3

which indicates that the final-state momenta 1 and 2 are combined to a fusion 1 + 2 = 3.
The setup is identical to a process such as e+e− → µ+µ− below the Z threshold. Hence,
we can take the .phs file for the latter process, replace the process tag, and use it as an
external phase-space file.

2. For realistic applications of WHIZARD together with one-loop matrix-element providers,
the actual number of final-state particles may be rather small, say 2, 3, 4. Furthermore,
one-loop processes which are forbidden at tree level do not contain soft or collinear
singularities. In this situation, the RAMBO phase-space integration method, cf. Sec. 8.2 is a
viable alternative which does not suffer from the problem.



Chapter 9

Methods for Hard Interactions

The hard interaction process is the core of any physics simulation within an MC event generator.
One tries to describe the dominant particle interaction in the physics process of interest at a
given order in perturbation theory, thereby making use of field-theoretic factorization theorems,
especially for QCD, in order to separate non-perturbative physics like parton distribution
functions (PDFs) or fragmentation functions from the perturbative part. Still, it is in many cases
not possible to describe the perturbative part completely by means of fixed-order hard matrix
elements: in soft and/or collinear regions of phase space, multiple emission of gluons and quarks
(in general QCD jets) and photons necessitates a resummation, as large logarithms accompany
the perturbative coupling constants and render fixed-order perturbation theory unreliable. The
resummation of these large logarithms can be done analytically or (semi-)numerically, however,
usually only for very inclusive quantities. At the level of exclusive events, these phase space
regions are the realm of (QCD and also QED) parton showers that approximate multi-leg matrix
elements from the hard perturbative into to the soft-/collinear regime.

The hard matrix elements are then the core building blocks of the physics description
inside the MC event generator. WHIZARD generates these hard matrix elements at tree-level (or
sometimes for loop-induced processes using effective operators as insertions) as leading-order
processes. This is done by the O’Mega subpackage that is automatically called by WHIZARD.
Besides these physical matrix elements, there exist a couple of methods to generate dummy
matrix elements for testing purposes, or for generating beam profiles and using them with
externally linked special matrix elements.

Especially for one-loop processes (next-to-leading order for tree-allowed processes or leading-
order for loop-induced processes), WHIZARD allows to use matrix elements from external providers,
so called OLP programs (one-loop providers). Of course, all of these external packages can also
generate tree-level matrix elements, which can then be used as well in WHIZARD.

We start the discussion with the two different options for test matrix elements, internal test
matrix elements with no generated compiled code in Sec. 9.1 and so called template matrix
elements with actual Fortran code that is compiled and linked, and can also be modified by
the user in Sec. 9.2. Then, we move to the main matrix element method by the matrix element
generator O’Mega in Sec. 9.3. Matrix elements from the external matrix element generators are
discussed in the order of which interfaces for the external tools have been implemented: Gosam

167



168 CHAPTER 9. METHODS FOR HARD INTERACTIONS

in Sec. 9.4, OpenLoops in Sec. 9.5, and Recola in Sec. 9.6.

9.1 Internal test matrix elements
This method is merely for internal consistency checks inside WHIZARD, and is not really intended
to be utilized by the user. The method is invoked by

$method = "unit_test"

This particular method is only applicable for the internal test model Test.mdl, which just
contains a Higgs boson and a top quark. Technically, it will also works within model specifications
for the Standard Model, or the Minimal Supersymmetric Standard Model (MSSM), or all models
which contain particles named as H and t with PDG codes 25 and 6, respectively. So, the models
QED and QCD will not work. Irrespective of what is given in the SINDARIN file as a scattering
input process, WHIZARD will always take the process

model = SM
process <proc_name>= H, H => H, H

or for the test model:
model = Test
process <proc_name>= s, s => s, s

as corresponding process. (This is the same process, just with differing nomenclature in the
different models). No matrix element code is generated and compiled, the matrix element is
completely internal, included in the WHIZARD executable (or library), with a unit value for the
squared amplitude. The integration will always be performed for this particularly process, even
if the user provides a different process for that method. Hence, the result will always be the
volume of the relativistic two-particle phase space. The only two parameters that influence the
result are the collider energy, sqrts, and the mass of the Higgs particle with PDG code 25 (this
mass parameter can be changed in the model Test as ms, while it would be mH in the Standard
Model SM.

It is also possible to use a test matrix element, again internal, for decay processes, where
again WHIZARD will take a predefined process:

model = SM
process <proc_name> = H => t, tbar

in the SM model or
model = Test
process <proc_name> = s => f, fbar

Again, this is the same process with PDG codes 25 → 6 − 6 in the corresponding models. Note
that in the model SM the mass of the quark is set via the variable mtop, while it is mf in the
model Test.

Besides the fact that the user always gets a fixed process and cannot modify any matrix
element code by hand, one can do all things as for a normal process like generating events,
different weights, testing rebuild flags, using different setups and reweight events accordingly.
Also factorized processes with production and decay can be tested that way.



9.2. TEMPLATE MATRIX ELEMENTS 169

In order to avoid confusion, it is highly recommended to use this method unit_test only
with the test model setup, model Test.

On the technical side, the method unit_test does not produce a process library (at least
not an externally linked one), and also not a makefile in order to modify any process files (which
anyways do not exist for that method). Except for the logfiles and the phase space file, all files
are internal.

9.2 Template matrix elements
Much more versatile for the user than the previous matrix element method in 9.1, are two
different methods with constant template matrix elements. These are written out as Fortran
code by the WHIZARD main executable (or library), providing an interface that is (almost)
identical to the matrix element code produced by the O’Mega generator (cf. the next section,
Sec. 9.3. There are actually two different methods for that purpose, providing matrix elements
with different normalizations:

$method = "template"

generates matrix elements which give after integration over phase space exactly one. Of course,
for multi-particle final states the integration can fluctuate numerically and could then give
numbers that are only close to one but not exactly one. Furthermore, the normalization is not
exact if any of the external particles have non-zero masses, or there are any cuts involved. But
otherwise, the integral from WHIZARD should give unity irrespective of the number of final state
particles.

In contrast to this, the second method,
$method = "template_unity"

gives a unit matrix elements, or rather a matrix element that contains helicity and color averaging
factors for the initial state and the square root of the factorials of identical final state particles
in the denominator. Hence, integration over the final state momentum configuration gives a
cross section that corresponds to the volume of the n-particle final state phase space, divided by
the corresponding flux factor, resulting in

σ(s, 2 → 2, 0) =
3.8937966 · 1011

16π
· 1

s[GeV]2
fb (9.1)

for the massless case and

σ(s, 2 → 2,mi) =
3.8937966 · 1011

16π
·
√

λ(s,m2
3,m

2
4)

λ(s,m2
1,m

2
2)

· 1

s[GeV]2
fb (9.2)

for the massive case. Here, m1 and m2 are the masses of the incoming, m3 and m4 the masses
of the outgoing particles, and λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz.

For the general massless case with no cuts, the integral should be exactly

σ(s, 2 → n, 0) =
(2π)4

2s
Φn(s) =

1

16πs

Φn(s)

Φ2(s)
, (9.3)



170 CHAPTER 9. METHODS FOR HARD INTERACTIONS

where the volume of the massless n-particle phase space is given by

Φn(s) =
1

4(2π)5

( s

16π2

)n−2 1

(n− 1)!(n− 2)!
. (9.4)

For n ̸= 2 the phase space volume is dimensionful, so the units of the integral are fb×GeV2(n−2).
(Note that for physical matrix elements this is compensated by momentum factors from wave
functions, propagators, vertices and possibly dimensionful coupling constants, but here the
matrix element is just equal to unity.)

Note that the phase-space integration for the template and template_unity matrix element
methods is organized in the same way as it would be for the real 2 → n process. Since such a
phase space parameterization is not optimized for the constant matrix element that is supplied
instead, good convergence is not guaranteed. (Setting ?stratified = true may be helpful
here.)

The possibility to call a dummy matrix element with this method allows to histogram spectra
or structure functions: Choose a trivial process such as uu → dd, select the template_unity
method, switch on structure functions for one (or both) beams, and generate events. The
distribution of the final-state mass squared reflects the x dependence of the selected structure
function.

Furthermore, the constant in the source code of the unit matrix elements can be easily
modified by the user with their Fortran code in order to study customized matrix elements.
Just rerun WHIZARD with the –recompile option after the modification of the matrix element
code.

Both methods, template and template_unity will also work even if no OCaml compiler is
found or used and consequently the O’Mega matrix elemente generator (cf. Sec. 9.3 is disable.
The methods produce a process library for their corresponding processes, and a makefile, by
which WHIZARD steers compilation and linking of the process source code.

There is also a specialized third version of template matrix elements, called template_gg_had,
which should only be used for a dedicated simulation of low-p⊥ hadrons in photon-photon
collisions (either from the beam spectrum at an electron-positron or a photon collider) or in
collinear splittings of photons off leptons using the equivalent photon approximation (EPA).
For it, parton shower and hadronization from PYTHIA6 has to be switched on. WHIZARD will use
special parameterizations from e.g. the Crystal Ball experiment on the total cross section and
distribution of hadrons in photon-photon collisions.

9.3 The O’Mega matrix elements
O’Mega is a subpackage of WHIZARD, written in OCaml, which can produce matrix elements for a
wide class of implemented physics models (cf. Sec. 10.1.1 and 10.1.2 for a list of all implemented
physics models), and even almost arbitrary models when using external Lagrange level tools, cf.
Chap. 17. There are two different variants for matrix elements from O’Mega: the first one is
invoked as

$method = "omega"



9.3. THE O’MEGA MATRIX ELEMENTS 171

and is the default method for WHIZARD. It produces matrix element as Fortran code which is
then compiled and linked. An alternative method, which for the moment is only available for
the Standard Model and its variants as well models which are quite similar to the SM, e.g. the
Two-Higgs doublet model or the Higgs-singlet extension. This method is taken when setting

$method = "ovm"

The acronym ovm stands for O’Mega Virtual Machine (OVM). The first (default) method (omega)
of O’Mega matrix elements produces Fortran code for the matrix elements,that is compiled by
the same compiler with which WHIZARD has been compiled. The OVM method (ovm) generates
an ASCII file with so called op code for operations. These are just numbers which tell what
numerical operations are to be performed on momenta, wave functions and vertex expression
in order to yield a complex number for the amplitude. The op codes are interpreted by the
OVM in the same as a Java Virtual Machine. In both cases, a compiled Fortran is generated
which for the omega method contains the full expression for the matrix element as Fortran
code, while for the ovm method this is the driver file of the OVM. Hence, for the ovm method
this file always has roughly the same size irrespective of the complexity of the process. For the
ovm method, there will also be the ASCII file that contains the op codes, which has a name with
an .hbc suffix: <process_name>.hbc.

For both O’Mega methods, there will be a process library created as for the template matrix
elements (cf. Sec. 9.2) named default_lib.f90 which can be given a user-defined name using
the library = "<library>" command. Again, for both methods omega and ovm, a makefile
named <library>_lib.makefile is generated by which WHIZARD steers compilation, linking
and clean-up of the process sources. This makefile can handily be adapted by the user in case she
or he wants to modify the source code for the process (in the case of the source code method).

Note that WHIZARD’s default ME method via O’Mega allows the user to specify many different
options either globally for all processes in the SINDARIN, or locally for each process separately
in curly brackets behind the corresponding process definition. Examples are

• Restrictions for the matrix elements like the exclusion of intermediate resonances, the
appearance of specific vertices or coupling constants in the matrix elments. For more
details on this cf. Sec. 5.4.3.

• Choice of a specific scheme for the width of massive intermediate resonances, whether
to use constant width, widths only in s-channel like kinematics (this is the default), a
fudged-width scheme or the complex-mass scheme. The latter is actually steered as a
specific scheme of the underlying model and not with a specific O’Mega command.

• Choice of the electroweak gauge for the amplitude. The default is the unitary gauge.

With the exception of the restrictions steered by the $restrictions = "<restriction>" string
expression, these options have to be set in their specific O’Mega syntax verbatim via the string
command $omega_flags = "<expr>".



172 CHAPTER 9. METHODS FOR HARD INTERACTIONS

9.4 Interface to GoSam
One of the supported methods for automated matrix elements from external providers is for the
Gosam package. This program package which is a combination of Python scripts and Fortran
libraries, allows both for tree and one-loop matrix elements (which is leading or next-to-leading
order, depending on whether the corresponding process is allowed at the tree level or not). In
principle, the advanced version of Gosam also allows for the evaluation of two-loop virtual matrix
elements, however, this is currently not supported in WHIZARD. This method is invoked via the
command

$method = "gosam"

Of course, this will only work correctly of Gosam with all its subcomponents has been correctly
found during configuration of WHIZARD and then subsequently correctly linked.

In order to generate the tables for spin, flavor and color states for the corresponding process,
first O’Mega is called to provide Fortran code for the interfaces to all the metadata for the
process(es) to be evaluated. Next, the Gosam Python script is automatically invoked that first
checks for the necessary ingredients to produce, compile and link the Gosam matrix elements.
These are the the Qgraf topology generator for the diagrams, Form to perform algebra, the
Samurai, AVHLoop, QCDLoop and Ninja libraries for Passarino-Veltman reduction, one-loop
tensor integrals etc. As a next step, Gosam automatically writes and executes a configure
script, and then it exchanges the Binoth Les Houches accord (BLHA) contract files between
WHIZARD and itself [37,38] to check whether it actually generate code for the demanded process
at the given order. Note that the contract and answer files do not have to be written by the
user by hand, but are generated automatically within the program work flow initiated by the
original SINDARIN script. Gosam then generates Fortran code for the different components of
the processes, compiles it and links it into a library, which is then automatically accessible (as
an external process library) from inside WHIZARD. The phase space setup and the integration as
well as the LO (and NLO) event generation work then in exactly the same way as for O’Mega
matrix elements.

As an NLO calculation consists of different components for the Born, the real correction,
the virtual correction, the subtraction part and possible further components depending on
the details of the calculation, there is the possible to separately choose the matrix element
method for those components via the keywords $loop_me_method, $real_tree_me_method,
$correlation_me_method etc. These keywords overwrite the master switch of the $method
keyword.

For more information on the switches and details of the functionality of Gosam, cf. http:
//gosam.hepforge.org.

9.5 Interface to Openloops
Very similar to the case of Gosam, cf. Sec. 9.4, is the case for OpenLoops matrix elements.
Also here, first O’Mega is called in order to provide an interface for the spin, flavor and color
degrees of freedom for the corresponding process. Information exchange between WHIZARD and
OpenLoops then works in the same automatic way as for Gosam via the BLHA interface. This
matrix element method is invoked via

http://gosam.hepforge.org
http://gosam.hepforge.org


9.6. INTERFACE TO RECOLA 173

$method = "openloops"

This again is the master switch that will tell WHIZARD to use OpenLoops for all components,
while there are special keywords to tailor-make the setup for the different components of an
NLO calculation (cf. Sec. 9.4.

The main difference between OpenLoops and Gosam is that for OpenLoops there is no process
code to be generated, compiled and linked for a process, but a precompiled library is called
and linked, e.g. ppllj for the Drell-Yan process. Of course, this library has to be installed on
the system, but if that is not the case, the user can execute the OpenLoops script in the source
directory of OpenLoops to download, compile and link the corresponding dynamic library. This
limits (for the moment) the usage of OpenLoops to processes where pre-existint libraries for that
specific processes have been generated by the OpenLoops authors. A new improved generator
for general process libraries for OpenLoops will get rid of that restriction.

For more information on the installation, switches and details of the functionality of
OpenLoops, cf. http://openloops.hepforge.org.

9.6 Interface to Recola
The third one-loop provider (OLP) for external matrix elements that is supported by WHIZARD,
is Recola. In contrast to Gosam, cf. Sec. 9.4, and OpenLoops, cf. Sec. 9.5, Recola does not use a
BLHA interface to exchange information with WHIZARD, but its own tailor-made C interoperable
library interface to communicate to the Monte Carlo side. Recola matrix elements are called
for via

$method = "recola"

Recola uses a highly efficient algorithm to generate process code for LO and NLO SM amplitudes
in a fully recursive manner. At the moment, the setup of the interface within WHIZARD does
not allow to invoke more than one different process in Recola: this would lead to a repeated
initialization of the main setup of Recola and would consequently crash it. It is foreseen in
the future to have a safeguard mechanism inside WHIZARD in order to guarantee initialization of
Recola only once, but this is not yet implemented.

Further information on the installation, details and parameters of Recola can be found at
http://recola.hepforge.org.

9.7 Special applications
There are also special applications with combinations of matrix elements from different sources
for dedicated purposes like e.g. for the matched top–anti-top threshold in e+e−. For this special
application which depending on the order of the matching takes only O’Mega matrix elements
or at NLO combines amplitudes from O’Mega and OpenLoops, is invoked by the method:

$method = "threshold"

http://openloops.hepforge.org
http://recola.hepforge.org


174 CHAPTER 9. METHODS FOR HARD INTERACTIONS



Chapter 10

Implemented physics

10.1 The hard interaction models
In this section, we give a brief overview over the different incarnations of models for the description
of the realm of subatomic particles and their interactions inside WHIZARD. In Sec. 10.1.1, the
Standard Model (SM) itself and straightforward extensions and modifications thereof in the
gauge, fermionic and Higgs sector are described. Then, Sec. 10.1.2 gives a list and short
description of all genuine beyond the SM models (BSM) that are currently implemented in
WHIZARD and its matrix element generator O’Mega. Additional models beyond that can be
integrated and handled via the interfaces to external tools like SARAH and FeynRules, or the
universal model format UFO, cf. Chap. 17.

10.1.1 The Standard Model and friends

10.1.2 Beyond the Standard Model

Strongly Interacting Models and Composite Models

Higgsless models have been studied extensively before the Higgs boson discovery at the LHC Run
I in 2012 in order to detect possible loopholes in the electroweak Higgs sector discovery potential
of this collider. The Threesite Higgsless Model is one of the simplest incarnations of these
models, and was one of the first BSM models beyond SUSY and Little Higgs models that have
been implemented in WHIZARD [39]. It is also called the Minimal Higgsless Model (MHM) [40] is
a minimal deconstructed Higgsless model which contains only the first resonance in the tower
of Kaluza-Klein modes of a Higgsless extra-dimensional model. It is a non-renormalizable,
effective theory whose gauge group is an extension of the SM with an extra SU(2) gauge
group. The breaking of the extended electroweak gauge symmetry is accomplished by a set of
nonlinear sigma fields which represent the effects of physics at a higher scale and make the theory
nonrenormalizable. The physical vector boson spectrum contains the usual photon, W± and Z
bosons as well as a W ′± and Z ′ boson. Additionally, a new set of heavy fermions are introduced
to accompany the new gauge group “site” which mix to form the physical eigenstates. This
mixing is controlled by the small mixing parameter ϵL which is adjusted to satisfy constraints

175



176 CHAPTER 10. IMPLEMENTED PHYSICS

MODEL TYPE with CKM matrix trivial CKM
Yukawa test model –- Test
QED with e, µ, τ, γ –- QED
QCD with d, u, s, c, b, t, g –- QCD
Standard Model SM_CKM SM
SM with anomalous gauge couplings SM_ac_CKM SM_ac
SM with Hgg, Hγγ, Hµµ, He+e− SM_Higgs_CKM SM_Higgs
SM with bosonic dim-6 operators –- SM_dim6
SM with charge 4/3 top –- SM_top
SM with anomalous top couplings –- SM_top_anom
SM with anomalous Higgs couplings –- SM_rx/NoH_rx/SM_ul
SM extensions for V V scattering –- SSC/AltH/SSC_2/SSC_AltT
SM with Z ′ –- Zprime
Two-Higgs Doublet Model THDM_CKM THDM
MSSM MSSM_CKM MSSM
MSSM with gravitinos –- MSSM_Grav
NMSSM NMSSM_CKM NMSSM
extended SUSY models –- PSSSM
Littlest Higgs –- Littlest
Littlest Higgs with ungauged U(1) –- Littlest_Eta
Littlest Higgs with T parity –- Littlest_Tpar
Simplest Little Higgs (anomaly-free) –- Simplest
Simplest Little Higgs (universal) –- Simplest_univ
SM with graviton –- Xdim
UED –- UED
“SQED” with gravitino –- GravTest
Augmentable SM template –- Template

Table 10.1: List of models available in WHIZARD. There are pure test models or models
implemented for theoretical investigations, a long list of SM variants as well as a large number
of BSM models.



10.2. THE SUSY LES HOUCHES ACCORD (SLHA) INTERFACE 177

from precision observables, such as the S parameter [41]. Here, additional weak gauge boson
production at the LHC was one of the focus of the studies with WHIZARD [42].

Supersymmetric Models

WHIZARD/O’Mega was the first multi-leg matrix-element/event generator to include the full
Minimal Supersymmetric Standard Model (MSSM), and also the NMSSM. The SUSY implemen-
tations in WHIZARD have been extensively tested [43,44], and have been used for many theoretical
and experimental studies (some prime examples being [45,46,56].

Little Higgs Models

Inofficial models

There have been several models that have been included within the WHIZARD/O’Mega framework
but never found their way into the official release series. One famous example is the non-
commutative extension of the SM, the NCSM. There have been several studies, e.g. simulations
on the s-channel production of a Z boson at the photon collider option of the ILC [49]. Also,
the production of electroweak gauge bosons at the LHC in the framework of the NCSM have
been studied [50].

10.2 The SUSY Les Houches Accord (SLHA) interface
To be filled in ... [52,53,54].

The neutralino sector deserves special attention. After diagonalization of the mass matrix
expresssed in terms of the gaugino and higgsino eigenstates, the resulting mass eigenvalues
may be either negative or positive. In this case, two procedures can be followed. Either the
masses are rendered positive and the associated mixing matrix gets purely imaginary entries or
the masses are kept signed, the mixing matrix in this case being real. According to the SLHA
agreement, the second option is adopted. For a specific eigenvalue, the phase is absorbed into
the definition of the relevant eigenvector, rendering the mass negative. However, WHIZARD has
not yet officially tested for negative masses. For external SUSY models (cf. Chap. 17) this
means, that one must be careful using a SLHA file with explicit factors of the complex unity in
the mixing matrix, and on the other hand, real and positive masses for the neutralinos. For the
hard-coded SUSY models, this is completely handled internally. Especially Ref. [56] discusses
the details of the neutralino (and chargino) mixing matrix.

10.3 Lepton Collider Beam Spectra
For the simulation of lepton collider beam spectra there are two dedicated tools, CIRCE1 and
CIRCE2 that have been written as in principle independent tools. Both attempt to describe the
details of electron (and positron) beams in a realistic lepton collider environment. Due to the
quest for achieving high peak luminosities at e+e− machines, the goal is to make the spatial



178 CHAPTER 10. IMPLEMENTED PHYSICS

extension of the beam as small as possible but keeping the area of the beam roughly constant.
This is achieved by forcing the beams in the final focus into the shape of a quasi-2D bunch. Due
to the high charge density in that bunch, the bunch electron distribution is modified by classical
electromagnetic radiation, so called beamstrahlung. The two CIRCE packages are intended to
perform a simulation of this beamstrahlung and its consequences on the electron beam spectrum
as realistic as possible. More details about the two packages can be found in their stand-alone
documentations. We will discuss the basic features of lepton-collider beam simulations in the
next two sections, including the technicalities of passing simulations of the machine beam setup
to WHIZARD. This will be followed by a section on the simulation of photon collider spectra,
included for historical reasons.

10.3.1 CIRCE1

While the bunches in a linear collider cross only once, due to their small size they experience a
strong beam-beam effect. There is a code to simulate the impact of this effect on luminosity
and background, called GuineaPig++ [10,11,12]. This takes into account the details of the
accelerator, the final focus etc. on the structure of the beam and the main features of the
resulting energy spectrum of the electrons and positrons. It offers the state-of-the-art simulation
of lepton-collider beam spectra as close as possible to reality. However, for many high-luminosity
simulations, event files produced with GuineaPig++ are usually too small, in the sense that not
enough independent events are available for physics simulations. Lepton collider beam spectra
do peak at the nominal beam energy (

√
s/2) of the collider, and feature very steeply falling

tails. Such steeply falling distributions are very poorly mapped by histogrammed distributions
with fixed bin widths.

The main working assumption to handle such spectra are being followed within CIRCE1:

1. The beam spectra for the two beams P1 and P2 factorize (here x1 and x2 are the energy
fractions of the two beams, respectively):

DP1P2(x1, x2) = DP1(x1) ·DP2(x2)

2. The peak is described with a delta distribution, and the tail with a power law:

D(x) = d · δ(1− x) + c · xα (1− x)β

The two powers α and β are the main coefficients that can be tuned in order to describe the
spectrum with CIRCE1 as close as possible as the original GuineaPig++ spectrum. More details
about how CIRCE1 works and what it does can be found in its own write-up in circe1/share/doc.

10.3.2 CIRCE2

The two conditions listed in 10.3.1 are too restrictive and hence insufficient to describe more
complicated lepton-collider beam spectra, as they e.g. occur in the CLIC drive-beam design.
Here, the two beams are highly correlated and also a power-law description does not give good



10.3. LEPTON COLLIDER BEAM SPECTRA 179

20 40 60 80 100

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0

3

10

Figure 10.1: Smoothing the bin at the xe+ = 1 boundary with Gaussian filters of 3 and 10 bins
width compared to no smoothing.

enough precision for the tails. To deal with these problems, CIRCE2 starts with a two-dimensional
histogram featuring factorized, but variable bin widths in order to simulate the steep parts of
the distributions. The limited statistics from too small GuineaPig++ event output files leads
to correlated fluctuations that would leave strange artifacts in the distributions. To abandon
them, Gaussian filters are applied to smooth out the correlated fluctuations. Here care has to
be taken when going from the continuum in x momentum fraction space to the corresponding
boundaries: separate smoothing procedures are being applied to the bins in the continuum
region and those in the boundary in order to avoid artificial unphysical beam energy spreads.
Fig. 10.1 shows the smoothing of the distribution for the bin at the xe+ = 1 boundary. The blue
dots show the direct GuineaPig++ output comprising the fluctuations due to the low statistics.
Gaussian filters with widths of 3 and 10 bins, respectively, have been applied (orange and green
dots, resp.). While there is still considerable fluctuation for 3 bin width Gaussian filtering, the
distribution is perfectly smooth for 10 bin width. Hence, five bin widths seem a reasonable
compromise for histograms with a total of 100 bins. Note that the bins are not equidistant, but
shrink with a power law towards the xe− = 1 boundary on the right hand side of Fig. 10.1.

WHIZARD ships (inside its subpackage CIRCE2) with prepared beam spectra ready to be used
within CIRCE2 for the ILC beam spectra used in the ILC TDR [13,14,15,16,17]. These comprise
the designed staging energies of 200 GeV, 230 GeV, 250 GeV, 350 GeV, and 500 GeV. Note that
all of these spectra up to now do not take polarization of the original beams on the beamstrahlung
into account, but are polarization-averaged. For backwards compatibility, also the 500 GeV
spectra for the TESLA design [27,28], here both for polarized and polarization-averaged cases,
are included. Correlated spectra for CLIC staging energies like 350 GeV, 1400 GeV and 3000
GeV are not yet (as of version 2.2.4) included in the WHIZARD distribution.

In the following we describe how to obtain such files with the tools included in WHIZARD(resp.
CIRCE2). The procedure is equivalent to the so-called lumi-linker construction used by
Timothy Barklow (SLAC) together with the legacy version WHIZARD 1.95. The workflow to
produce such files is to run GuineaPig++ with the following input parameters:

do_lumi = 7;



180 CHAPTER 10. IMPLEMENTED PHYSICS

num_lumi = 100000000;
num_lumi_eg = 100000000;
num_lumi_gg = 100000000;

This demands from GuineaPig++ the generation of distributions for the e−e+, e∓γ, and γγ
components of the beamstrahlung’s spectrum, respectively. These are the files lumi.ee.out,
lumi.eg.out, lumi.ge.out, and lumi.gg.out, respectively. These contain pairs (E1, E2) of
beam energies, not fractions of the original beam energy. Huge event numbers are out in here,
as GuineaPig++ will produce only a small fraction due to a very low generation efficiency.

The next step is to transfer these output files from GuineaPig++ into input files used with
CIRCE2. This is done by means of the tool circe_tool.opt that is installed together with the
WHIZARD main binary and libraries. The user should run this executable with the following
input file:

{ file="ilc500/ilc500.circe" # to be loaded by WHIZARD
{ design="ILC" roots=500 bins=100 scale=250 # E in [0,1]

{ pid/1=electron pid/2=positron pol=0 # unpolarized e-/e+
events="ilc500/lumi.ee.out" columns=2 # <= Guinea-Pig
lumi = 1564.763360 # <= Guinea-Pig
iterations = 10 # adapting bins
smooth = 5 [0,1) [0,1) # Gaussian filter 5 bins
smooth = 5 [1] [0,1) smooth = 5 [0,1) [1] } } }

The first line defines the output file, that later can be read in into the beamstrahlung’s description
of WHIZARD (cf. below). Then, in the second line the design of the collider (here: ILC for 500
GeV center-of-mass energy, with the number of bins) is specified. The next line tells the tool
to take the unpolarized case, then the GuineaPig++ parameters (event file and luminosity) are
set. In the last three lines, details concerning the adaptation of the simulation as well as the
smoothing procedure are being specified: the number of iterations in the adaptation procedure,
and for the smoothing with the Gaussian filter first in the continuum and then at the two edges
of the spectrum. For more details confer the documentation in the CIRCE2 subpackage.

This produces the corresponding input files that can be used within WHIZARD to describe
beamstrahlung for lepton colliders, using a SINDARIN input file like:

beams = e1, E1 => circe2
$circe2_file = "ilc500.circe"
$circe2_design = "ILC"
?circe2_polarized = false

10.3.3 Photon Collider Spectra

For details confer the complete write-up of the CIRCE2 subpackage.



10.4. TRANSVERSE MOMENTUM FOR ISR PHOTONS 181

10.4 Transverse momentum for ISR photons

The structure functions that describe the splitting of a beam particle into a particle pair, of
which one enters the hard interaction and the other one is radiated, are defined and evaluated
in the strict collinear approximation. In particular, this holds for the ISR structure function
which describes the radiation of photons off a charged particle in the initial state.

The ISR structure function that is used by WHIZARD is understood to be inclusive, i.e., it
implicitly contains an integration over transverse momentum. This approach is to be used
for computing a total cross section via integrate. In WHIZARD, it is possible to unfold this
integration, as a transformation that is applied by simulate step, event by event. The resulting
modified events will show a proper logarithmic momentum-transfer (Q2) distribution for the
radiated photons. The recoil is applied to the hard-interaction system, such that four-momentum
and

√
ŝ are conserved. The distribution is cut off by Q2

max (cf. isr_q_max) for large momentum
transfer, and smoothly by the parton mass (cf. isr_mass) for small momentum transfer.

To activate this modification, set

?isr_handler = true
$isr_handler_mode = "recoil"

before, or as an option to, the simulate command.
Limitations: the current implementation of the pT modification works only for the symmetric

double-ISR case, i.e., both beams have to be charged particles with identical mass (e.g., e+e−).
The mode recoil generates exactly one photon per beam, i.e., it modifies the momentum of
the single collinear photon that the ISR structure function implementation produces, for each
beam. (It is foreseen that further modes or options will allow to generate multiple photons.
Alternatively, the PYTHIA shower can be used to simulate multiple photons radiated from the
initial state.)

10.5 Transverse momentum for the EPA approximation
For the equivalent-photon approximation (EPA), which is also defined in the collinear limit,
recoil momentum can be inserted into generated events in an entirely analogous way. The
appropriate settings are

?epa_handler = true
$epa_handler_mode = "recoil"

Limitations: as for ISR, the current implementation of the pT modification works only for
the symmetric double-EPA case. Both incoming particles of the hard process must be photons,
while both beams must be charged particles with identical mass (e.g., e+e−). Furthermore, the
current implementation does not respect the kinematical limit parameter epa_q_min, it has to
be set to zero. In effect, the lower Q2 cutoff is determined by the beam-particle mass epa_mass,
and the upper cutoff is either given by Qmax (the parameter epa_q_max), or by the limit

√
s if

this is not set.



182 CHAPTER 10. IMPLEMENTED PHYSICS

It is possible to combine the ISR and EPA handlers, for processes where ISR is active for
one of the beams, EPA for the other beam. For this scenario to work, both handler switches
must be on, and both mode strings must coincide. The parameters are set separately for ISR
and EPA, as described above.

10.6 Resonances and continuum

10.6.1 Complete matrix elements

Many elementary physical processes are composed of contributions that can be qualified as
(multiply) resonant or continuum. For instance, the amplitude for the process e+e− → qq̄qq̄,
evaluated at tree level in perturbation theory, contains Feynman diagrams with zero, one, or
two W and Z bosons as virtual lines. If the kinematical constraints allow this, two vector
bosons can become simultaneously on-shell in part of phase space. To a first approximation, this
situation is understood as W+W− or ZZ production with subsequent decay. The kinematical
distributions show distinct resonances in the quark-pair spectra. Other graphs contain only one
s-channel W/Z boson, or none at all, such as graphs with qq̄ production and subsequent gluon
radiation, splitting into another qq̄ pair.

A WHIZARD declaration of the form
process q4 = e1, E1 => u, U, d, D

produces the full set of graphs for the selected final state, which after squaring and integrating
yields the exact tree-level result for the process. The result contains all doubly and singly
resonant parts, with correct resonance shapes, as well as the continuum contribution and all
interference. This is, to given order in perturbation theory, the best possible approximation to
the true result.

10.6.2 Processes restricted to resonances
For an intuitive separation of a two-boson “signal” contribution, it is possible to restrict the set
of graphs to a certain intermediate state. For instance, the declaration

process q4_zz = e1, E1 => u, U, d, D { $restrictions = "3+4~Z && 5+6~Z" }

generates an amplitude that contains only those Feynman graphs where the specified quarks are
connected to a Z virtual line. The result may be understood as ZZ production with subsequent
decay, where the Z resonances exhibit a Breit-Wigner shape. Combining this with the analogous
W+W− restricted process, the user can generate “signal” processes.

Adding both “signal” cross sections WW and ZZ will result in a reasonable approximation
to the exact tree-level cross section. The amplitude misses the single-resonant and continuum
contributions, and the squared amplitude misses the interference terms, however. More impor-
tantly, the restricted processes as such are not gauge-invariant (with respect to the electroweak
gauge group), and they are no longer dominant away from resonant kinematics. We therefore
strongly recommend that such restricted processes are always accompanied by a cut setup that
restricts the kinematics to an approximately on-shell pattern for both resonances. For instance:



10.6. RESONANCES AND CONTINUUM 183

cuts = all 85 GeV < M < 95 GeV [u:U]
and all 85 GeV < M < 95 GeV [d:D]

In this region, the gauge-dependent and continuum contributions are strictly subdominant.
Away from the resonance(s), the results for a restricted process are meaningless, and the full
process has to be computed instead.

10.6.3 Factorized processes
Another method for obtaining the signal contribution is a proper factorization into resonance
production and decay. We would have to generate a production process and two decay processes:

process z_uu = Z => u, U
process z_dd = Z => d, D
process zz = e1, E1 => Z, Z

All three processes must be integrated. The integration results are partial decay widths and
the ZZ production cross section, respectively. (Note that cut expressions in SINDARIN apply to
all integrations, so make sure that no production-process cuts are active when integrating the
decay processes.)

During a later event-generation step, the Z decays can then be activated by declaring the Z
as unstable,

unstable Z (z_uu, z_dd)

and then simulating the production process

simulate (zz)

The generated events will consist of four-fermion final states, including all combinations of both
decay modes. It is important to note that in this setup, the invariant uū and dd̄ masses will be
always exactly equal to the Z mass. There is no Breit-Wigner shape involved. However, in this
approximation the results are gauge-invariant, as there is no off-shell contribution involved.

For further details on factorized processes and spin correlations, cf. Sec. 5.8.2.

10.6.4 Resonance insertion in the event record

From the above discussion, we may conclude that it is always preferable to compute the complete
process for a given final state, as long as this is computationally feasible. However, in the
simulation step this approach also has a drawback. Namely, if a parton-shower module (see
below) is switched on, the parton-shower algorithm relies on event details in order to determine
the radiation pattern of gluons and further splitting. In the generated event records, the full-
process events carry the signature of non-resonant continuum production with no intermediate
resonances. The parton shower will thus start the evolution at the process energy scale, the total
available energy. By contrast, for an electroweak production and decay process, the evolution



184 CHAPTER 10. IMPLEMENTED PHYSICS

should start only at the vector boson mass, mZ . In effect, even though the resonant contribution
of WW and ZZ constitutes the bulk of the cross section, the radiation pattern follows the
dynamics of four-quark continuum production. In general, the number of radiated hadrons will
be too high.

To overcome this problem, there is a refinement of the process description available in
WHIZARD. By modifying the process declaration to

?resonance_history = true
resonance_on_shell_limit = 4
process q4 = e1, E1 => u, U, d, D

we advise the program to produce not just the complete matrix element, but also all possible
restricted matrix elements containing resonant intermediate states. This has no effect at all on
the integration step, and thus on the total cross section.

However, when subsequently events are generated with this setting, the program checks,
for each event, the kinematics and determines the set of potentially resonant contributions.
The criterion is whether the off-shellness of a particular would-be resonance is less than the
resonance width multiplied by the value of resonance_on_shell_limit (default value = 4).
For the set of resonance histories which pass this criterion (which can be empty), their respective
squared matrix element is related to the full-process matrix element. The ratio is interpreted as
a probability. The random-number generator then selects one or none of the resonance histories,
and modifies the event record accordingly. In effect, for an appropriate fraction of the events,
depending on the kinematics, the parton-shower module is provided with resonance information,
so it can adjust the radiation pattern accordingly.

It has to be mentioned that generating the matrix-element code for all possible resonance
histories takes additional computing resources. In the current default setup, this feature is
switched off. It has to be explicitly activated via the ?resonance_history flag.

Also, the feature can be activated or deactivated individually for each process, such as in

?resonance_history = true
process q4_with_res = e1, E1 => u, U, d, D { ?resonance_history = true }
process q4_wo_res = e1, E1 => u, U, d, D { ?resonance_history = false }

If the flag is false for a process, no resonance code will be generated. Similarly, the flag has
to be globally or locally active when simulate is called, such that the feature takes effect for
event generation.

There are two additional parameters that can fine-tune the conditions for resonance insertion
in the event record. Firstly, the parameter resonance_on_shell_turnoff, if nonzero, enables
a Gaussian suppression of the probability for resonance insertion. For instance, setting

?resonance_history = true
resonance_on_shell_turnoff = 4
resonance_on_shell_limit = 8

will reduce the probability for the event to be qualified as resonant by e−1 = 37% if the
kinematics is off-shell by four units of the width, and by e−4 = 2% at eight units of the



10.6. RESONANCES AND CONTINUUM 185

Whizard

4j

W+W− → 4j

4j (with resonances, OSL=4)

4j (with resonances, OSL=1)

0

1

2

3

4

5

6

7

8

9

d
σ

d
O
[f
b
/
[a
.u
.]
]

0 50 100 150 200 250

0.6

0.8

1

1.2

1.4

K
-F
a
ct
o
r

Whizard

4j

W+W− → 4j

4j (with resonances, OSL=4)

4j (with resonances, OSL=1)

0

10

20

30

40

50

d
σ

d
O
[f
b
/
[a
.u
.]
]

0 20 40 60 80 100

0.6

0.8

1

1.2

1.4

K
-F
a
ct
o
r

Whizard

4j

W+W− → 4j

4j (with resonances, OSL=4)

4j (with resonances, OSL=1)

0

50

100

150

200

250

300

350

400

450

d
σ

d
O
[f
b
/
[a
.u
.]
]

0 5 10 15 20

0.6

0.8

1

1.2

1.4

K
-F
a
ct
o
r

Whizard

4j

W+W− → 4j

4j (with resonances, OSL=4)

4j (with resonances, OSL=1)

0

5

10

15

20

d
σ

d
O
[f
b
/
[a
.u
.]
]

0 50 100 150 200

0.6

0.8

1

1.2

1.4

K
-F
a
ct
o
r

Whizard

4j

W+W− → 4j

4j (with resonances, OSL=4)

4j (with resonances, OSL=1)

0

5

10

15

20

25

30

35

d
σ

d
O
[f
b
/
[a
.u
.]
]

0 20 40 60 80 100

0.6

0.8

1

1.2

1.4

K
-F
a
ct
o
r

Whizard

4j

W+W− → 4j

4j (with resonances, OSL=4)

4j (with resonances, OSL=1)

0

5

10

15

20

d
σ

d
O
[f
b
/
[a
.u
.]
]

0 50 100 150 200

0.6

0.8

1

1.2

1.4

K
-F
a
ct
o
r

Figure 10.2: The process e+e− → jjjj at 250 GeV center-of-mass energy is compared transferring
the partonic events naively to the parton shower, i.e. without respecting any intermediate
resonances (red lines). The blue lines show the process factorized into WW production and
decay, where the shower knows the origin of the two jet pairs. The orange and dark green lines
show the resonance treatment as mentioned in the text, with resonance_on_shell_limit = 1
and = 4, respectively. PYTHIA6 parton shower and hadronization with the OPAL tune have been
used. The observables are: photon energy distribution and number of charged tracks (upper line
left/right, number of hadrons and total number of particles (middle left/right), and number of
photons and neutral particles (lower line left/right).



186 CHAPTER 10. IMPLEMENTED PHYSICS

width. Beyond this point, the setting of the resonance_on_shell_limit parameter eliminates
resonance insertion altogether. In effect, the resonance-background transition is realized in a
smooth way. Secondly, within the resonant-kinematics range the probability for qualifying the
event as background can be reduced by the parameter resonance_background_factor (default
value = 1) to a number between zero and one. Setting this to zero means that the event will be
necessarily qualified as resonant, if it falls within the resonant-kinematics range.

Note that if an event, by the above mechanism, is identified as following a certain resonance
history, the assigned color flow will be chosen to match the resonance history, not the complete
matrix element. This may result in a reassignment of color flow with respect to the original
partonic event.

Finally, we mention the order of execution: any additional matrix element code is compiled
and linked when compile is executed for the processes in question. If this command is omitted,
the simulate command will trigger compilation.

10.7 Parton showers and Hadronization
In order to produce sensible events, final state QCD (and also QED) radiation has to be
considered as well as the binding of strongly interacting partons into mesons and baryons.
Furthermore, final state hadronic resonances undergo subsequent decays into those particles
showing up in (or traversing) the detector. The latter are mostly pions, kaons, photons, electrons
and muons.

The physics associated with these topics can be divided into the perturbative part which
is the regime of the parton shower, and the non-perturbative part which is the regime for the
hadronization. WHIZARD comes with its own two different parton shower implementations, an
analytic and a so-called kT -ordered parton shower that will be detailed in the next section.

Note that in general it is not advisable to use different shower and hadronization methods,
or in other words, when using shower and hadronization methods from different programs these
would have to be tuned together again with the corresponding data.

Parton showers are approximations to full matrix elements taking only the leading color
flow into account, and neglecting all interferences between different amplitudes leading to the
same exclusive final state. They rely on the QCD (and QED) splitting functions to describe the
emissions of partons off other partons. This is encoded in the so-called Sudakov form factor [29]:

∆(t1, t2) = exp

 t2∫
t1

dt

z+∫
z−

dz
αs

2πt
P (z)


This gives the probability for a parton to evolve from scale t2 to t1 without any further emissions
of partons. t is the evolution parameter of the shower, which can be a parton energy, an emission
angle, a virtuality, a transverse momentum etc. The variable z relates the two partons after
the branching, with the most common choice being the ratio of energies of the parton after
and before the branching. For final-state radiation brachings occur after the hard interaction,
the evolution of the shower starts at the scale of the hard interaction, t ∼ ŝ, down to a cut-off



10.7. PARTON SHOWERS AND HADRONIZATION 187

scale t = tcut that marks the transition to the non-perturbative regime of hadronization. In
the space-like evolution for the initial-state shower, the evolution is from a cut-off representing
the factorization scale for the parton distribution functions (PDFs) to the inverse of the hard
process scale, −ŝ. Technically, this evolution is then backwards in (shower) time [30], leading to
the necessity to include the PDFs in the Sudakov factors.

The main switches for the shower and hadronization which are realized as transformations on
the partonic events within WHIZARD are ?allow_shower and ?allow_hadronization, which are
true by default and only there for technical reasons. Next, different shower and hadronization
methods can be chosen within WHIZARD:

$shower_method = "WHIZARD"
$hadronization_method = "PYTHIA6"

The snippet above shows the default choices in WHIZARD namely WHIZARD’s intrinsic parton
shower, but PYTHIA6 as hadronization tool. (Note that WHIZARD does not have its own hadroniza-
tion module yet.) The usage of PYTHIA6 for showering and hadronization will be explained in
Sec. 10.7.3, while the two different implementations of the WHIZARD homebrew parton showers
are discussed in Sec. 10.7.1 and 10.7.2, respectively.

10.7.1 The kT -ordered parton shower

10.7.2 The analytic parton shower

10.7.3 Parton shower and hadronization from PYTHIA6

Development of the PYTHIA6 generator for parton shower and hadronization (the Fortran
version) has been discontinued by the authors several years ago. Hence, the final release of that
program is frozen. This allowed to ship this final version, v6.427, with the WHIZARD distribution
without the need of updating it all the time. One of the main reasons for that inclusion –
besides having the standard tool for showering and hadronization for decays at hand – is to
allow for backwards validation within WHIZARD particularly for the event samples generated for
the development of linear collider physics: first for TESLA, JLC and NLC, and later on for the
Conceptual and Technical Design Report for ILC, for the Conceptual Design Report for CLIC
as well as for the Letters of Intent for the LC detectors, ILD and SiD.

Usually, an external parton shower and hadronization program (PS) is steered via the transfer
of event files that are given to the PS via LHE events, while the PS program then produces
hadron level events, usually in HepMC format. These can then be directed towards a full or fast
detector simulation program. As PYTHIA6 has been completely integrated inside the WHIZARD
framework, the showered or more general hadron level events can be returned to and kept inside
WHIZARD’s internal event record, and hence be used in WHIZARD’s internal event analysis. In that
way, the events can be also written out in event formats that are not supported by PYTHIA6,
e.g. LCIO via the output capabilities of WHIZARD.

There are several switches to directly steer PYTHIA6 (the values in brackets correspond to
the PYTHIA6 variables):

ps_mass_cutoff = 1 GeV [PARJ(82)]
ps_fsr_lambda = 0.29 GeV [PARP(72)]



188 CHAPTER 10. IMPLEMENTED PHYSICS

ps_isr_lambda = 0.29 GeV [PARP(61)]
ps_max_n_flavors = 5 [MSTJ(45)]
?ps_isr_alphas_running = true [MSTP(64)]
?ps_fsr_alphas_running = true [MSTJ(44)]
ps_fixed_alphas = 0.2 [PARU(111)]
?ps_isr_angular_ordered = true [MSTP(62)]
ps_isr_primordial_kt_width = 1.5 GeV [PARP(91)]
ps_isr_primordial_kt_cutoff = 5.0 GeV [PARP(93)]
ps_isr_z_cutoff = 0.999 [1-PARP(66)]
ps_isr_minenergy = 2 GeV [PARP(65)]
?ps_isr_only_onshell_emitted_partons =

true [MSTP(63)]

The values given above are the default values. The first value corresponds to the PYTHIA6
parameter PARJ(82), its squared being the minimal virtuality that is allowed for the parton
shower, i.e. the cross-over to the hadronization. The same parameter is used also for the
WHIZARD showers. ps_fsr_lambda is the equivalent of PARP(72) and is the ΛQCD for the
final state shower. The corresponding variable for the initial state shower is called PARP(61)
in PYTHIA6. By the next variable (MSTJ(45)), the maximal number of flavors produced in
splittings in the shower is given, together with the number of active flavors in the running of
αs. ?ps_isr_alphas_running which corresponds to MSTP(64) in PYTHIA6 determines whether
or net a running αs is taken in the space-like initial state showers. The same variable for the
final state shower is MSTJ(44). For fixed αs, the default value is given by ps_fixed_alpha,
corresponding to PARU(111). MSTP(62) determines whether the ISR shower is angular order, i.e.
whether angles are increasing towards the hard interaction. This is per default true, and set in the
variable ?ps_isr_angular_ordered. The width of the distribution for the primordial (intrinsic)
kT distribution (which is a non-perturbative quantity) is the PYTHIA6 variable PARP(91), while
in WHIZARD it is given by pythia_isr_primordial_kt_width. The next variable (PARP(93)
gives the upper cutoff for that distribution, which is 5 GeV per default. For splitting in
space-like showers, there is a cutoff on the z variable named ps_isr_z_cutoff in WHIZARD.
This corresponds to one minus the value of the PYTHIA6 parameter PARP(66). PARP(65), on
the other hand, gives the minimal (effective) energy for a time-like or on-shell emitted parton
on a space-like QCD shower, given by the SINDARIN parameter ps_isr_minenergy. Whether
or not partons emitted from space-like showers are allowed to be only on-shell is given by
?ps_isr_only_onshell_emitted_partons, MSTP(63) in PYTHIA6 language. For more details
confer the PYTHIA6 manual [31].

Any other non-standard PYTHIA6 parameter can be fed into the parton shower via the string
variable

$ps_PYTHIA_PYGIVE = "...."

Variables set here get preference over the ones set explicitly by dedicated SINDARIN commands.
For example, the OPAL tune for hadronic final states can be set via:

$ps_PYTHIA_PYGIVE = "MSTJ(28)=0; PMAS(25,1)=120.; PMAS(25,2)=0.3605E-02; MSTJ(41)=2;
MSTU(22)=2000; PARJ(21)=0.40000; PARJ(41)=0.11000; PARJ(42)=0.52000; PARJ(81)=0.25000;
PARJ(82)=1.90000; MSTJ(11)=3; PARJ(54)=-0.03100; PARJ(55)=-0.00200; PARJ(1)=0.08500;
PARJ(3)=0.45000; PARJ(4)=0.02500; PARJ(2)=0.31000; PARJ(11)=0.60000; PARJ(12)=0.40000;



10.8. SIMULATION OF LOW-PT HADRONS AT LEPTON COLLIDERS 189

PARJ(13)=0.72000; PARJ(14)=0.43000; PARJ(15)=0.08000; PARJ(16)=0.08000;
PARJ(17)=0.17000; MSTP(3)=1;MSTP(71)=1"

A very common error that appears quite often when using PYTHIA6 for SUSY or any other
model having a stable particle that serves as a possible Dark Matter candidate, is the following
warning/error message:

Advisory warning type 3 given after 0 PYEXEC calls:
(PYRESD:) Failed to decay particle 1000022 with mass 15.000

******************************************************************************
******************************************************************************
*** FATAL ERROR: Simulation: failed to generate valid event after 10000 tries
******************************************************************************
******************************************************************************

In that case, PYTHIA6 gets a stable particle (here the lightest neutralino with the PDG code
1000022) handed over and does not know what to do with it. Particularly, it wants to treat
it as a heavy resonance which should be decayed, but does not know how do that. After a
certain number of tries (in the example abobe 10k), WHIZARD ends with a fatal error telling the
user that the event transformation for the parton shower in the simulation has failed without
producing a valid event. The solution to work around that problem is to let PYTHIA6 know that
the neutralino (or any other DM candidate) is stable by means of

$ps_PYTHIA_PYGIVE = "MDCY(C1000022,1)=0"

Here, 1000022 has to be replaced by the stable dark matter candidate or long-lived particle
in the user’s favorite model. Also note that with other options being passed to PYTHIA6 the
MDCY option above has to be added to an existing $ps_PYTHIA_PYGIVE command separated by
a semicolon.

10.7.4 Parton shower and hadronization from PYTHIA8

10.7.5 Other tools for parton shower and hadronization

10.8 Simulation of low-pT hadrons at lepton colliders
The largest cross section at lepton colliders is given by the photon-induced production of hadrons
at low transverse momentum (pT ). These processes are dominated by non-perturbative physics,
but are also not well described by the standard hadronization models like the Lund string model
or cluster hadronization. They are best described by fits to experimental data. Here, a simple
functional parameterization is used of the form

σe+e−→γ∗γ∗→hadrons(Q
2) = c0 ·

(
1 + c1 log

c2(Q2) + c3 ·Q2·c4
)
. (10.1)

Here, Q2 is the invariant mass of the produced hadron system which is set constant at a lower
threshold of (1.5GeV)2, while the respective constants are given by c0 = 2 ·108 fb, c1 = 6.3 ·10−3,
c2 = 2.1, c3 = 1.96, c4 = −0.37. Most of these fits are obtained from data from the Crystall
Ball experiment.

In order to simulate this, there is a special matrix element method that is switched on via



190 CHAPTER 10. IMPLEMENTED PHYSICS

$method = "template_gg_had"

which is to be used for a process with two quarks in the final state, e.g.
process gamgam_hadrons_proc = A, A => d, D

with the following beam structure:
beams = A, A => epa

All the special settings for parton showering and hadronization for this production process of
low-pT hadrons is automatically taken care of in the interface of WHIZARD with PYTHIA6.

A typical setting of PYTHIA6 shower and hadronization tuning parameters is e.g.
$ps_PYTHIA_PYGIVE = "MSTP(14)=1; MSTP(123)=1; MSTP(171)=1; MSTP(172)=2; PARP(2)=3.;
PARP(104)=0.2; PARP(111)=.5; PARJ(21)=0.40000; PARJ(41)=0.11000; PARJ(42)=0.52000;
PARJ(81)=0.25000; PARJ(82)=1.90000; MSTJ(11)=3; PARJ(54)=-0.03100; PARJ(55)=-0.00200;
PARJ(1)=0.08500; PARJ(3)=0.45000; PARJ(4)=0.02500; PARJ(2)=0.31000; PARJ(11)=0.60000;
PARJ(12)=0.40000; PARJ(13)=0.72000; PARJ(14)=0.43000; PARJ(15)=0.08000; PARJ(16)=0.08000;
PARJ(17)=0.17000; MSTP(3)=1"

10.9 Loop-induced processes
In order to steer loop-induced processes the usage of the OLP OpenLoopsis required. Information
on the interface and setting up this program can be found in Sec. 9.5 and Sec. 5.11.1. Furthermore
the following settings should be observed

• Choose the model SM_Higgs to allow vertices such as gg → H.

• Use $method="openloops" for the loop-squared amplitudes.

• Set the coupling powers alpha_power and alphas_power corresponding to those of loop-
squared amplitudes of the process.



Chapter 11

More on Event Generation

In order to perform a physics analysis with WHIZARD one has to generate events. This seems to
be a trivial statement, but as there have been any questions like "My WHIZARD does not produce
plots – what has gone wrong?" we believe that repeating that rule is worthwile. Of course,
it is not mandatory to use WHIZARD’s own analysis set-up, the user can always choose to just
generate events and use his/her own analysis package like ROOT, or TopDrawer, or you name it
for the analysis.

Accordingly, we first start to describe how to generate events and what options there are –
different event formats, renaming output files, using weighted or unweighted events with different
normalizations. How to re-use and manipulate already generated event samples, how to limit
the number of events per file, etc. etc.

11.1 Event generation

To explain how event generation works, we again take our favourite example, e+e− → µ+µ−,

process eemm = e1, E1 => e2, E2

The command to trigger generation of events is simulate (<proc_name>) { <options> }, so
in our case – neglecting any options for now – simply:

simulate (eemm)

When you run this SINDARIN file you will experience a fatal error: FATAL ERROR: Colliding
beams: sqrts is zero (please set sqrts). This is because WHIZARD needs to compile and
integrate the process eemm first before event simulation, because it needs the information of the
corresponding cross section, phase space parameterization and grids. It does both automatically,
but you have to provide WHIZARD with the beam setup, or at least with the center-of-momentum
energy. A corresponding integrate command like

sqrts = 500 GeV
integrate (eemm) { iterations = 3:10000 }

191



192 CHAPTER 11. MORE ON EVENT GENERATION

obviously has to appear before the corresponding simulate command (otherwise you would be
punished by the same error message as before). Putting things in the correct order results in an
output like:

| Reading model file ’/usr/local/share/whizard/models/SM.mdl’
| Preloaded model: SM
| Process library ’default_lib’: initialized
| Preloaded library: default_lib
| Reading commands from file ’bla.sin’
| Process library ’default_lib’: recorded process ’eemm’
sqrts = 5.000000000000E+02
| Integrate: current process library needs compilation
| Process library ’default_lib’: compiling ...
| Process library ’default_lib’: keeping makefile
| Process library ’default_lib’: keeping driver
| Process library ’default_lib’: active
| Process library ’default_lib’: ... success.
| Integrate: compilation done
| RNG: Initializing TAO random-number generator
| RNG: Setting seed for random-number generator to 29912
| Initializing integration for process eemm:
| ------------------------------------------------------------------------
| Process [scattering]: ’eemm’
| Library name = ’default_lib’
| Process index = 1
| Process components:
| 1: ’eemm_i1’: e-, e+ => mu-, mu+ [omega]
| ------------------------------------------------------------------------
| Beam structure: [any particles]
| Beam data (collision):
| e- (mass = 5.1099700E-04 GeV)
| e+ (mass = 5.1099700E-04 GeV)
| sqrts = 5.000000000000E+02 GeV
| Phase space: generating configuration ...
| Phase space: ... success.
| Phase space: writing configuration file ’eemm_i1.phs’
| Phase space: 2 channels, 2 dimensions
| Phase space: found 2 channels, collected in 2 groves.
| Phase space: Using 2 equivalences between channels.
| Phase space: wood
Warning: No cuts have been defined.
| OpenMP: Using 8 threads
| Starting integration for process ’eemm’
| Integrate: iterations = 3:10000
| Integrator: 2 chains, 2 channels, 2 dimensions
| Integrator: Using VAMP channel equivalences
| Integrator: 10000 initial calls, 20 bins, stratified = T
| Integrator: VAMP
|=============================================================================|
| It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] |
|=============================================================================|

1 9216 4.2833237E+02 7.14E-02 0.02 0.02* 40.29



11.1. EVENT GENERATION 193

2 9216 4.2829071E+02 7.08E-02 0.02 0.02* 40.29
3 9216 4.2838304E+02 7.04E-02 0.02 0.02* 40.29

|-----------------------------------------------------------------------------|
3 27648 4.2833558E+02 4.09E-02 0.01 0.02 40.29 0.43 3

|=============================================================================|
| Time estimate for generating 10000 events: 0d:00h:00m:04s
| Creating integration history display eemm-history.ps and eemm-history.pdf
| Starting simulation for process ’eemm’
| Simulate: using integration grids from file ’eemm_m1.vg’
| RNG: Initializing TAO random-number generator
| RNG: Setting seed for random-number generator to 29913
| OpenMP: Using 8 threads
| Simulation: requested number of events = 0
| corr. to luminosity [fb-1] = 0.0000E+00
| Events: writing to raw file ’eemm.evx’
| Events: generating 0 unweighted, unpolarized events ...
| Events: event normalization mode ’1’
| ... event sample complete.
| Events: closing raw file ’eemm.evx’
| There were no errors and 1 warning(s).
| WHIZARD run finished.
|=============================================================================|

So, WHIZARD tells you that it has entered simulation mode, but besides this, it has not done
anything. The next step is that you have to demand event generation – there are two ways to
do this: you could either specify a certain number, say 42, of events you want to have generated
by WHIZARD, or you could provide a number for an integrated luminosity of some experiment.
(Note, that if you choose to take both options, WHIZARD will take the one which gives the larger
event sample. This, of course, depends on the given process(es) – as well as cuts – and its
corresponding cross section(s).) The first of these options is set with the command: n_events
= <number>, the second with luminosity = <number> <opt. unit>.

Another important point already stated several times in the manual is that WHIZARD follows
the commands in the steering SINDARIN file in a chronological order. Hence, a given number of
events or luminosity after a simulate command will be ignored – or are relevant only for any
simulate command potentially following further down in the SINDARIN file. So, in our case,
try:

n_events = 500
luminosity = 10
simulate (eemm)

Per default, numbers for integrated luminosity are understood as inverse femtobarn. So, for the
cross section above this would correspond to 4283 events, clearly superseding the demand for
500 events. After reducing the luminosity number from ten to one inverse femtobarn, 500 is the
larger number of events taken by WHIZARD for event generation. Now WHIZARD tells you:

| Simulation: requested number of events = 500
| corr. to luminosity [fb-1] = 1.1673E+00



194 CHAPTER 11. MORE ON EVENT GENERATION

| Events: reading from raw file ’eemm.evx’
| Events: reading 500 unweighted, unpolarized events ...
| Events: event normalization mode ’1’
| ... event file terminates after 0 events.
| Events: appending to raw file ’eemm.evx’
| Generating remaining 500 events ...
| ... event sample complete.
| Events: closing raw file ’eemm.evx’

I.e., it evaluates the luminosity to which the sample of 500 events would correspond to, which is
now, of course, bigger than the 1fb−1 explicitly given for the luminosity. Furthermore, you can
read off that a file whizard.evx has been generated, containing the demanded 500 events. (It
was there before containing zero events, because to n_events or luminosity value had been set.
WHIZARD then tried to get the events first from file before generating new ones). Files with the
suffix .evx are binary format event files, using a machine-dependent WHIZARD-specific event file
format. Before we list the event formats supported by WHIZARD, the next two sections will tell
you more about unweighted and weighted events as well as different possibilities to normalize
events in WHIZARD.

As already explained for the libraries, as well as the phase space and grid files in Chap. 5,
WHIZARD is trying to re-use as much information as possible. This is of course also true for the
event files. There are special MD5 check sums testing the integrity and compatibility of the
event files. If you demand for a process for which an event file already exists (as in the example
above, though it was empty) equally many or less events than generated before, WHIZARD will
not generate again but re-use the existing events (as already explained, the events are stored
in a WHIZARD-own binary event format, i.e. in a so-called .evx file. If you suppress generation
of that file, as will be described in subsection 11.5 then WHIZARD has to generate events all
the time). From version v2.2.0 of WHIZARD on, the program is also able to read in event from
different event formats. However, most event formats do not contain as many information as
WHIZARD’s internal format, and a complete reconstruction of the events might not be possible.
Re-using event files is very practical for doing several different analyses with the same data,
especially if there are many and big data samples. Consider the case, there is an event file
with 200 events, and you now ask WHIZARD to generate 300 events, then it will re-use the 200
events (if MD5 check sums are OK!), generate the remaining 100 events and append them to
the existing file. If the user for some reason, however, wants to regenerate events (i.e. ignoring
possibly existing events), there is the command option whizard –rebuild-events.

11.2 Unweighted and weighted events
WHIZARD is able to generate unweighted events, i.e. events that are distributed uniformly and
each contribute with the same event weight to the whole sample. This is done by mapping out
the phase space of the process under consideration according to its different phase space channels
(which each get their own weights), and then unweighting the sample of weighted events. Only
a sample of unweighted events could in principle be compared to a real data sample from some



11.2. UNWEIGHTED AND WEIGHTED EVENTS 195

experiment. The seventh column in the WHIZARD iteration/adaptation procedure tells you about
the efficiency of the grids, i.e. how well the phase space is mapped to a flat function. The better
this is achieved, the higher the efficiency becomes, and the closer the weights of the different
phase space channels are to uniformity. This means, for higher efficiency less weighted events
("calls") are needed to generate a single unweighted event. An efficiency of 10 % means that
ten weighted events are needed to generate one single unweighted event. After the integration
is done, WHIZARD uses the duration of calls during the adaptation to estimate a time interval
needed to generate 10,000 unweighted events. The ability of the adaptive multi-channel Monte
Carlo decreases with the number of integrations, i.e. with the number of final state particles.
Adding more and more final state particles in general also increases the complexity of phase
space, especially its singularity structure. For a 2 → 2 process the efficiency is roughly of the
order of several tens of per cent. As a rule of thumb, one can say that with every additional pair
of final state particle the average efficiency one can achieve decreases by a factor of five to ten.

The default of WHIZARD is to generate unweighted events. One can use the logical variable
?unweighted = false to disable unweighting and generate weighted events. (The command
?unweighted = true is a tautology, because true is the default for this variable.) Note that
again this command has to appear before the corresponding simulate command, otherwise it
will be ignored or effective only for any simulate command appearing later in the SINDARIN
file.

In the unweighted procedure, WHIZARD is keeping track of the highest weight that has been
appeared during the adaptation, and the efficiency for the unweighting has been estimated
from the average value of the sampling function compared to the maximum value. In principle,
during event generation no events should be generated whose sampling function value exceeds
the maximum function value encountered during the grid adaptation. Sometimes, however,
there are numerical fluctuations and such events are happening. They are called excess events.
WHIZARD does keep track of these excess events during event generation and will report about
them, e.g.:

Warning: Encountered events with excess weight: 9 events ( 0.090 %)
| Maximum excess weight = 6.083E-01
| Average excess weight = 2.112E-04

Whenever in an event generation excess events appear, this shows that the adaptation of the
sampling function has not been perfect. When the number of excess weights is a finite number
of percent, you should inspect the phase-space setup and try to improve its settings to get a
better adaptation.

Generating weighted events is, of course, much faster if the same number of events is
requested. Each event carries a weight factor which is taken into account for any internal
analysis (histograms), and written to file if an external file format has been selected. The file
format must support event weights.

In a weighted event sample, there is typically a fraction of events which effectively have
weight zero, namely those that have been created by the phase-space sampler but do not pass
the requested cuts. In the default setup, those events are silently dropped, such that the events
written to file or available for analysis all have nonzero weight. However, dropping such events
affects the overall normalization. If this has happened, the program will issue a warning of the
form



196 CHAPTER 11. MORE ON EVENT GENERATION

| Dropped events (weight zero) = 1142 (total 2142)
Warning: All event weights must be rescaled by f = 4.66853408E-01

This factor has to be applied by hand to any external event files (and to internally generated
histograms). The program cannot include the factor in the event records, because it is known
only after all events have been generated. To avoid this problem, there is the logical flag
?keep_failed_events which tells WHIZARD not to drop events with weight zero. The normal-
ization will be correct, but the event sample will include invalid events which have to be vetoed
by their zero weight, before any operations on the event record are performed.

11.3 Choice on event normalizations
There are basically four different choices to normalize event weights (⟨. . .⟩ denotes the average):

1. ⟨wi⟩ = 1, ⟨∑i wi⟩ = N

2. ⟨wi⟩ = σ, ⟨∑iwi⟩ = N × σ

3. ⟨wi⟩ = 1/N , ⟨∑i wi⟩ = 1

4. ⟨wi⟩ = σ/N , ⟨∑iwi⟩ = σ

So the four options are to have the average weight equal to unity, to the cross section of the
corresponding process, to one over the number of events, or the cross section over the event
calls. In these four cases, the event weights sum up to the event number, the event number
times the cross section, to unity, and to the cross section, respectively. Note that neither of
these really guarantees that all event weights individually lie in the interval 0 ≤ wi ≤ 1.

The user can steer the normalization of events by using in SINDARIN input files the string
variable $sample_normalization. The default is $sample_normalization = "auto", which
uses option 1 for unweighted and 2 for weighted events, respectively. Note that this is also what
the Les Houches Event Format (LHEF) demands for both types of events. This is WHIZARD’s
preferred mode, also for the reason, that event normalizations are independent from the number
of events. Hence, event samples can be cut or expanded without further need to adjust the
normalization. The unit normalization (option 1) can be switched on also for weighted events
by setting the event normalization variable equal to "1". Option 2 can be demanded by setting
$sample_normalization = "sigma". Options 3 and 4 can be set by "1/n" and "sigma/n",
respectively. WHIZARD accepts small and capital letters for these expressions.

There are several event formats (based upon the old common block definition HEPRUP)
like some of the ASCII formats, LHA, LHE and HepMC that demand cross sections (and
corresponding MCintegration errors) to be given in picobarn. So they are converted from the
WHIZARD default of femtobarn to picobarn. The only exception is if a (pseudo-)event file for a
decay is generated where the unit in those entries is downscaled by a factor of 1000, but remains
in GeV as default unit.

In the following section we show some examples when discussing the different event formats
available in WHIZARD.



11.4. EVENT SELECTION 197

11.4 Event selection
The selection expression (cf. Sec. 5.9.2) reduces the event sample during generation or
rescanning, selecting only events for which the expression evaluates to true. Apart from internal
analysis, the selection also applies to writing external files. For instance, the following code
generates a e+e− → W+W− sample with longitudinally polarized W bosons only:

process ww = "e+", "e-" => "W-", "W+"
polarized "W+"
polarized "W-"
?polarized_events = true
sqrts = 500
selection = all Hel == 0 ["W+":"W-"]
simulate (ww) { n_events = 1000 }

The number of events that end up in the sample on file is equal to the number of events with
longitudinally polarized W s in the generated sample, so the file will contain less than 1000
events.

11.5 Supported event formats

Event formats can either be distinguished whether they are plain text (i.e. ASCII) formats
or binary formats. Besides this, one can classify event formats according to whether they
are natively supported by WHIZARD or need some external program or library to be linked.
Table 11.1 gives a complete list of all event formats available in WHIZARD. The second column
shows whether these are ASCII or binary formats, the third column contains brief remarks about
the corresponding format, while the last column tells whether external programs or libraries are
needed (which is the case only for the HepMC formats).

The ".evx” is WHIZARD’s native binary event format. If you demand event generation and
do not specify anything further, WHIZARD will write out its events exclusively in this binary
format. So in the examples discussed in the previous chapters (where we omitted all details
about event formats), in all cases this and only this internal binary format has been generated.
The generation of this raw format can be suppressed (e.g. if you want to have only one specific
event file type) by setting the variable ?write_raw = false. However, if the raw event file is
not present, WHIZARD is not able to re-use existing events (e.g. from an ASCII file) and will
regenerate events for a given process. Note that from version v2.2.0 of WHIZARD on, the program
is able to (partially) reconstruct complete events also from other formats than its internal format
(e.g. LHEF), but this is still under construction and not yet complete.

Other event formats can be written out by setting the variable sample_format = <format>,
where <format> can be any of the following supported variables:

• ascii: a quite verbose ASCII format which contains lots of information (an example is
shown in the appendix).
Standard suffix: .evt



198 CHAPTER 11. MORE ON EVENT GENERATION

Format Type remark ext.
ascii ASCII WHIZARD verbose format no
Athena ASCII variant of HEPEVT no
debug ASCII most verbose WHIZARD format no
evx binary WHIZARD’s home-brew no
HepMC ASCII HepMC format yes
HEPEVT ASCII WHIZARD 1 style no
LCIO ASCII LCIO format yes
LHA ASCII WHIZARD 1/old Les Houches style no
LHEF ASCII Les Houches accord compliant no
long ASCII variant of HEPEVT no
mokka ASCII variant of HEPEVT no
short ASCII variant of HEPEVT no
StdHEP (HEPEVT) binary based on HEPEVT common block no
StdHEP (HEPRUP/EUP) binary based on HEPRUP/EUP common block no
Weight stream ASCII just weights no

Table 11.1: Event formats supported by WHIZARD, classified according to ASCII/binary formats
and whether an external program or library is needed to generate a file of this format. For both
the HEPEVT and the LHA format there is a more verbose variant.

• debug: an even more verbose ASCII format intended for debugging which prints out also
information about the internal data structures
Standard suffix: .debug

• hepevt: ASCII format that writes out a specific incarnation of the HEPEVT common
block (WHIZARD 1 back-compatibility)
Standard suffix: .hepevt

• hepevt_verb: more verbose version of hepevt (WHIZARD 1 back-compatibility)
Standard suffix: .hepevt.verb

• short: abbreviated variant of the previous HEPEVT (WHIZARD 1 back-compatibility)
Standard suffix: .short.evt

• long: HEPEVT variant that contains a little bit more information than the short format
but less than HEPEVT (WHIZARD 1 back-compatibility)
Standard suffix: .long.evt

• athena: HEPEVT variant suitable for read-out in the ATLAS ATHENA software envi-
ronment (WHIZARD 1 back-compatibility)
Standard suffix: .athena.evt

• mokka: HEPEVT variant suitable for read-out in the MOKKA ILC software environment
Standard suffix: .mokka.evt



11.5. SUPPORTED EVENT FORMATS 199

• lcio: LCIO binary format (only available if LCIO is installed and correctly linked)
Standard suffix: .slcio

• lha: Implementation of the Les Houches Accord as it was in the old MadEvent and
WHIZARD 1
Standard suffix: .lha

• lha_verb: more verbose version of lha
Standard suffix: .lha.verb

• lhef: Formatted Les Houches Accord implementation that contains the XML headers
Standard suffix: .lhe

• hepmc: HepMC ASCII format (only available if HepMC is installed and correctly linked)
Standard suffix: .hepmc

• stdhep: StdHEP binary format based on the HEPEVT common block
Standard suffix: .hep

• stdhep_up: StdHEP binary format based on the HEPRUP/HEPEUP common blocks
Standard suffix: .up.hep

• stdhep_ev4: StdHEP binary format based on the HEPEVT/HEPEV4 common blocks
Standard suffix: .ev4.hep

• weight_stream: Format that prints out only the event weight (and maybe alternative
ones)
Standard suffix: .weight.dat

Of course, the variable sample_format can contain more than one of the above identifiers,
in which case more than one different event file format is generated. The list above also
shows the standard suffixes for these event formats (remember, that the native binary format
of WHIZARD does have the suffix .evx). (The suffix of the different event formats can even
be changed by the user by setting the corresponding variable $extension_lhef = "foo" or
$extension_ascii_short = "bread". The dot is automatically included.)

The name of the corresponding event sample is taken to be the string of the name of the
first process in the simulate statement. Remember, that conventionally the events for all
processes in one simulate statement will be written into one single event file. So simulate
(proc1, proc2) will write events for the two processes proc1 and proc2 into one single event
file with name proc1.evx. The name can be changed by the user with the command $sample
= "<name>".

The commands $sample and sample_format are both accepted as optional arguments of a
simulate command, so e.g. simulate (proc) { $sample = "foo" sample_format = hepmc
} generates an event sample in the HepMC format for the process proc in the file foo.hepmc.

Examples for event formats, for specifications of the event formats correspond the different
accords and publications 1:

1Some event formats, based on the HEPEVT or HEPEUP common blocks, use fixed-form ASCII output with a



200 CHAPTER 11. MORE ON EVENT GENERATION

HEPEVT: The HEPEVT is an ASCII event format that does not contain an event file header.
There is a one-line header for each single event, containing four entries. The number of particles
in the event (ISTHEP), which is four for a fictitious example process hh → hh, but could be
larger if e.g. beam remnants are demanded to be included in the event. The second entry
and third entry are the number of outgoing particles and beam remnants, respectively. The
event weight is the last entry. For each particle in the event there are three lines: the first
one is the status according to the HEPEVT format, ISTHEP, the second one the PDG code,
IDHEP, then there are the one or two possible mother particle, JMOHEP, the first and last possible
daughter particle, JDAHEP, and the polarization. The second line contains the three momentum
components, px, py, pz, the particle energy E, and its mass, m. The last line contains the
position of the vertex in the event reconstruction.

4 2 0 3.0574068604E+08
2 25 0 0 3 4 0
0.0000000000E+00 0.0000000000E+00 4.8412291828E+02 5.0000000000E+02 1.2500000000E+02
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00

2 25 0 0 3 4 0
0.0000000000E+00 0.0000000000E+00 -4.8412291828E+02 5.0000000000E+02 1.2500000000E+02
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00

1 25 1 2 0 0 0
-1.4960220911E+02 -4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00

1 25 1 2 0 0 0
1.4960220911E+02 4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00

ASCII SHORT: This is basically the same as the HEPEVT standard, but very much
abbreviated. The header line for each event is identical, but the first line per particle does only
contain the PDG and the polarization, while the vertex information line is omitted.

4 2 0 3.0574068604E+08
25 0
0.0000000000E+00 0.0000000000E+00 4.8412291828E+02 5.0000000000E+02 1.2500000000E+02

25 0
0.0000000000E+00 0.0000000000E+00 -4.8412291828E+02 5.0000000000E+02 1.2500000000E+02

25 0
-1.4960220911E+02 -4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02
25 0
1.4960220911E+02 4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02

ASCII LONG: Identical to the ASCII short format, but after each event there is a line
containg two values: the value of the sample function to be integrated over phase space, so
basically the squared matrix element including all normalization factors, flux factor, structure
functions etc.

two-digit exponent for real numbers. There are rare cases (mainly, ISR photons) where the event record can
contain numbers with absolute value less than 10−99. Since those numbers are not representable in that format,
WHIZARD will set all non-zero numbers below that value to ±10−99, when filling either common block. Obviously,
such values are physically irrelevant, but in the output they are representable and distinguishable from zero.



11.5. SUPPORTED EVENT FORMATS 201

4 2 0 3.0574068604E+08
25 0
0.0000000000E+00 0.0000000000E+00 4.8412291828E+02 5.0000000000E+02 1.2500000000E+02

25 0
0.0000000000E+00 0.0000000000E+00 -4.8412291828E+02 5.0000000000E+02 1.2500000000E+02

25 0
-1.4960220911E+02 -4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02
25 0
1.4960220911E+02 4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02
1.0000000000E+00 1.0000000000E+00

ATHENA: Quite similar to the HEPEVT ASCII format. The header line, however, does
contain only two numbers: an event counter, and the number of particles in the event. The first
line for each particle lacks the polarization information (irrelevant for the ATHENA environment),
but has as leading entry an ordering number counting the particles in the event. The vertex
information line has only the four relevant position entries.

0 4
1 2 25 0 0 3 4
0.0000000000E+00 0.0000000000E+00 4.8412291828E+02 5.0000000000E+02 1.2500000000E+02
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00

2 2 25 0 0 3 4
0.0000000000E+00 0.0000000000E+00 -4.8412291828E+02 5.0000000000E+02 1.2500000000E+02
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00

3 1 25 1 2 0 0
-1.4960220911E+02 -4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00

4 1 25 1 2 0 0
1.4960220911E+02 4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00

MOKKA: Quite similar to the ASCII short format, but the event entries are the particle
status, the PDG code, the first and last daughter, the three spatial components of the momentum,
as well as the mass.

4 2 0 3.0574068604E+08
2 25 3 4 0.0000000000E+00 0.0000000000E+00 4.8412291828E+02 1.2500000000E+02
2 25 3 4 0.0000000000E+00 0.0000000000E+00 -4.8412291828E+02 1.2500000000E+02
1 25 0 0 -1.4960220911E+02 -4.6042825611E+02 0.0000000000E+00 1.2500000000E+02
1 25 0 0 1.4960220911E+02 4.6042825611E+02 0.0000000000E+00 1.2500000000E+02

LHA: This is the implementation of the Les Houches Accord, as it was used in WHIZARD 1
and the old MadEvent. There is a first line containing six entries: 1. the number of particles in
the event, NUP, 2. the subprocess identification index, IDPRUP, 3. the event weight, XWGTUP, 4.
the scale of the process, SCALUP, 5. the value or status of αQED, AQEDUP, 6. the value for αs,
AQCDUP. The next seven lines contain as many entries as there are particles in the event: the
first one has the PDG codes, IDUP, the next two the first and second mother of the particles,
MOTHUP, the fourth and fifth line the two color indices, ICOLUP, the next one the status of the
particle, ISTUP, and the last line the polarization information, ISPINUP. At the end of the event
there are as lines for each particles with the counter in the event and the four-vector of the
particle. For more information on this event format confer [51].



202 CHAPTER 11. MORE ON EVENT GENERATION

25 25 5.0000000000E+02 5.0000000000E+02 -1 -1 -1 -1 3 1
1.0000000000E-01 1.0000000000E-03 1.0000000000E+00 42

4 1 3.0574068604E+08 1.000000E+03 -1.000000E+00 -1.000000E+00
25 25 25 25
0 0 1 1
0 0 2 2
0 0 0 0
0 0 0 0

-1 -1 1 1
9 9 9 9
1 5.0000000000E+02 0.0000000000E+00 0.0000000000E+00 4.8412291828E+02
2 5.0000000000E+02 0.0000000000E+00 0.0000000000E+00 -4.8412291828E+02
3 5.0000000000E+02 -1.4960220911E+02 -4.6042825611E+02 0.0000000000E+00
4 5.0000000000E+02 1.4960220911E+02 4.6042825611E+02 0.0000000000E+00

LHEF: This is the modern version of the Les Houches accord event format (LHEF), for the
details confer the corresponding publication [55].
<LesHouchesEvents version="1.0">
<header>

<generator_name>WHIZARD</generator_name>
<generator_version>3.1.6</generator_version>

</header>
<init>
25 25 5.0000000000E+02 5.0000000000E+02 -1 -1 -1 -1 3 1
1.0000000000E-01 1.0000000000E-03 1.0000000000E+00 42

</init>
<event>
4 42 3.0574068604E+08 1.0000000000E+03 -1.0000000000E+00 -1.0000000000E+00
25 -1 0 0 0 0 0.0000000000E+00 0.0000000000E+00 4.8412291828E+02 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 9.0000000000E+00
25 -1 0 0 0 0 0.0000000000E+00 0.0000000000E+00 -4.8412291828E+02 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 9.0000000000E+00
25 1 1 2 0 0 -1.4960220911E+02 -4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 9.0000000000E+00
25 1 1 2 0 0 1.4960220911E+02 4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 9.0000000000E+00

</event>
</LesHouchesEvents>

Note that for the LHEF format, there are different versions according to the different stages
of agreement. They can be addressed from within the SINDARIN file by setting the string variable
$lhef_version to one of (at the moment) three values: "1.0", "2.0", or "3.0". The examples
above corresponds (as is indicated in the header) to the version "1.0" of the LHEF format.
Additional information in form of alternative squared matrix elements or event weights in the
event are the most prominent features of the other two more advanced versions. For more details
confer the literature.

Sample files for the default ASCII format as well as for the debug event format are shown in
the appendix.

11.6 Interfaces to Parton Showers, Matching
and Hadronization

This section describes the interfaces to the internal parton shower as well as the parton shower
and hadronization routines from PYTHIA. Moreover, our implementation of the MLM matching



11.6. INTERFACES TO PARTON SHOWERS, MATCHING AND HADRONIZATION 203

making use of the parton showers is described. Sample SINDARIN files are located in the
share/examples directory. All input files come in two versions, one using the internal shower,
ending in W.sin, and one using PYTHIA’s shower, ending in P.sin. Thus we state all file names
as ending with X.sin, where X has to be replaced by either W or P. The input files include
EENoMatchingX.sin and DrellYanNoMatchingX.sin for e+e− → hadrons and pp̄ → Z without
matching. The corresponding SINDARIN files with matching enabled are EEMatching2X.sin
to EEMatching5X.sin for e+e− → hadrons with a different number of partons included in the
matrix element and DrallYanMatchingX.sin for Drell-Yan with one matched emission.

11.6.1 Parton Showers and Hadronization

From version 2.1 onwards, WHIZARD contains an implementation of an analytic parton shower
as presented in [74], providing the opportunity to perform the parton shower from whithin
WHIZARD. Moreover, an interface to PYTHIA is included, which can be used to delegate the parton
shower to PYTHIA. The same interface can be used to hadronize events using the generated
events using PYTHIA’s hadronization routines. Note that by PYTHIA’s default, when performing
initial-state radiation multiple interactions are included and when performing the hadronization
hadronic decays are included. If required, these additional steps have to be switched off using
the corresponding arguments for PYTHIA’s PYGIVE routine via the $ps_PYTHIA_PYGIVE string.

Note that from version 2.2.4 on the earlier flag –enable-shower flag has been abandoned,
and there is only a flag to either compile or not compile the interally attached PYTHIA6 package
(–enable-pythia6) last release of the Fortran PYTHIA, v6.427) as well as the interface. It can
be invoked by the following SINDARIN keywords:

?ps_fsr_active = true master switch for final-state parton showers
?ps_isr_active = true master switch for initial-state parton showers
?ps_taudec_active = true master switch for τ decays (at the moment only via TAUOLA
?hadronization_active = true master switch to enable hadronization
$shower_method = "PYTHIA6" switch to use PYTHIA6’s parton shower instead of

WHIZARD’s own shower

If either ?ps_fsr_active or ?ps_isr_active is set to true, the event will be transferred
to the internal shower routines or the PYTHIA data structures, and the chosen shower steps
(initial- and final-state radiation) will be performed. If hadronization is enabled via the
?hadronization_active switch, WHIZARD will call PYTHIA’s hadronization routine. The hadron-
ization can be applied to events showered using the internal shower or showered using PYTHIA’s
shower routines, as well as unshowered events. Any necessary transfer of event data to PYTHIA
is automatically taken care of within WHIZARD’s shower interface. The resulting (showered
and/or hadronized) event will be transferred back to WHIZARD, the former final particles will be
marked as intermediate. The analysis can be applied to a showered and/or hadronized event
just like in the unshowered/unhadronized case. Any event file can be used and will contain the
showered/hadronized event.

Settings for the internal analytic parton shower are set via the following SINDARIN variables:



204 CHAPTER 11. MORE ON EVENT GENERATION

ps_mass_cutoff The cut-off in virtuality, below which, partons are assumed to radiate no more.
Used for both ISR and FSR. Given in GeV. (Default = 1.0)

ps_fsr_lambda The value for Λ used in calculating the value of the running coupling constant
αS for Final State Radiation. Given in GeV. (Default = 0.29)

ps_isr_lambda The value for Λ used in calculating the value of the running coupling constant
αS for Initial State Radiation. Given in GeV. (Default = 0.29)

ps_max_n_flavors Number of quark flavours taken into account during shower evolution.
Meaningful choices are 3 to include u, d, s-quarks, 4 to include u, d, s, c-quarks and 5 to
include u, d, s, c, b-quarks. (Default = 5)

?ps_isr_alphas_running Switch to decide between a constant αS, given by ps_fixed_alphas,
and a running αS, calculated using ps_isr_lambda for ISR. (Default = true)

?ps_fsr_alphas_running Switch to decide between a constant αS, given by ps_fixed_alphas,
and a running αS, calculated using ps_fsr_lambda for FSR. (Default = true)

ps_fixed_alphas Fixed value of αS for the parton shower. Used if either one of the variables
?ps_fsr_alphas_running or ?ps_isr_alphas_running are set to false. (Default =
0.0)

?ps_isr_angular_ordered Switch for angular ordered ISR. (Default = true )2

ps_isr_primordial_kt_width The width in GeV of the Gaussian assumed to describe the
transverse momentum of partons inside the proton. Other shapes are not yet implemented.
(Default = 0.0)

ps_isr_primordial_kt_cutoff The maximal transverse momentum in GeV of a parton inside
the proton. Used as a cut-off for the Gaussian. (Default = 5.0)

ps_isr_z_cutoff Maximal z-value in initial state branchings. (Default = 0.999)

ps_isr_minenergy Minimal energy in GeV of an emitted timelike or final parton. Note that
the energy is not calculated in the labframe but in the center-of-mas frame of the two
most initial partons resolved so far, so deviations may occur. (Default = 1.0)

ps_isr_tscalefactor Factor for the starting scale in the initial state shower evolution. (
Default = 1.0 )

?ps_isr_only_onshell_emitted_partons Switch to allow only for on-shell emitted partons,
thereby rejecting all possible final state parton showers starting from partons emitted
during the ISR. (Default = false)

2The FSR is always simulated with angular ordering enabled.



11.6. INTERFACES TO PARTON SHOWERS, MATCHING AND HADRONIZATION 205

Settings for the PYTHIA are transferred using the following SINDARIN variables:

?ps_PYTHIA_verbose if set to false, output from PYTHIA will be suppressed
$ps_PYTHIA_PYGIVE a string containing settings transferred to PYTHIA’s PYGIVE subroutine.

The format is explained in the PYTHIA manual. The limitation to 100
characters mentioned there does not apply here, the string is split
appropriately before being transferred to PYTHIA.

Note that the included version of PYTHIA uses LHAPDF for initial state radiation whenever
this is available, but the PDF set has to be set manually in that case using the keyword
ps_PYTHIA_PYGIVE.

11.6.2 Parton shower – Matrix Element Matching

Along with the inclusion of the parton showers, WHIZARD includes an implementation of the
MLM matching procedure. For a detailed description of the implemented steps see [74]. The
inclusion of MLM matching still demands some manual settings in the SINDARIN file. For a
given base process and a matching of N additional jets, all processes that can be obtained by
attaching up to N QCD splittings, either a quark emitting a gluon or a gluon splitting into two
quarks ar two gluons, have to be manually specified as additional processes. These additional
processes need to be included in the simulate statement along with the original process. The
SINDARIN variable mlm_nmaxMEjets has to be set to the maximum number of additional jets N .
Moreover additional cuts have to be specified for the additional processes.

alias quark = u:d:s:c
alias antiq = U:D:S:C
alias j = quark:antiq:g

?mlm_matching = true
mlm_ptmin = 5 GeV
mlm_etamax = 2.5
mlm_Rmin = 1

cuts = all Dist > mlm_Rmin [j, j]
and all Pt > mlm_ptmin [j]
and all abs(Eta) < mlm_etamax [j]

Note that the variables mlm_ptmin, mlm_etamax and mlm_Rmin are used by the matching routine.
Thus, replacing the variables in the cut expression and omitting the assignment would destroy
the matching procedure.

The complete list of variables introduced to steer the matching procedure is as follows:

?mlm_matching_active Master switch to enable MLM matching. (Default = false)

mlm_ptmin Minimal transverse momentum, also used in the definition of a jet



206 CHAPTER 11. MORE ON EVENT GENERATION

mlm_etamax Maximal absolute value of pseudorapidity η, also used in defining a jet

mlm_Rmin Minimal η − ϕ distance Rmin

mlm_nmaxMEjets Maximum number of jets N

mlm_ETclusfactor Factor to vary the jet definition. Should be ≥ 1 for complete coverage of
phase space. (Default = 1)

mlm_ETclusminE Minimal energy in the variation of the jet definition

mlm_etaclusfactor Factor in the variation of the jet definition. Should be ≤ 1 for complete
coverage of phase space. (Default = 1)

mlm_Rclusfactor Factor in the variation of the jet definition. Should be ≥ 1 for complete
coverage of phase space. (Default = 1)

The variation of the jet definition is a tool to asses systematic uncertainties introduced by the
matching procedure (See section 3.1 in [74]).

11.7 Rescanning and recalculating events
In the simplest mode of execution, WHIZARD handles its events at the point where they are
generated. It can apply event transforms such as decays or shower (see above), it can analyze
the events, calculate and plot observables, and it can output them to file. However, it is also
possible to apply two different operations to those events in parallel, or to reconsider and rescan
an event sample that has been previously generated.

We first discuss the possibilities that simulate offers. For each event, WHIZARD calculates
the matrix element for the hard interaction, supplements this by Jacobian and phase-space
factors in order to obtain the event weight, optionally applies a rejection step in order to gather
uniformly weighted events, and applies the cuts and analysis setup. We may ask about the event
matrix element or weight, or the analysis result, that we would have obtained for a different
setting. To this end, there is an alt_setup option.

This option allows us to recalculate, event by event, the matrix element, weight, or analysis
contribution with a different parameter set but identical kinematics. For instance, we may
evaluate a distribution for both zero and non-zero anomalous coupling fw and enter some
observable in separate histograms:

simulate (some_proc) {
fw = 0
analysis = record hist1 (eval Pt [H])

alt_setup = {
fw = 0.01
analysis = record hist2 (eval Pt [H])

}
}



11.7. RESCANNING AND RECALCULATING EVENTS 207

In fact, the alt_setup object is not restricted to a single code block (enclosed in curly
braces) but can take a list of those,

alt_setup = { fw = 0.01 }, { fw = 0.02 }, ...

Each block provides the environment for a separate evaluation of the event data. The generation
of these events, i.e., their kinematics, is still steered by the primary environment.

The alt_setup blocks may modify various settings that affect the evaluation of an event,
including physical parameters, PDF choice, cuts and analysis, output format, etc. This must
not (i.e., cannot) affect the kinematics of an event, so don’t modify particle masses. When
applying cuts, they can only reduce the generated event sample, so they apply on top of the
primary cuts for the simulation.

Alternatively, it is possible to rescan a sample that has been generated by a previous
simulate command:

simulate (some_proc) { $sample = "my_events"
analysis = record hist1 (eval Pt [H])

}
?update_sqme = true
?update_weight = true
rescan "my_events" (some_proc) {

fw = 0.01
analysis = record hist2 (eval Pt [H])

}
rescan "my_events" (some_proc) {

fw = 0.05
analysis = record hist3 (eval Pt [H])

}

In more complicated situation, rescanning is more transparent and offers greater flexibility than
doing all operations at the very point of event generation.

Combining these features with the scan looping construct, we already cover a considerable
range of applications. (There are limitations due to the fact that SINDARIN doesn’t provide
array objects, yet.) Note that the rescan construct also allows for an alt_setup option.

You may generate a new sample by rescanning, for which you may choose any output format:

rescan "my_events" (some_proc) {
selection = all Pt > 100 GeV [H]
$sample = "new_events"
sample_format = lhef

}

The event sample that you rescan need not be an internal raw WHIZARD file, as above. You
may rescan a LHEF file,

rescan "lhef_events" (proc) {
$rescan_input_format = "lhef"

}



208 CHAPTER 11. MORE ON EVENT GENERATION

This file may have any origin, not necessarily from WHIZARD. To understand such an external
file, WHIZARD must be able to reconstruct the hard process and match it to a process with a
known name (e.g., proc), that has been defined in the SINDARIN script previously.

Within its limits, WHIZARD can thus be used for translating an event sample from one format
to another format.

There are three important switches that control the rescanning behavior. They can be set or
unset independently.

• ?update_sqme (default: false). If true, WHIZARD will recalculate the hard matrix element
for each event. When applying an analysis, the recalculated squared matrix element
(averaged and summed over quantum numbers as usual) is available as the variable
sqme_prc. This may be related to sqme_ref, the corresponding value in the event file, if
available. (For the alt_env option, this switch is implied.)

• ?update_weight (default: false). If true, WHIZARD will recalculate the event weight
according to the current environment and apply this to the event. In particular, the user
may apply a reweight expression. In an analysis, the new weight value is available as
weight_prc, to be related to weight_ref from the sample. The updated weight will be
applied for histograms and averages. An unweighted event sample will thus be transformed
into a weighted event sample. (This switch is also implied for the alt_env option.)

• ?update_event (default: false). If true, WHIZARD will generate a new decay chain etc.,
if applicable. That is, it reuses just the particles in the hard process. Otherwise, the
complete event is kept as it is written to file.

For these options to make sense, WHIZARD must have access to a full process object, so the
SINDARIN script must contain not just a definition but also a compile command for the matrix
elements in question.

If an event file (other than raw format) contains several processes as a mixture, they must be
identifiable by a numeric ID. WHIZARD will recognize the processes if their respective SINDARIN
definitions contain appropriate process_num_id options, such as

process foo = u, ubar => d, dbar { process_num_id = 42 }

Certain event-file formats, such as LHEF, support alternative matrix-element values or
weights. WHIZARD can thus write both original and recalculated matrix-element and weight
values. Other formats support only a single event weight, so the ?update_weight option is
necessary for a visible effect.

External event files in formats such as LHEF, HepMC, or LCIO, also may carry infor-
mation about the value of the strong coupling αs and the energy scale of each event. This
information will also be provided by WHIZARD when writing external event files. When such
an event file is rescanned, the user has the choice to either user the αs value that WHIZARD
defines in the current context (or the method for obtaining an event-specific running αs value),
or override this for each event by using the value in the event file. The corresponding pa-
rameter is ?use_alphas_from_file, which is false by default. Analogously, the parameter



11.8. NEGATIVE WEIGHT EVENTS 209

?use_scale_from_file may be set to override the scale definition in the current context. Obvi-
ously, these settings influence matrix-element recalculation and therefore require ?update_sqme
to be set in order to become operational.

11.8 Negative weight events
For usage at NLO refer to Subsection 5.11.3. In case, you have some other mechanism to produce
events with negative weights (e.g. with the weight = <expr> command), keep in mind that
you should activate ?negative_weights = true and unweighted = false. The generation of
unweighted events with varying sign (also known as events and counter events) is currently not
supported.



210 CHAPTER 11. MORE ON EVENT GENERATION



Chapter 12

Internal Data Visualization

12.1 GAMELAN

The data values and tables that we have introduced in the previous section can be visualized using
built-in features of WHIZARD. To be precise, WHIZARD can write LATEX code which incorporates
code in the graphics language GAMELAN to produce a pretty-printed account of observables,
histograms, and plots.

GAMELAN is a macro package for MetaPost, which is part of the TEX/LATEX family.
MetaPost, a derivative of Knuth’s MetaFont language for font design, is usually bundled with
the TEX distribution, but might need a separate switch for installation. The GAMELAN macros
are contained in a subdirectory of the WHIZARD package. Upon installation, they will be installed
in the appropriate directory, including the gamelan.sty driver for LATEX. WHIZARD uses a subset
of GAMELAN’s graphics macros directly, but it allows for access to the full package if desired.

An (incomplete) manual for GAMELAN can be found in the share/doc subdirectory of
the WHIZARD system. WHIZARD itself uses a subset of the GAMELAN capabilities, interfaced by
SINDARIN commands and parameters. They are described in this chapter.

To process analysis output beyond writing tables to file, the write_analysis command
described in the previous section should be replaced by compile_analysis, with the same
syntax:

compile_analysis (analysis-tags ) { options }

where analysis-tags , a comma-separated list of analysis objects, is optional. If there are no
tags, all analysis objects are processed. The options script of local commands is also optional,
of course.

This command will perform the following actions:

1. It writes a data file in default format, as write_analysis would do. The file name is
given by $out_file, if nonempty. The file must not be already open, since the command
needs a self-contained file, but the name is otherwise arbitrary. If the value of $out_file
is empty, the default file name is whizard_analysis.dat.

211



212 CHAPTER 12. INTERNAL DATA VISUALIZATION

2. It writes a driver file for the chosen datasets, whose name is derived from the data
file by replacing the file extension of the data file with the extension .tex. The driver
file is a LATEX source file which contains embedded GAMELAN code that handles the
selected graphics data. In the LATEX document, there is a separate section for each
contained dataset. Furthermore, a process-/analysis-specific makefile with the name
<process_name>_ana.makefile is created that can be used to generate postscript or PDF
output from the LATEX source. If the steering flag ?analysis_file_only is set to true,
then the LATEX file and the makefile are only written, but no execution of the makefile
resulting in compilation of the LATEX code (see the next item) is invoked.

3. As mentioned above, if the flag ?analysis_file_only is set to false (which is the
default), the driver file is processed by LATEX(invoked by calling the makefile with the name
<process_name>_ana.makefile), which generates an appropriate GAMELAN source file
with extension .mp. This code is executed (calling GAMELAN/MetaPost, and again
LATEX for typesetting embedded labels). There is a second LATEX pass (automatically done
by the makefile) which collects the results, and finally conversion to PostScript and PDF
formats.

The resulting PostScript or PDF file – the file name is the name of the data file with the
extension replaced by .ps or .pdf, respectively – can be printed or viewed with an appropriate
viewer such as gv. The viewing command is not executed automatically by WHIZARD.

Note that LATEX will write further files with extensions .log, .aux, and .dvi, and GAMELAN
will produce auxiliary files with extensions .ltp and .mpx. The log file in particular, could
overwrite WHIZARD’s log file if the basename is identical. Be careful to use a value for $out_file
which is not likely to cause name clashes.

12.1.1 User-specific changes

In the case, that the SINDARIN compile_analysis command is invoked and the flag named
?analysis_file_only is not changed from its default value false, WHIZARD calls the process-
/analysis-specific makefile triggering the compilation of the LATEX code and the GAMELAN plots
and histograms. If the user wants to edit the analysis output, for example changing captions,
headlines, labels, properties of the plots, graphs and histograms using GAMELAN specials
etc., this is possible and the output can be regenerated using the makefile. The user can also
directly invoke the GAMELAN script, whizard-gml, that is installed in the binary directly along
with the WHIZARD binary and other scripts. Note however, that the LATEX environment for the
specific style files have to be set by hand (the command line invocation in the makefile does this
automatically). Those style files are generally written into share/texmf/whizard/ directory.
The user can execute the commands in the same way as denoted in the process-/analysis-specific
makefile by hand.



12.2. HISTOGRAM DISPLAY 213

12.2 Histogram Display

12.3 Plot Display

12.4 Graphs
Graphs are an additional type of analysis object. In contrast to histograms and plots, they do
not collect data directly, but they rather act as containers for graph elements, which are copies
of existing histograms and plots. Their single purpose is to be displayed by the GAMELAN
driver.

Graphs are declared by simple assignments such as

graph g1 = hist1
graph g2 = hist2 & hist3 & plot1

The first declaration copies a single histogram into the graph, the second one copies two
histograms and a plot. The syntax for collecting analysis objects uses the & concatenation
operator, analogous to string concatenation. In the assignment, the rhs must contain only
histograms and plots. Further concatenating previously declared graphs is not supported.

After the graph has been declared, its contents can be written to file (write_analysis) or,
usually, compiledd by the LATEX/GAMELAN driver via the compile_analysis command.

The graph elements on the right-hand side of the graph assignment are copied with their
current data content. This implies a well-defined order of statements: first, histograms and
plots are declared, then they are filled via record commands or functions, and finally they can
be collected for display by graph declarations.

A simple graph declaration without options as above is possible, but usually there are options
which affect the graph display. There are two kinds of options: graph options and drawing
options. Graph options apply to the graph as a whole (title, labels, etc.) and are placed in
braces on the lhs of the assigment. Drawing options apply to the individual graph elements
representing the contained histograms and plots, and are placed together with the graph element
on the rhs of the assignment. Thus, the complete syntax for assigning multiple graph elements is

graph graph-tag { graph-options }
= graph-element-tag1 { drawing-options1 }
& graph-element-tag2 { drawing-options2 }
. . .

This form is recommended, but graph and drawing options can also be set as global parameters,
as usual.

We list the supported graph and drawing options in Tables 12.1 and 12.2, respectively.

12.5 Drawing options
The options for coloring lines, filling curves, or choosing line styles make use of macros in the
GAMELAN language. At this place, we do not intend to give a full account of the possiblities,



214 CHAPTER 12. INTERNAL DATA VISUALIZATION

Table 12.1: Graph options. The content of strings of type LATEX must be valid LATEX code
(containing typesetting commands such as math mode). The content of strings of type GAMELAN
must be valid GAMELAN code. If a graph bound is kept undefined, the actual graph bound is
determined such as not to crop the graph contents in the selected direction.

Variable Default Type Meaning
$title "" LATEX Title of the graph = subsection headline
$description "" LATEX Description text for the graph
$x_label "" LATEX x-axis label
$y_label "" LATEX y-axis label
graph_width_mm 130 Integer graph width (on paper) in mm
graph_height_mm 90 Integer graph height (on paper) in mm
?x_log false Logical Whether the x-axis scale is linear or logarithmic
?y_log false Logical Whether the y-axis scale is linear or logarithmic
x_min undefined Real Lower bound for the x axis
x_max undefined Real Upper bound for the x axis
y_min undefined Real Lower bound for the y axis
y_max undefined Real Upper bound for the y axis
gmlcode_bg "" GAMELAN Code to be executed before drawing
gmlcode_fg "" GAMELAN Code to be executed after drawing



12.5. DRAWING OPTIONS 215

Table 12.2: Drawing options. The content of strings of type GAMELAN must be valid GAMELAN
code. The behavior w.r.t. the flags with undefined default value depends on the type of graph
element. Histograms: draw baseline, piecewise, fill area, draw curve, no errors, no symbols;
Plots: no baseline, no fill, draw curve, no errors, no symbols.

Variable Default Type Meaning
?draw_base undefined Logical Whether to draw a baseline for the curve
?draw_piecewise undefined Logical Whether to draw bins separately (histogram)
?fill_curve undefined Logical Whether to fill area between baseline and curve
$fill_options "" GAMELAN Options for filling the area
?draw_curve undefined Logical Whether to draw the curve as a line
$draw_options "" GAMELAN Options for drawing the line
?draw_errors undefined Logical Whether to draw error bars for data points
$err_options "" GAMELAN Options for drawing the error bars
?draw_symbols undefined Logical Whether to draw symbols at data points
$symbol Black dot GAMELAN Symbol to be drawn
gmlcode_bg "" GAMELAN Code to be executed before drawing
gmlcode_fg "" GAMELAN Code to be executed after drawing

but we rather list a few basic features that are likely to be useful for drawing graphs.

Colors

GAMELAN knows about basic colors identified by name:

black, white, red, green, blue, cyan, magenta, yellow

More generically, colors in GAMELAN are RGB triplets of numbers (actually, numeric expres-
sions) with values between 0 and 1, enclosed in brackets:

(r, g, b )

To draw an object in color, one should apply the construct withcolor color to its drawing
code. The default color is always black. Thus, this will make a plot drawn in blue:

$draw_options = "withcolor blue"

and this will fill the drawing area of some histogram with an RGB color:

$fill_options = "withcolor (0.8, 0.7, 1)"



216 CHAPTER 12. INTERNAL DATA VISUALIZATION

Dashes

By default, lines are drawn continuously. Optionally, they can be drawn using a dash pattern.
Predefined dash patterns are

evenly, withdots, withdashdots

Going beyond the predefined patterns, a generic dash pattern has the syntax

dashpattern (on l1 off l2 on . . . )

with an arbitrary repetition of on and off clauses. The numbers l1 , l2 , . . . are lengths
measured in pt.

To apply a dash pattern, the option syntax dashed dash-pattern should be used. Options
strings can be concatenated. Here is how to draw in color with dashes:

$draw_options = "withcolor red dashed evenly"

and this draws error bars consisting of intermittent dashes and dots:

$err_options = "dashed (withdashdots scaled 0.5)"

The extra brackets ensure that the scale factor 1/2 is applied only the dash pattern.

Hatching

Areas (e.g., below a histogram) can be filled with plain colors by the withcolor option. They
can also be hatched by stripes, optionally rotated by some angle. The syntax is completely
analogous to dashes. There are two predefined hatch patterns :

withstripes, withlines

and a generic hatch pattern is written

hatchpattern (on w1 off w2 on . . . )

where the numbers l1 , l2 , . . . determine the widths of the stripes, measured in pt.
When applying a hatch pattern, the pattern may be rotated by some angle (in degrees) and

scaled. This looks like

$fill_options = "hatched (withstripes scaled 0.8 rotated 60)"

Smooth curves

Plot points are normally connected by straight lines. If data are acquired by statistical methods,
such as Monte Carlo integration, this is usually recommended. However, if a plot is generated
using an analytic mathematical formula, or with sufficient statistics to remove fluctuations, it
might be appealing to connect lines by some smooth interpolation. GAMELAN can switch on
spline interpolation by the specific drawing option linked smoothly. Note that the results can
be surprising if the data points do have sizable fluctuations or sharp kinks.



12.5. DRAWING OPTIONS 217

Error bars

Plots and histograms can be drawn with error bars. For histograms, only vertical error bars are
supported, while plot points can have error bars in x and y direction. Error bars are switched
on by the ?draw_errors flag.

There is an option to draw error bars with ticks: withticks and an alternative option to
draw arrow heads: witharrows. These can be used in the $err_options string.

Symbols

To draw symbols at plot points (or histogram midpoints), the flag ?draw_symbols has to be
switched on.



218 CHAPTER 12. INTERNAL DATA VISUALIZATION



Chapter 13

Fast Detector Simulation and External
Analysis

Events from a Monte Carlo event generator are further used in an analysis, most often combined
with a detector simulation. Event files from the generator are then classified whether they
are (i) parton level (coming from the hard matrix element) for which mostly LHE or HepMC
event formats are used, particle level (after parton shower and hadronization) - usually in
HepMC or LCIO format -, or detector level objects. The latter is the realm of packages like ROOT
or specific software from the experimental software frameworks. While detailed experimental
studies take into account the best-possible detector description in a so-called full simulation
via Geant which takes several seconds per event, fast studies are made with parameterized fast
detector simulations like in Delphes or SGV. In the following, we discuss the options to interface
external packages for these purposes or to pipe events from WHIZARD to such external packages.

13.1 Interfacing ROOT
One of the most distributed analysis framework is ROOT [101]. In WHIZARD for the moment there
is no direct interface to the ROOT framework. The easiest way to write out particle-level events in
the ROOT or RootTree format is to use WHIZARD’s interface to HepMC3: this modern incarnation
of the HepMC format has different writer classes, where the writer class for ROOT and RootTree
files is supported by WHIZARD’s HepMC3 interface. For this to work, one only has to make sure
that HepMC3 has been built with ROOT support, and that the WHIZARD configure has to detect
the ROOT setup on the computing environment. For more details cf. the installation section 2.2.9.
If this has been successfully linked, then WHIZARD can use its own HepMC3 interface to write out
ROOT or RootTree formats.

This can be done by setting the following options in the SINDARIN files:
$hepmc3_mode = "Root"

or
$hepmc3_mode = "RootTree"

For more details cf. the ROOT manual and documentation therein.

219



220 CHAPTER 13. FAST DETECTOR SIMULATION AND EXTERNAL ANALYSIS

13.2 Interfacing RIVET

Rivet [102] is a very mighty analysis framework which has been developed to make experimental
analyses from the LHC experiments available for non-collaboration members. It can be easily used
to analyze events and produce high-quality plots for differential distributions and experimental
observables. Since version 3 [103] there is now also a lot of functionality that comes very handy
for plotting differential distributions at fixed order in NLO calculations, e.g. negative weights in
bins or how to treat imperfectly balanced events and counterevents close to bin boundaries etc.
For the moment, WHIZARD does not have a dedicated interface to Rivet, so the preferred method
is to write out events, best in the HepMC or HepMC3 format and then read them into Rivet. A
more sophisticated interface is foreseen for a future version of WHIZARD, while there are already
development versions where WHIZARD detects all the Rivet infrastructure and libraries. But
they are not yet used.

For more details and practical examples cf. the Rivet manual. This describes in detail
especially the Rivet installation. A typical error that occurs on systems where no ROOT is
installed (cf. Sec. 13.1) is the one these Missing TPython.h missing headers. Then Rivet can
nevertheless be easily built without ROOT support by setting

--disable-root

in the rivet-bootstrap script. For an installation of Rivet it is favorable to include the
location of the Rivet Python scripts in the PYTHONPATH environment variable. They can be
accessed from the Rivet configuration script as

<path_to_rivet-config>/rivet-config --pythonpath

If the Python path is not known within the environment variables, then one commonly encounters
error like No module named rivet or Import error: no module named yoda when running
Rivet scripts like e.g. yodamerge.

If you use a Rivet version older than v3.1.1 there is no support for HepMC3 yet, so when
using HepMC3 with WHIZARD please use the backwards compatibility mode of HepMC3in the
SINDARIN file:

$hepmc3_mode = "HepMC2"

When using MPI parallelized runs of WHIZARD there will a large number of different .hepmc files
(also if some grid architecture has produced these event files in junks). Then one has to first
merge these event files.

Here, we quickly explain how to steer Rivet for your own analysis. For more details, please
confer the Rivet manual.

1. The command

rivet-mkanalysis <name>

creates a template Rivet plugin for the analysis <name>.cc, a template info file <name>.info
amd a template file for the plot generation <name>.plot. Note that this overwrites poten-
tially existing files in this folder with the same name.



13.2. INTERFACING RIVET 221

2. Now, analysis statements like e.g. cuts etc. can be implemented in <name>.cc. For
analysis of parton-level events without parton showering, the cuts can be equivalent to
those in WHIZARD, i.e. the generator-level cuts can be as strict as the analysis cuts to avoid
generating unnecessary events. If parton showering is applied it is better to have looser
generator than analysis cuts to avoid undesired plot artifacts.

3. Next, one executes the command (the shared library name might be different e.g. on
Darwin or BSD OS)

rivet-buildplugin Rivet<name>.so <name>.cc

This creates an executable Rivet analysis library Rivet<name>.so. The custom analysis
should now appear in the output of

rivet --list <name>

If this is not the case, the analysis path has to be exported first as RIVET_ANALYSIS_PATH=$PWD.

4. We are now ready to use the custom analysis to analyze the .hepmc events by executing
the command

rivet --pwd --analysis=<name> -o <outfile>.yoda <path/to/hepmcfiles>

and save the produced histograms of the analysis in the .yoda format. In general the
option –ignore-beams for Rivet should be used to prevent Rivet to stumble over beam
remnants. This is also relevant for lepton collider processes with electron PDFs. For a
large number of events, event files can become very big. To avoid writing them all on disk,
a FIFO for the <path/to/hepmcfiles> can be used.

5. Different yoda files can now be merged into a single file using the command

<yodamerge --add -o <name>_full.yoda <name>_01.yoda ...

This should be applied e.g. for the case of fixed-order NLO differential distributions where
Born, real and virtual components have been generated separately.

6. Finally, plots can be produced: after listing all the histograms to be plotted in the plot
file <name>.plot, the command

rivet-mkhtml <name>_full.yoda

translates the .yoda file into a histogram file in the .dat format. These plots can either be
visually enhanced by modifying the <name>.plot file as is described on the webpage https:
//rivet.hepforge.org/make-plots.html, or by using any other external plotting tool
like e.g. Gnuplot for the .dat files.

Clearly, this gives only a rough sketch on how to use Rivet for an analysis. For more details,
please consult the Rivet webpage and the Rivet manual.

https://rivet.hepforge.org/make-plots.html
https://rivet.hepforge.org/make-plots.html


222 CHAPTER 13. FAST DETECTOR SIMULATION AND EXTERNAL ANALYSIS

13.3 Fast Detector Simulation with DELPHES
Fast detector simulation allows relatively quick checks whether experimental analyses actually
work in a semi-realistic detector study. There are some older tools for fast simulation like
e.g. PGS (which is no longer actively maintained) and SGV which is default fast simulation for
ILC studies. For LHC and general future hadron collider studies, Delphes [104] is the most
commonly used tool for fast detector simulation.

The details on how to obtain and build Delphes can be obtained from their webpage,
https://cp3.irmp.ucl.ac.be/projects/delphes. It depends both on Tcl/Tk as well as
ROOT (cf. Sec. 13.1. Interfacing any Monte Carlo event generator with a fast detector simulation
like Delphes is rather trivial: Delphes ships with up to five executables

DelphesHepMC
DelphesLHEF
DelphesPythia8
DelphesROOT
DelphesSTDHEP

DelphesPythia8 is a direct interface between PYTHIA8 and Delphes, so detector-level events
are directly produced via an API interface between PYTHIA8 and Delphes. This is the most
convenient method which is foreseen for WHIZARD, however not yet implemented. The other
four binaries take input files in the HepMC, LHE, STDHEP and ROOT format, apply a fast detector
simulation according to the chosen input file and give a ROOT detector-level event file as output.

Executing one of the binaries above without options, the following message will be displayed:
./DelphesHepMC

Usage: DelphesHepMC config_file output_file [input_file(s)]
config_file - configuration file in Tcl format,
output_file - output file in ROOT format,
input_file(s) - input file(s) in HepMC format,
with no input_file, or when input_file is -, read standard input.

Using Delphes with HepMC event files then works as
./DelphesHepMC cards/delphes_card_ATLAS.tcl output.root input.hepmc

For STDHEP files which are directly by WHIZARD without external packages (only assuming that
the XDR C libraries are present on the system), execute

./DelphesSTDHEP cards/delphes_card_ILD.tcl delphes_output.root input.hep

For LHE files as input, use
./DelphesLHEF cards/delphes_card_CLICdet_Stage1.tcl delphes_output.root input.lhef

and for ROOT (particle-level) files use
./DelphesROOT cards/delphes_card_CMS.tcl delphes_output.root input.root

In the Delphes cards directory, there is a long list of supported input files for existing and
future detectors, a few of which we have displayed here.

Delphes detector-level output files can then be analyzed with ROOT as described in the
Delphes manual.

https://cp3.irmp.ucl.ac.be/projects/delphes


Chapter 14

User Interfaces for WHIZARD

14.1 Command Line and SINDARIN Input Files
The standard way of using WHIZARD involves a command script written in SINDARIN. This script
is executed by WHIZARD by mentioning it on the command line:

whizard script-name.sin

You may specify several script files on the command line; they will be executed consecutively.
If there is no script file, WHIZARD will read commands from standard input. Hence, this is

equivalent:

cat script-name.sin | whizard

When executed from the command line, WHIZARD accepts several options. They are given in
long form, i.e., they begin with two dashes. Values that belong to options follow the option string,
separated either by whitespace or by an equals sign. Hence, –prefix /usr and –prefix=/usr
are equivalent. Some options are also available in short form, a single dash with a single letter.
Short-form options can be concatenated, i.e., a dash followed by several option letters.

The first set of options is intended for normal operation.

–debug AREA : Switch on debug output for AREA. AREA can be one of WHIZARD’s source directories
or all.

–debug2 AREA : Switch on more verbose debug output for AREA.

–single-event : Only compute one phase-space point (for debugging).

–execute COMMANDS : Execute COMMANDS as a script before the script file (see below). Short
version: -e

–file CMDFILE : Execute commands in CMDFILE before the main script file (see below). Short
version: -f

–help : List the available options and exit. Short version: -h

223



224 CHAPTER 14. USER INTERFACES FOR WHIZARD

–interactive : Run WHIZARD interactively. See Sec. 14.2. Short version: -i.

–library LIB : Preload process library LIB (instead of the default processes). Short version:
-l.

–localprefix DIR : Search in DIR for local models. Default is $HOME/.whizard.

–logfile FILE : Write log to FILE. Default is whizard.log. Short version: -L.

–logging : Start logging on startup (default).

–model MODEL : Preload model MODEL. Default is the Standard Model SM. Short version: -m.

–no-banner : Do not display banner at startup.

–no-library : Do not preload a library.

–no-logfile : Do not write a logfile.

–no-logging : Do not issue information into the logfile.

–no-model : Do not preload a specific physics model.

–no-rebuild : Do not force a rebuild.

–query VARIABLE : Display documentation of VARIABLE. Short version: -q.

–rebuild : Do not preload a process library and do all calculations from scratch, even if results
exist. This combines all rebuild options. Short version: -r.

–rebuild-library : Rebuild the process library, even if code exists.

–rebuild-phase-space : Rebuild the phase space setup, even if it exists.

–rebuild-grids : Redo the integration, even if previous grids and results exist.

–rebuild-events : Redo event generation, discarding previous event files.

–show-config : Show build-time configuration.

–version : Print version information and exit. Short version: -V.

- : Any further options are interpreted as file names.

The second set of options refers to the configuration. They are relevant when dealing with a
relocated WHIZARD installation, e.g., on a batch systems.

–prefix DIR : Specify the actual location of the WHIZARD installation, including all subdirecto-
ries.



14.2. WHISH – THE WHIZARD SHELL/INTERACTIVE MODE 225

–exec-prefix DIR : Specify the actual location of the machine-specific parts of the WHIZARD
installation (rarely needed).

–bindir DIR : Specify the actual location of the executables contained in the WHIZARD installa-
tion (rarely needed).

–libdir DIR : Specify the actual location of the libraries contained in the WHIZARD installation
(rarely needed).

–includedir DIR : Specify the actual location of the include files contained in the WHIZARD
installation (rarely needed).

–datarootdir DIR : Specify the actual location of the data files contained in the WHIZARD
installation (rarely needed).

–libtool LOCAL_LIBTOOL : Specify the actual location and name of the libtool script that
should be used by WHIZARD.

–lhapdfdir DIR : Specify the actual location and of the LHAPDF installation that should be
used by WHIZARD.

The –execute and –file options allow for fine-tuning the command flow. The WHIZARD main
program will concatenate all commands given in –execute commands together with all com-
mands contained in –file options, in the order they are encountered, as a contiguous command
stream that is executed before the main script (in the example above, script-name.sin).

Regarding the –execute option, commands that contain blanks must be enclosed in matching
single- or double-quote characters since the individual tokens would otherwise be intepreted as
separate option strings. Unfortunately, a Unix/Linux shell interpreter will strip quotes before
handing the command string over to the program. In that situation, the quote-characters must
be quoted themselves, or the string must be enclosed in quotes twice. Either version should
work as a command line interpreted by the shell:

whizard --execute \’int my_flag = 1\’ script-name.sin
whizard --execute "’int my_flag = 1’" script-name.sin

14.2 WHISH – The WHIZARD Shell/Interactive mode
WHIZARD can be also run in the interactive mode using its own shell environment. This is called
the WHIZARD Shell (WHISH). For this purpose, one starts with the command

/home/user$ whizard --interactive

or

/home/user$ whizard -i

WHIZARD will preload the Standard Model and display a command prompt:



226 CHAPTER 14. USER INTERFACES FOR WHIZARD

whish?

You now can enter one or more SINDARIN commands, just as if they were contained in a script
file. The commands are compiled and executed after you hit the ENTER key. When done, you
get a new prompt. The WHISH can be closed by the quit command:

whish? quit

Obviously, each input must be self-contained: commands must be complete, and conditionals or
scans must be closed on the same line.

If WHIZARD is run without options and without a script file, it also reads commands interac-
tively, from standard input. The difference is that in this case, interactive input is multi-line,
terminated by Ctrl-D, the script is then compiled and executed as a whole, and WHIZARD
terminates.

In WHISH mode, each input line is compiled and executed individually. Furthermore, fatal
errors are masked, so in case of error the program does not terminate but returns to the WHISH
command line. (The attempt to recover may fail in some circumstances, however.)

14.3 Graphical user interface
This is still experimental.

WHIZARD ships with a graphical interface that can be steered in a browser of your choice. It
is located in share/gui. To use it, you have to run npm install (which will install javascript li-
braries locally in that folder) and npm start (which will start a local web server on your machine)
in that folder. More technical details and how to get npm is discussed in share/gui/README.md.
When it is running, you can access the GUI by entering localhost:3000 as address in your
browser. The GUI is separated into different tabs for basic settings, integration, simulation,
cuts, scans, NLO and beams. You can select and enter what you are interested in and the GUI
will produce a SINDARIN file. You can use the GUI to run WHIZARD with that SINDARIN or
just produce it with the GUI and then tweak it further with an editor. In case you run it in the
GUI, the log file will be updated in the browser as it is produced. Any SINDARIN features that
are not supported by the GUI can be added directly as "Additional Code".

14.4 WHIZARD as a library
The compiled WHIZARD program consists of two libraries (libwhizard and libomega). In the
standard setup, these are linked to a short main program which deals with command line options
and top-level administration. This is the stand-alone whizard executable program.

Alternatively, it is possible to link the libraries to a different main program of the user’s
choice. The user program can take complete control of the WHIZARD features. The libwhizard
library provides an API, a well-defined set of procedures which can be called from a foreign
main program. The supported languages are Fortran, C, and C++. Using the C API, any other
language which supports linking against C libraries can also be interfaced.



14.4. WHIZARD AS A LIBRARY 227

14.4.1 Fortran main program

To link a Fortran main program with the WHIZARD library, the following steps must be performed:

1. Configure, build and install WHIZARD as normal.

2. Include code for accessing WHIZARD functionality in the user program. The code should
initialize WHIZARD, execute the intended commands, and finalize. For an example, see
below.

3. Compile the user program. The user program must be compiled with the same Fortran
compiler that has been used for the WHIZARD build.
If necessary, specify an option that finds the installed WHIZARD module files. For instance,
if WHIZARD has been installed in whizard-path, this should read

-Iwhizard-path/lib/mod/whizard

4. Link the program (or compile-link in a single step). If necessary, specify options that find
the installed WHIZARD and O’Mega libraries. For instance, if WHIZARD has been installed in
whizard-path, this should read

-Lwhizard-path/lib -lwhizard -lwhizard_prebuilt -lomega

On some systems, you may have to replace lib by lib64.
Such an example compile-link could look like

gfortran manual_example_api.f90 -Lwhizard-path/lib -lwhizard -lwhizard_prebuilt -lomega

If WHIZARD has been compiled with a non-default Fortran compiler, you may have to
explicitly link the appropriate Fortran run-time libraries.

The tirpc library is used by the StdHEP subsystem for xdr functionality. This library
should be present on the host system. This library needs only be linked of the SunRPC
library is not installed on the system.

If additional libraries such as HepMC are enabled in the WHIZARD configuration, it may be
necessary to provide extra options for linking those.
An example here looks like

gfortran manual_example_api.f90 -Lwhizard-path/lib -lwhizard
-lwhizard_prebuilt -lomega -lHepMC3 -lHepMC3rootIO -llcio

5. Run the program. If necessary, provide the path to the installed shared libraries. For
instance, if WHIZARD has been installed in whizard-path, this should read

export LD_LIBRARY_PATH="whizard-path/lib:$LD_LIBRARY_PATH"



228 CHAPTER 14. USER INTERFACES FOR WHIZARD

On some systems, you may have to replace lib by lib64, as above.

The WHIZARD subsystem will work with input and output files in the current working
directory, unless asked to do otherwise.

Below is an example program, adapted from WHIZARD’s internal unit-test suite. The user program
controls the WHIZARD workflow in the same way as a SINDARIN script would do. The commands
are a mixture of SINDARIN command calls and functionality for passing information between
the WHIZARD subsystem and the host program. In particular, the program can process generated
events one-by-one.

program main

! WHIZARD API as a module
use api

! Standard numeric types
use iso_fortran_env, only: real64, int32

implicit none

! WHIZARD and event-sample objects
type(whizard_api_t) :: whizard
type(simulation_api_t) :: sample

! Local variables
real(real64) :: integral, error
real(real64) :: sqme, weight
integer(int32) :: idx
integer(int32) :: i, it_begin, it_end

! Initialize WHIZARD, setting some global option
call whizard%option ("model", "QED")
call whizard%init ()

! Define a process, set some variables
call whizard%command ("process mupair = e1, E1 => e2, E2")
call whizard%set_var ("sqrts", 100._real64)
call whizard%set_var ("seed", 0)

! Generate matrix-element code, integrate and retrieve result
call whizard%command ("integrate (mupair)")
call whizard%get_integration_result ("mupair", integral, error)

! Print result
print 1, "cross section =", integral / 1000, "pb"
print 1, "error =", error / 1000, "pb"

1 format (2x,A,1x,F5.1,1x,A)
2 format (2x,A,1x,L1)

! Settings for event generation
call whizard%set_var ("$sample", "mupair_events")
call whizard%set_var ("n_events", 2)



14.4. WHIZARD AS A LIBRARY 229

! Create an event-sample object and generate events
call whizard%new_sample ("mupair", sample)
call sample%open (it_begin, it_end)
do i = it_begin, it_end

call sample%next_event ()
call sample%get_event_index (idx)
call sample%get_weight (weight)
call sample%get_sqme (sqme)
print "(A,I0)", "Event #", idx
print 3, "sqme =", sqme
print 3, "weight =", weight

3 format (2x,A,1x,ES10.3)
end do

! Finalize the event-sample object
call sample%close ()

! Finalize the WHIZARD object
call whizard%final ()

end program main

The API provides the following commands as Fortran subroutines. Most of them are used in
the example above.

Module

There is only one module from the WHIZARD package which must be used by the user program:

use api

You may use any other WHIZARD module in our program, all module files are part of the
installation. Be aware, however, that all other modules are considered internal. Unless explictly
mentioned in this manual, interfaces are not documented here and may change between versions.

Changes to the api module, if any, will be documented here.

Master object

All functionality is accessed via a master API object which should be declared as follows:

type(whizard_api_t) :: whizard

There should be only one master object.

Pre-Initialization options

Before initializing the API object, it is possible to provide options. The available options mirror
the command-line options of the stand-alone program, cf. Sec. 14.1.



230 CHAPTER 14. USER INTERFACES FOR WHIZARD

call whizard%option (key, value )

All keys and values are Fortran character strings. The following options are available. For all
options, default values exist as listed in Sec. 14.1.

model Model that should be preloaded.

library Name of the library where matrix-element code should end up.

logfile Name of the logfile that WHIZARD will write.

job_id Name of the current job; can be used for writing unique output files.

unpack Comma-separated list of files to be uncompressed and unpacked (via tar and gzip)
when init is called on the API object.

pack Comma-separated list of files or directories to be packed and compressed when final is
called.

rebuild All of the following:

rebuild_library Force rebuilding a matrix-element code library, overwriting results from a
previous run.

recompile Force recompiling the matrix-element code library.

rebuild_grids Force reproducing integration passes.

rebuild_events Force regenerating event samples.

Initialization and finalization

After options have been set, the system is initialized via

call whizard%init

Once initialized, WHIZARD can execute commands as listed below. When this is complete, clean
up by

call whizard%final

Variables and values

In the API, WHIZARD requires numeric data types according to the IEEE standard, which is
available to Fortran in the iso_fortran_env intrinsic module. Strictly speaking, integer data
must have type int32, and real data must have type real64.

For most systems and default compiler settings, it is not really necessary to use the ISO
module and its data types. Integers map to default Fortran integer, and real values map to
default Fortran double precision.

As an alternative, you may use the WHIZARD internal kinds module which declares a
real(default) type



14.4. WHIZARD AS A LIBRARY 231

use kinds, only: default

On most systems, this will be equivalent to real(real64).
To set a SINDARIN variable, use the function that corresponds to the data type:

call whizard%set_var (name, value )

The name is a Fortran string which has to be equal to the name of the corresponding SINDARIN
variable, including any prefix character ($ or ?). The value depends on the type of the SINDARIN
variable.

To retrieve the current value of a variable:

call whizard%get_var (name, var )

The variable must be declared as integer, real(real64), logical, or character(:), allocatable.
This depends on the SINDARIN variable type.

Commands

Any SINDARIN command can be called via

call whizard%command (command )

command is a Fortran character string, as it would appear in a SINDARIN script.
This includes, in particular, the important commands process, integrate, and simulate.

You may also set variables that way.

Retrieving cross-section results

This call returns the results (integration and error) from a preceding integration run for the
process process-name:

call whizard%get_integration_result ("process-name ", integral, error)

There is also an optional argument known of type logical which is set if the integration run
was successful, so integral and error are meaningful.

Event-sample object

A simulate command will produce an event sample. With the appropriate settings, the sample
will be written to file in any chosen format, to be post-processed when it is complete.

However, a possible purpose of using the WHIZARD API is to process events one-by-one when
they are generated. To this end, there is an event-sample handle, which can be declared in this
way:

type(simulation_api_t) :: sample

An instance sample of this type is created by this factory method:



232 CHAPTER 14. USER INTERFACES FOR WHIZARD

call whizard%new_sample ("process-name(s) ", sample)

The command accepts a comma-separated list of process names which should be included in the
event sample.

To start event generation for this sample, call

call sample%open (it_begin, it_end )

where the two output parameters (integers) it_begin and it_end provide the bounds for an
event loop in the calling program. (In serial mode, the bounds are equal to 1 and n_events,
respectively, but in an MPI parallel environment, they depend on the computing node.)

This command generates a new event, to be enclosed within an event loop:

call sample%next_event

The event will be available by format-specific access methods, see below.
This command closes and deletes an event sample after the event loop has completed:

call sample%close

Retrieving event data

After a call to next_event, the sample object can be queried for specific event data.

call sample%get_event_index (value )

returns the index (integer counter) of the current event.

call sample%get_process_index (value )
call sample%get_process_id (value )

returns the numeric (string) ID of the hard process, respectively, that was generated in this event.
The variables must be declared as integer and character(:), allocatable, respectively.

The following methods return real(real64) values.

call sample%get_sqrts (value )

returns the
√
s value of this event.

call sample%get_fac_scale (value )

returns the factorization scale of this event (value).

call sample%get_alpha_s (value )

returns the value of the strong coupling for this event (value).

call sample%get_sqme (value )



14.4. WHIZARD AS A LIBRARY 233

returns the value of the squared matrix element (summed over final states and averaged over
initial states).

call sample%get_weight (value )

returns the Monte-Carlo weight of this event.
Access to the event record depends on the event format that has been selected. The format

must allow access to individual events via data structures in memory. There are three cases
where such structures exist and are accessible:

1. If the event format uses a COMMON block, event data is accessible via this COMMON
block, which must be declared in the calling routine.

2. The HepMC event format communicates via a C++ object. In Fortran, there is a wrapper
which has to be declared as

type(hepmc_event_t) :: hepmc_event

To activate this handle, the next_event call must reference it as an argument:

call sample%next_event (hepmc_event)

The WHIZARD module hepmc_interface contains procedures which can work with this
record. A pointer to the actual C++ object can be retrieved as a Fortran c_ptr object as
follows:

type(c_ptr) :: hepmc_ptr
...
hepmc_ptr = hepmc_event_get_c_ptr (hepmc_event)

3. The LCIO event format also communicates via a C++ object. The access methods are
entirely analogous, replacing hepmc by lcio in all calls and names.

14.4.2 C main program

To link a C main program with the WHIZARD library, the following steps must be performed:

1. Configure, build and install WHIZARD as normal.

2. Include code for accessing WHIZARD functionality in the user program. The code should
initialize WHIZARD, execute the intended commands, and finalize. For an example, see
below.

3. Compile the user program with the option that finds the WHIZARD C/C++ interface
header file. For instance, if WHIZARD has been installed in whizard-path, this should read

-Iwhizard-path/include



234 CHAPTER 14. USER INTERFACES FOR WHIZARD

4. Link the program with the necessary libraries (or compile-link in a single step). If WHIZARD
has been installed in a system path, this should work automatically. If WHIZARD has been
installed in a non-default whizard-path, these are the options:

-Lwhizard-path/lib -lwhizard -lwhizard_prebuilt -lomega -ltirpc

On some systems, you may have to replace lib by lib64.

If WHIZARD has been compiled with a non-default Fortran compiler, you may have to
explicitly link the appropriate Fortran run-time libraries.

The tirpc library is used by the StdHEP subsystem for xdr functionality. This library
should be present on the host system. Cf. the corresponding remarks in the section for a
Fortran main program.

If additional libraries such as HepMC are enabled in the WHIZARD configuration, it may be
necessary to provide extra options for linking those.

5. Run the program. If necessary, provide the path to the installed shared libraries. For
instance, if WHIZARD has been installed in whizard-path, this should read

export LD_LIBRARY_PATH="whizard-path/lib:$LD_LIBRARY_PATH"

On some systems, you may have to replace lib by lib64, as above.

The WHIZARD subsystem will work with input and output files in the current working
directory, unless asked to do otherwise.

Below is an example program, adapted from WHIZARD’s internal unit-test suite. The user program
controls the WHIZARD workflow in the same way as a SINDARIN script would do. The commands
are a mixture of SINDARIN command calls and functionality for passing information between
the WHIZARD subsystem and the host program. In particular, the program can process generated
events one-by-one.

#include <stdio.h>
#include "whizard.h"

int main( int argc, char* argv[] )
{

/* WHIZARD and event-sample objects */
void* wh;
void* sample;

/* Local variables */
double integral, error;
double sqme, weight;
int idx;
int it, it_begin, it_end;

/* Initialize WHIZARD, setting some global option */
whizard_create( &wh );
whizard_option( &wh, "model", "QED" );
whizard_init( &wh );



14.4. WHIZARD AS A LIBRARY 235

/* Define a process, set some variables */
whizard_command( &wh, "process mupair = e1, E1 => e2, E2" );
whizard_set_double( &wh, "sqrts", 10. );
whizard_set_int( &wh, "seed", 0 );

/* Generate matrix-element code, integrate and retrieve result */
whizard_command( &wh, "integrate (mupair)" );

/* Print result */
whizard_get_integration_result( &wh, "mupair", &integral, &error);
printf( " cross section = %5.1f pb\n", integral / 1000. );
printf( " error = %5.1f pb\n", error / 1000. );

/* Settings for event generation */
whizard_set_char( &wh, "$sample", "mupair_events" );
whizard_set_int( &wh, "n_events", 2 );

/* Create an event-sample object and generate events */
whizard_new_sample( &wh, "mupair", &sample );
whizard_sample_open( &sample, &it_begin, &it_end );
for (it=it_begin; it<=it_end; it++) {

whizard_sample_next_event( &sample );
whizard_sample_get_event_index( &sample, &idx );
whizard_sample_get_weight( &sample, &weight );
whizard_sample_get_sqme( &sample, &sqme );
printf( "Event #%d\n", idx );
printf( " sqme = %10.3e\n", sqme );
printf( " weight = %10.3e\n", weight );

}

/* Finalize the event-sample object */
whizard_sample_close( &sample );

/* Finalize the WHIZARD object */
whizard_final( &wh );

}

Header

The necessary declarations are imported by the directive

#include "whizard.h"

Master object

All functionality is accessed via a master API object which should be declared as a void*
pointer:

void* wh;



236 CHAPTER 14. USER INTERFACES FOR WHIZARD

The object must be explicitly created:

whizard_create( &wh );

There should be only one master object.

Pre-Initialization options

Before initializing the API object, it is possible to provide options. The available options mirror
the command-line options of the stand-alone program, cf. Sec. 14.1.

whizard_option( &wh, key, value );

All keys and values are null-terminated C character strings. The available options are listed
above in the Fortran interface documentation.

Initialization and finalization

After options have been set, the system is initialized via

whizard_init( &wh );

Once initialized, WHIZARD can execute commands as listed below. When this is complete, clean
up by

whizard_final( &wh );

Variables and values

In the API, WHIZARD requires numeric data types according to the IEEE standard. Integers
map to C int, and real values map to C double. Logical values map to C int interpreted as
bool, and string values map to null-terminated C strings.

To set a SINDARIN variable of appropriate type:

whizard_set_int ( &wh, name, value );
whizard_set_double ( &wh, name, value );
whizard_set_bool ( &wh, name, value );
whizard_set_char ( &wh, name, value );

name is declared const char*. It must match the corresponding SINDARIN variable name,
including any prefix character ($ or ?). value is declared const double/int/char*.

To retrieve the current value of a variable:

whizard_get_int ( &wh, name, &var );
whizard_get_double ( &wh, name, &var );
whizard_get_bool ( &wh, name, &var );
whizard_get_char ( &wh, name, var, len );

Here, var is a C variable of appropriate type. In the character case, var is a C character array
declared as var [len]. The functions return zero if the SINDARIN variable has a known value.



14.4. WHIZARD AS A LIBRARY 237

Commands

Any SINDARIN command can be called via

whizard_command( &wh, command );

command is a null-terminated C string that contains commands as they would appear in a
SINDARIN script.

This includes, in particular, the important commands process, integrate, and simulate.
You may also set variables that way.

Retrieving cross-section results

This call returns the results (integration and error) from a preceding integration run for the
process process-name:

whizard_get_integration_result( &wh, "process-name ", &integral, &error )

integral and error are C variables of type double. The function returns zero if the integration
run was successful, so integral and error are meaningful.

Event-sample object

A simulate command will produce an event sample. With the appropriate settings, the sample
will be written to file in any chosen format, to be post-processed when it is complete.

However, a possible purpose of using the WHIZARD API is to process events one-by-one when
they are generated. To this end, there is an event-sample handle, which can be declared in this
way:

void* sample ;

An instance sample of this type is created by this factory method:

whizard_new_sample( &wh, "process-name(s) ", &sample );

The command accepts a comma-separated list of process names which should be included in the
event sample.

To start event generation for this sample, call

whizard_sample_open( &sample, &it_begin, &it_end );

where the two output variables (int) it_begin and it_end provide the bounds for an event loop
in the calling program. (In serial mode, the bounds are equal to 1 and n_events, respectively,
but in an MPI parallel environment, they depend on the computing node.)

This command generates a new event, to be enclosed within an event loop:

whizard_sample_next_event( &sample );

The event will be available by format-specific access methods, see below.
This command closes and deletes an event sample after the event loop has completed:

whizard_sample_close( &sample );



238 CHAPTER 14. USER INTERFACES FOR WHIZARD

Retrieving event data

After a call to whizard_sample_next_event, the sample object can be queried for specific event
data.

whizard_sample_get_event_index( &sample, &value );
whizard_sample_get_process_index( &sample, &value );
whizard_sample_get_process_id( &sample, value, len );
whizard_sample_get_sqrts( &sample, &value );
whizard_sample_get_fac_scale( &sample, &value );
whizard_sample_get_alpha_s( &sample, &value );
whizard_sample_get_sqme( &sample, &value );
whizard_sample_get_weight( &sample, &value );

where the value is a variable of appropriate type (see above).
Event data are stored in a format-specific way. This may be a COMMON block, or a HepMC

or LCIO event record. In the latter cases, cf. the C++ API below for access information.

14.4.3 C++ main program

To link a C++ main program with the WHIZARD library, the following steps must be performed:

1. Configure, build and install WHIZARD as normal.

2. Include code for accessing WHIZARD functionality in the user program. The code should
initialize WHIZARD, execute the intended commands, and finalize. For an example, see
below.

3. Compile the user program with the option that finds the WHIZARD C/C++ interface
header file. For instance, if WHIZARD has been installed in whizard-path, this should read

-Iwhizard-path/include

4. Link the program with the necessary libraries (or compile-link in a single step). If WHIZARD
has been installed in a system path, this should work automatically. If WHIZARD has been
installed in a non-default whizard-path, these are the options:

-Lwhizard-path/lib -lwhizard -lwhizard_prebuilt -lomega -ltirpc

On some systems, you may have to replace lib by lib64.

If WHIZARD has been compiled with a non-default Fortran compiler, you may have to
explicitly link the appropriate Fortran run-time libraries.

The tirpc library is used by the StdHEP subsystem for xdr functionality. This library
should be present on the host system.

If additional libraries such as HepMC are enabled in the WHIZARD configuration, it may be
necessary to provide extra options for linking those.



14.4. WHIZARD AS A LIBRARY 239

5. Run the program. If necessary, provide the path to the installed shared libraries. For
instance, if WHIZARD has been installed in whizard-path, this should read

export LD_LIBRARY_PATH="whizard-path/lib:$LD_LIBRARY_PATH"

On some systems, you may have to replace lib by lib64, as above.

The WHIZARD subsystem will work with input and output files in the current working
directory, unless asked to do otherwise.

Below is an example program, adapted from WHIZARD’s internal unit-test suite. The user program
controls the WHIZARD workflow in the same way as a SINDARIN script would do. The commands
are a mixture of SINDARIN command calls and functionality for passing information between
the WHIZARD subsystem and the host program. In particular, the program can process generated
events one-by-one.

#include <cstdio>
#include <string>
#include "whizard.h"

int main( int argc, char* argv[] )
{

// WHIZARD and event-sample objects
Whizard* whizard;
WhizardSample* sample;

// Local variables
double integral, error;
double sqme, weight;
int idx;
int it, it_begin, it_end;

// Initialize WHIZARD, setting some global option
whizard = new Whizard();
whizard->option( "model", "QED" );
whizard->init();

// Define a process, set some variables
whizard->command( "process mupair = e1, E1 => e2, E2" );
whizard->set_double( "sqrts", 10. );
whizard->set_int( "seed", 0 );

// Generate matrix-element code, integrate and retrieve result
whizard->command( "integrate (mupair)" );

// Print result
whizard->get_integration_result( "mupair", &integral, &error );
printf( " cross section = %5.1f pb\n", integral / 1000. );
printf( " error = %5.1f pb\n", error / 1000. );

// Settings for event generation
whizard->set_string( "$sample", "mupair_events" );
whizard->set_int( "n_events", 2 );



240 CHAPTER 14. USER INTERFACES FOR WHIZARD

// Create an event-sample object and generate events
sample = whizard->new_sample( "mupair" );
sample->open( &it_begin, &it_end );
for (it=it_begin; it<=it_end; it++) {

sample->next_event();
idx = sample->get_event_index();
weight = sample->get_weight();
sqme = sample->get_sqme();
printf( "Event #%d\n", idx );
printf( " sqme = %10.3e\n", sqme );
printf( " weight = %10.3e\n", weight );

}

// Finalize the event-sample object
sample->close();
delete sample;

// Finalize the WHIZARD object
delete whizard;

}

Header

The necessary declarations are imported by the directive

#include "whizard.h"

Master object

All functionality is accessed via a master API object which should be declared as follows:

Whizard* whizard;

The constructor takes no arguments:

whizard = new Whizard();

There should be only one master object.

Pre-Initialization options

Before initializing the API object, it is possible to provide options. The available options mirror
the command-line options of the stand-alone program, cf. Sec. 14.1.

whizard->option( key, value );

All keys and values are C++ strings. The available options are listed above in the Fortran
interface documentation.



14.4. WHIZARD AS A LIBRARY 241

Initialization and finalization

After options have been set, the system is initialized via

whizard->init();

Once initialized, WHIZARD can execute commands as listed below. When all is complete, delete
the WHIZARD object. This will call the destructor that correctly finalizes the WHIZARD workflow.

Variables and values

In the API, WHIZARD requires numeric data types according to the IEEE standard. Integers
map to C int, and real values map to C double. Logical values map to C int interpreted as
bool, and string values map to C++ string.

To set a SINDARIN variable of appropriate type:

whizard->set_int ( name, value );
whizard->set_double ( name, value );
whizard->set_bool ( name, value );
whizard->set_string ( name, value );

name is a C++ string value. It must match the corresponding SINDARIN variable name, including
any prefix character ($ or ?). value is a double/int/string, respectively.

To retrieve the current value of a variable:

whizard->get_int ( name, &var );
whizard->get_double ( name, &var );
whizard->get_bool ( name, &var );
whizard->get_string ( name, &var );

Here, var is a C variable of appropriate type. The functions return zero if the SINDARIN variable
has a known value.

Commands

Any SINDARIN command can be called via

whizard->command( command );

command is a C++ string value that contains commands as they would appear in a SINDARIN
script.

This includes, in particular, the important commands process, integrate, and simulate.
You may also set variables that way.



242 CHAPTER 14. USER INTERFACES FOR WHIZARD

Retrieving cross-section results

This call returns the results (integration and error) from a preceding integration run for the
process process-name:

whizard->get_integration_result( "process-name ", &integral, &error );

integral and error are variables of type double. The function returns zero if the integration run
was successful, so integral and error are meaningful.

Event-sample object

A simulate command will produce an event sample. With the appropriate settings, the sample
will be written to file in any chosen format, to be post-processed when it is complete.

However, a possible purpose of using the WHIZARD API is to process events one-by-one when
they are generated. To this end, there is an event-sample handle, which can be declared in this
way:

WhizardSample* sample;

An instance sample of this type is created by this factory method:

sample = whizard->new_sample( "process-name(s) " );

The command accepts a comma-separated list of process names which should be included in the
event sample.

To start event generation for this sample, call

sample->open( &it_begin, &it_end );

where the two output variables (int) it_begin and it_end provide the bounds for an event loop
in the calling program. (In serial mode, the bounds are equal to 1 and n_events, respectively,
but in an MPI parallel environment, they depend on the computing node.)

This command generates a new event, to be enclosed within an event loop:

sample->next_event();

The event will be available by format-specific access methods, see below.
This command closes and deletes an event sample after the event loop has completed:

sample->close();



14.4. WHIZARD AS A LIBRARY 243

Retrieving event data

After a call to sample->next_event, the sample object can be queried for specific event data.

value = sample->get_event_index();
value = sample->get_process_index();
value = sample->get_process_id();
value = sample->get_sqrts();
value = sample->get_fac_scale();
value = sample->get_alpha_s();
value = sample->get_sqme();
value = sample->get_weight();

where the value is a variable of appropriate type (see above).
Event data are stored in a format-specific way. This may be a HepMC or LCIO C++ event

record.
For interfacing with the HepMC event record, the appropriate declarations must be in place,

e.g.,

#include "HepMC/GenEvent.h"
using namespace HepMC;

An event-record object must be declared,

GenEvent* evt;

and the WHIZARD event call must take the event as an argument

sample->next_event ( &evt );

This will create a new evt object. Then, the HepMC event record can be accessed via its own
methods. After an event has been processed, the event record should be deleted

delete evt;

Analogously, for interfacing with the LCIO event record, the appropriate declarations must
be in place, e.g.,

#include "lcio.h"
#include "IMPL/LCEventImpl.h"
using namespace lcio;

An event-record object must be declared,

LCEvent* evt;

and the WHIZARD event call must take the event as an argument

sample->next_event ( &evt );

This will create a new evt object. Then, the LCIO event record can be accessed via its own
methods. After an event has been processed, the event record should be deleted

delete evt;



244 CHAPTER 14. USER INTERFACES FOR WHIZARD

14.4.4 Python main program

To create a Python executable, WHIZARD provides a Cython interface that uses C++ bindings to
link a dynamic library which can then be loaded as a module via Python. Note that WHIZARD’s
Cython/Python interface only works with Pythonv3. Also make sure that you do not mix
different Python versions when linking external programs which also provide Python interfaces
like HepMC or LCIO.

To link a Python main program with the WHIZARD library, the following steps must be
performed:

1. Configure, build and install WHIZARD as normal.

2. Include code for accessing WHIZARD functionality in the user program. The code should
initialize WHIZARD, execute the intended commands, and finalize. For an example, see
below.

3. Run Python on the user program. Make sure that the operating system finds the WHIZARD
Python and library path. If WHIZARD has been installed in a non-default whizard-path,
these are the options:

export PYTHONPATH=whizard-path/lib/python/site-packages/:$PYTHONPATH

If necessary, provide the path to the installed shared libraries. For instance, if WHIZARD
has been installed in whizard-path, this should read

export LD_LIBRARY_PATH="whizard-path/lib:$LD_LIBRARY_PATH"

On some systems, you may have to replace lib by lib64, as above.

The WHIZARD subsystem will work with input and output files in the current working
directory, unless asked to do otherwise.

4. The tirpc library is used by the StdHEP subsystem for xdr functionality. This library
should be present on the host system.

5. Run the program.

Below is an example program, similar to WHIZARD’s internal unit-test suite for different external
programming languages. The user program controls the WHIZARD workflow in the same way as
a SINDARIN script would do. The commands are a mixture of SINDARIN command calls and
functionality for passing information between the WHIZARD subsystem and the host program. In
particular, the program can process generated events one-by-one.

import whizard

wz = whizard.Whizard()

wz.option("logfile", "whizard_1_py.log")
wz.option("job_id", "whizard_1_py_ID")
wz.option("library", "whizard_1_py_1_lib")
wz.option("model", "QED")



14.4. WHIZARD AS A LIBRARY 245

wz.init()

wz.set_double("sqrts", 100)
wz.set_int("n_events", 3)
wz.set_bool("?unweighted", True)
wz.set_string("$sample", "foobar")

wz.set_int("seed", 0)

wz.command("process whizard_1_py_1_p = e1, E1 => e2, E2")
wz.command("iterations = 1:100")

integral, error = wz.get_integration_result("whizard_1_py_1_p")
print(integral, error)

wz.command("integrate (whizard_1_py_1_p)")
sqrts = wz.get_double("sqrts")
print(f"sqrts = {sqrts:5.1f} GeV")
print(f"sigma = integral:5.1f} pb")
print(f"error {error:5.1f} pb")

sample = wz.new_sample("whizard_1_py_p1, whizard_1_py_p2, whizard_1_py_p3")
it_begin, it_end = sample.open()
for it in range(it_begin, it_end + 1):

sample.next_event()
idx = sample.get_event_index()
i_proc = sample.get_process_index()
proc_id = sample.get_process_id()
f_scale = sample.get_fac_scale()
alpha_s = sample.get_alpha_s()
weight = sample.get_weight()
sqme = sample.get_sqme()
print(f"Event #{idx}")
print(f" process #{i_proc}")
print(f" proc_id = {proc_id}")
print(f" f_scale = {f_scale:10.3e}")
print(f" alpha_s = {f_scale:10.3e}")
print(f" sqme = {f_scale:10.3e}")
print(f" weight = {f_scale:10.3e}")

sample.close()

del(wz)

Python module import

There are no necessary headers here as all of this information has been automatically taken care
by the Cython interface layer. The WHIZARD module needs to be imported by Python

import whizard



246 CHAPTER 14. USER INTERFACES FOR WHIZARD

Master object

All functionality is accessed via a master API object which should be declared as follows:

wz = whizard.Whizard()

The constructor takes no arguments.There should be only one master object.

Pre-Initialization options

Before initializing the API object, it is possible to provide options. The available options mirror
the command-line options of the stand-alone program, cf. Sec. 14.1.

wz.option( key, value );

All keys and values are Python strings. The available options are listed above in the Fortran
interface documentation.

Initialization and finalization

After options have been set, the system is initialized via

wz.init()

Once initialized, WHIZARD can execute commands as listed below. When all is complete, delete
the WHIZARD object. This will call the destructor that correctly finalizes the WHIZARD workflow.

Variables and values

In the API, WHIZARD requires numeric data types according to the IEEE standard. Integers
map to Python int, and real values map to Python double. Logical values map to True and
False, and string values map to Python strings.

To set a SINDARIN variable of appropriate type:

wz.set_int ( name, value );
wz.set_double ( name, value );
wz.set_bool ( name, value );
wz.set_string ( name, value );

name is a Python string value. It must match the corresponding SINDARIN variable name,
including any prefix character ($ or ?). value is a double/int/string, respectively.

To retrieve the current value of a variable:

wz.get_int ( name, var );
wz.get_double ( name, var );
wz.get_bool ( name, var );
wz.get_string ( name, var );

Here, var is a Python variable of appropriate type. The functions return zero if the SINDARIN
variable has a known value.



14.4. WHIZARD AS A LIBRARY 247

Commands

Any SINDARIN command can be called via

wz.command( command );

command is a Python string value that contains commands as they would appear in a SINDARIN
script.

This includes, in particular, the important commands process, integrate, and simulate.
You may also set variables that way.

Retrieving cross-section results

This call returns the results (integration and error) from a preceding integration run for the
process process-name:

wz.get_integration_result( "process-name ", integral, error );

integral and error are variables of type double. The function returns zero if the integration run
was successful, so integral and error are meaningful.

Event-sample object

A simulate command will produce an event sample. With the appropriate settings, the sample
will be written to file in any chosen format, to be post-processed when it is complete.

However, a possible purpose of using the WHIZARD API is to process events one-by-one when
they are generated. To this end, there is an event-sample handle, which can be declared in this
way:

WhizardSample* sample;

An instance sample of this type is created by this factory method:

sample = wz.new_sample( "process-name(s) " );

The command accepts a comma-separated list of process names which should be included in the
event sample.

To start event generation for this sample, call

it_begin, it_end = wz.sample_open()

where the two output variables (int) it_begin and it_end provide the bounds for an event loop
in the calling program. (In serial mode, the bounds are equal to 1 and n_events, respectively,
but in an MPI parallel environment, they depend on the computing node.)

This command generates a new event, to be enclosed within an event loop:

sample.next_event();

The event will be available by format-specific access methods, see below.
This command closes and deletes an event sample after the event loop has completed:

sample.close();



248 CHAPTER 14. USER INTERFACES FOR WHIZARD

Retrieving event data

After a call to sample.next_event, the sample object can be queried for specific event data.

value = sample.get_event_index();
value = sample.get_process_index();
value = sample.get_process_id();
value = sample.get_sqrts();
value = sample.get_fac_scale();
value = sample.get_alpha_s();
value = sample.get_sqme();
value = sample.get_weight();

where the value is a variable of appropriate type (see above).
Event data are stored in a format-specific way. This may be a HepMC or LCIO C++ event

record, or some formats supported by WHIZARD intrinsically like LHEF etc.



Chapter 15

Examples

In this chapter we discuss the running and steering of WHIZARD with the help of several examples.
These examples can be found in the share/examples directory of your installation. All of these
examples are also shown on the WHIZARD Wiki page: https://whizard.hepforge.org/trac/
wiki.

15.1 Z lineshape at LEP I
By this example, we demonstrate how a scan over collision energies works, using as example
the measurement of the Z lineshape at LEP I in 1989. The SINDARIN script for this example,
Z-lineshape.sin can be found in the share/examples folder of the WHIZARD installation.

We first use the Standard model as physics model:
model = SM

Aliases for electron, muon and their antiparticles as leptons and those including the photon as
particles in general are introduced:

alias lep = e1:E1:e2:E2
alias prt = lep:A

Next, the two processes are defined, e+e− → µ+µ−, and the same with an explicit QED photon:
e+e− → µ+µ−γ,

process bornproc = e1, E1 => e2, E2
process rc = e1, E1 => e2, E2, A
compile

and the processes are compiled. Now, we define some very loose cuts to avoid singular regions in
phase space, name an infrared cutoff of 100 MeV for all particles, a cut on the angular separation
from the beam axis and a di-particle invariant mass cut which regularizes collinear singularities:

cuts = all E >= 100 MeV [prt]
and all abs (cos(Theta)) <= 0.99 [prt]
and all M2 >= (1 GeV)^2 [prt, prt]

For the graphical analysis, we give a description and labels for the x- and y-axis in LATEX syntax:

249

https://whizard.hepforge.org/trac/wiki
https://whizard.hepforge.org/trac/wiki


250 CHAPTER 15. EXAMPLES

$description = "A WHIZARD Example"
$x_label = "$\sqrt{s}$/GeV"
$y_label = "$\sigma(s)$/pb"

We define two plots for the lineshape of the e+e− → µ+µ− process between 88 and 95 GeV,
$title = "The Z Lineshape in $e^+e^-\to\mu^+\mu^-$"
plot lineshape_born { x_min = 88 GeV x_max = 95 GeV }

and the same for the radiative process with an additional photon:
$title = "The Z Lineshape in $e^+e^-\to\mu^+\mu^-\gamma$"
plot lineshape_rc { x_min = 88 GeV x_max = 95 GeV }

The next part of the SINDARIN file actually performs the scan:
scan sqrts = ((88.0 GeV => 90.0 GeV /+ 0.5 GeV),

(90.1 GeV => 91.9 GeV /+ 0.1 GeV),
(92.0 GeV => 95.0 GeV /+ 0.5 GeV)) {

beams = e1, E1
integrate (bornproc) { iterations = 2:1000:"gw", 1:2000 }
record lineshape_born (sqrts, integral (bornproc) / 1000)
integrate (rc) { iterations = 5:3000:"gw", 2:5000 }
record lineshape_rc (sqrts, integral (rc) / 1000)

}

So from 88 to 90 GeV, we go in 0.5 GeV steps, then from 90 to 92 GeV in tenth of GeV, and
then up to 95 GeV again in half a GeV steps. The partonic beam definition is redundant. Then,
the born process is integrated, using a certain specification of calls with adaptation of grids
and weights, as well as a final pass. The lineshape of the Born process is defined as a record
statement, generating tuples of

√
s and the Born cross section (converted from femtobarn to

picobarn). The same happens for the radiative 2 → 3 process with a bit more iterations because
of the complexity, and the definition of the corresponding lineshape record.

If you run the SINDARIN script, you will find an output like:

| Process library ’default_lib’: loading
| Process library ’default_lib’: ... success.
$description = "A WHIZARD Example"
$x_label = "$\sqrt{s}$/GeV"
$y_label = "$\sigma(s)$/pb"
$title = "The Z Lineshape in $e^+e^-\to\mu^+\mu^-$"
x_min = 8.800000000000E+01
x_max = 9.500000000000E+01
$title = "The Z Lineshape in $e^+e^-\to\mu^+\mu^-\gamma$"
x_min = 8.800000000000E+01
x_max = 9.500000000000E+01
sqrts = 8.800000000000E+01
| RNG: Initializing TAO random-number generator
| RNG: Setting seed for random-number generator to 10713
| Initializing integration for process bornproc:
| ------------------------------------------------------------------------
| Process [scattering]: ’bornproc’
| Library name = ’default_lib’
| Process index = 1
| Process components:
| 1: ’bornproc_i1’: e-, e+ => mu-, mu+ [omega]
| ------------------------------------------------------------------------



15.1. Z LINESHAPE AT LEP I 251

1 The Z Lineshape in e+e− → µ+µ−

A WHIZARD Example

0

500

1000

1500

2000

88 90 92 94√
s/GeV

σ(s)/pb

1 The Z Lineshape in e+e− → µ+µ−γ

A WHIZARD Example

0

100

200

300

400

88 90 92 94√
s/GeV

σ(s)/pb

Figure 15.1: Z lineshape in the dimuon final state (left), and with an additional photon (right)

| Beam structure: e-, e+
| Beam data (collision):
| e- (mass = 5.1099700E-04 GeV)
| e+ (mass = 5.1099700E-04 GeV)
| sqrts = 8.800000000000E+01 GeV
| Phase space: generating configuration ...
| Phase space: ... success.
| Phase space: writing configuration file ’bornproc_i1.phs’
| Phase space: 1 channels, 2 dimensions
| Phase space: found 1 channel, collected in 1 grove.
| Phase space: Using 1 equivalence between channels.
| Phase space: wood
| Applying user-defined cuts.
| OpenMP: Using 8 threads
| Starting integration for process ’bornproc’
| Integrate: iterations = 2:1000:"gw", 1:2000
| Integrator: 1 chains, 1 channels, 2 dimensions
| Integrator: Using VAMP channel equivalences
| Integrator: 1000 initial calls, 20 bins, stratified = T
| Integrator: VAMP
|=============================================================================|
| It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] |
|=============================================================================|

1 800 2.5881432E+05 1.85E+03 0.72 0.20* 48.97
2 800 2.6368495E+05 9.25E+02 0.35 0.10* 28.32

|-----------------------------------------------------------------------------|
2 1600 2.6271122E+05 8.28E+02 0.32 0.13 28.32 5.54 2

|-----------------------------------------------------------------------------|
3 1988 2.6313791E+05 5.38E+02 0.20 0.09* 35.09

|-----------------------------------------------------------------------------|
3 1988 2.6313791E+05 5.38E+02 0.20 0.09 35.09

|=============================================================================|
| Time estimate for generating 10000 events: 0d:00h:00m:05s
[.......]

and then the integrations for the other energy points of the scan will follow, and finally the
same is done for the radiative process as well. At the end of the SINDARIN script we compile
the graphical WHIZARD analysis and direct the data for the plots into the file Z-lineshape.dat:

compile_analysis { $out_file = "Z-lineshape.dat" }



252 CHAPTER 15. EXAMPLES

In this case there is no event generation, but simply the cross section values for the scan are
dumped into a data file:

$out_file = "Z-lineshape.dat"
| Opening file ’Z-lineshape.dat’ for output
| Writing analysis data to file ’Z-lineshape.dat’
| Closing file ’Z-lineshape.dat’ for output
| Compiling analysis results display in ’Z-lineshape.tex’

Fig. 15.1 shows the graphical WHIZARD output of the Z lineshape in the dimuon final state from
the scan on the left, and the same for the radiative process with an additional photon on the
right.

15.2 W pairs at LEP II
This example which can be found as file LEP_cc10.sin in the share/examples directory, shows
W pair production in the semileptonic mode at LEP II with its final energy of 209 GeV. Because
there are ten contributing Feynman diagrams, the process has been dubbed CC10: charged
current process with 10 diagrams. We work within the Standard Model:

model = SM

Then the process is defined, where no flavor summation is done for the jets here:
process cc10 = e1, E1 => e2, N2, u, D

A compilation statement is optional, and then we set the muon mass to zero:
mmu = 0

The final LEP center-of-momentum energy of 209 GeV is set:
sqrts = 209 GeV

Then, we integrate the process:
integrate (cc10) { iterations = 12:20000 }

Running the SINDARIN file up to here, results in the output:

| Process library ’default_lib’: loading
| Process library ’default_lib’: ... success.
SM.mmu = 0.000000000000E+00
sqrts = 2.090000000000E+02
| RNG: Initializing TAO random-number generator
| RNG: Setting seed for random-number generator to 31255
| Initializing integration for process cc10:
| ------------------------------------------------------------------------
| Process [scattering]: ’cc10’
| Library name = ’default_lib’
| Process index = 1
| Process components:
| 1: ’cc10_i1’: e-, e+ => mu-, numubar, u, dbar [omega]
| ------------------------------------------------------------------------
| Beam structure: [any particles]
| Beam data (collision):
| e- (mass = 5.1099700E-04 GeV)
| e+ (mass = 5.1099700E-04 GeV)



15.2. W PAIRS AT LEP II 253

| sqrts = 2.090000000000E+02 GeV
| Phase space: generating configuration ...
| Phase space: ... success.
| Phase space: writing configuration file ’cc10_i1.phs’
| Phase space: 25 channels, 8 dimensions
| Phase space: found 25 channels, collected in 7 groves.
| Phase space: Using 25 equivalences between channels.
| Phase space: wood
Warning: No cuts have been defined.
| OpenMP: Using 8 threads
| Starting integration for process ’cc10’
| Integrate: iterations = 12:20000
| Integrator: 7 chains, 25 channels, 8 dimensions
| Integrator: Using VAMP channel equivalences
| Integrator: 20000 initial calls, 20 bins, stratified = T
| Integrator: VAMP
|=============================================================================|
| It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] |
|=============================================================================|

1 19975 6.4714908E+02 2.17E+01 3.36 4.75* 2.33
2 19975 7.3251876E+02 2.45E+01 3.34 4.72* 2.17
3 19975 6.7746497E+02 2.39E+01 3.52 4.98 1.77
4 19975 7.2075198E+02 2.41E+01 3.34 4.72* 1.76
5 19975 6.5976152E+02 2.26E+01 3.43 4.84 1.46
6 19975 6.6633310E+02 2.26E+01 3.39 4.79* 1.43
7 19975 6.7539385E+02 2.29E+01 3.40 4.80 1.43
8 19975 6.6754027E+02 2.11E+01 3.15 4.46* 1.41
9 19975 7.3975817E+02 2.52E+01 3.40 4.81 1.53

10 19975 7.2284275E+02 2.39E+01 3.31 4.68* 1.47
11 19975 6.5476917E+02 2.18E+01 3.33 4.71 1.33
12 19975 7.2963866E+02 2.54E+01 3.48 4.92 1.46

|-----------------------------------------------------------------------------|
12 239700 6.8779583E+02 6.69E+00 0.97 4.76 1.46 2.18 12

|=============================================================================|
| Time estimate for generating 10000 events: 0d:00h:01m:16s
| Creating integration history display cc10-history.ps and cc10-history.pdf

The next step is event generation. In order to get smooth distributions, we set the integrated
luminosity to 10 fb−1. (Note that LEP II in its final year 2000 had an integrated luminosity of
roughly 0.2 fb−1.)

luminosity = 10

With the simulated events corresponding to those 10 inverse femtobarn we want to perform a
WHIZARD analysis: we are going to plot the dijet invariant mass, as well as the energy of the
outgoing muon. For the plot of the analysis, we define a description and label the y axis:

$description =
"A WHIZARD Example.
Charged current CC10 process from LEP 2."

$y_label = "$N_{\textrm{events}}$"

We also use LATEX-syntax for the title of the first plot and the x-label, and then define the
histogram of the dijet invariant mass in the range around the W mass from 70 to 90 GeV in
steps of half a GeV:

$title = "Di-jet invariant mass $M_{jj}$ in $e^+e^- \to \mu^- \bar\nu_\mu u \bar d$"
$x_label = "$M_{jj}$/GeV"
histogram m_jets (70 GeV, 90 GeV, 0.5 GeV)

And we do the same for the second histogram of the muon energy:



254 CHAPTER 15. EXAMPLES

1 Di-jet invariant mass Mjj in e+e− → µ−ν̄µud̄

A WHIZARD Example. Charged current CC10 process from LEP 2.

0

200

400

600

800

1000

70 75 80 85 90
Mjj/GeV

Nevents

Data within bounds:
〈Observable〉 = 80.458± 0.030 [nentries = 6441]

All data:
〈Observable〉 = 80.735± 0.065 [nentries = 6781]

2 Muon energy Eµ in e+e− → µ−ν̄µud̄

A WHIZARD Example. Charged current CC10 process from LEP 2.

0

200

400

600

0 50 100 150 200
Eµ/GeV

Nevents

Data within bounds:
〈Observable〉 = 60.57± 0.22 [nentries = 6781]

All data:
〈Observable〉 = 60.57± 0.22 [nentries = 6781]

Figure 15.2: Histogram of the dijet invariant mass from the CC10 W pair production at LEP II,
peaking around the W mass (upper plot), and of the muon energy (lower plot).



15.3. HIGGS SEARCH AT LEP II 255

$title = "Muon energy $E_\mu$ in $e^+e^- \to \mu^- \bar\nu_\mu u \bar d$"
$x_label = "$E_\mu$/GeV"
histogram e_muon (0 GeV, 209 GeV, 4)

Now, we define the analysis consisting of two record statements initializing the two observables
that are plotted as histograms:

analysis = record m_jets (eval M [u,D]);
record e_muon (eval E [e2])

At the very end, we perform the event generation
simulate (cc10)

and finally the writing and compilation of the analysis in a named data file:
compile_analysis { $out_file = "cc10.dat" }

This event generation part screen output looks like this:

luminosity = 1.000000000000E+01
$description = "A WHIZARD Example.

Charged current CC10 process from LEP 2."
$y_label = "$N_{\textrm{events}}$"
$title = "Di-jet invariant mass $M_{jj}$ in $e^+e^- \to \mu^- \bar\nu_\mu u \bar d$"
$x_label = "$M_{jj}$/GeV"
$title = "Muon energy $E_\mu$ in $e^+e^- \to \mu^- \bar\nu_\mu u \bar d$"
$x_label = "$E_\mu$/GeV"
| Starting simulation for process ’cc10’
| Simulate: using integration grids from file ’cc10_m1.vg’
| RNG: Initializing TAO random-number generator
| RNG: Setting seed for random-number generator to 9910
| OpenMP: Using 8 threads
| Simulation: using n_events as computed from luminosity value
| Events: writing to raw file ’cc10.evx’
| Events: generating 6830 unweighted, unpolarized events ...
| Events: event normalization mode ’1’
| ... event sample complete.
Warning: Encountered events with excess weight: 39 events ( 0.571 %)
| Maximum excess weight = 1.027E+00
| Average excess weight = 6.764E-04
| Events: closing raw file ’cc10.evx’
$out_file = "cc10.dat"
| Opening file ’cc10.dat’ for output
| Writing analysis data to file ’cc10.dat’
| Closing file ’cc10.dat’ for output
| Compiling analysis results display in ’cc10.tex’

Then comes the LATEX output of the compilation of the graphical analysis. Fig. 15.2 shows the
two histograms as the are produced as result of the WHIZARD internal graphical analysis.

15.3 Higgs search at LEP II
This example can be found under the name LEP_higgs.sin in the share/doc folder of WHIZARD.
It displays different search channels for a very light would-be SM Higgs boson of mass 115 GeV
at the LEP II machine at its highest energy it finally achieved, 209 GeV. First, we use the
Standard Model:



256 CHAPTER 15. EXAMPLES

model = SM

Then, we define aliases for neutrinos, antineutrinos, light quarks and light anti-quarks:
alias n = n1:n2:n3
alias N = N1:N2:N3
alias q = u:d:s:c
alias Q = U:D:S:C

Now, we define the signal process, which is Higgsstrahlung,
process zh = e1, E1 => Z, h

the missing-energy channel,
process nnbb = e1, E1 => n, N, b, B

and finally the 4-jet as well as dilepton-dijet channels:
process qqbb = e1, E1 => q, Q, b, B
process bbbb = e1, E1 => b, B, b, B
process eebb = e1, E1 => e1, E1, b, B
process qqtt = e1, E1 => q, Q, e3, E3
process bbtt = e1, E1 => b, B, e3, E3

compile

and we compile the code. We set the center-of-momentum energy to the highest energy LEP II
achieved,

sqrts = 209 GeV

For the Higgs boson, we take the values of a would-be SM Higgs boson with mass of 115 GeV,
which would have had a width of a bit more than 3 MeV:

mH = 115 GeV
wH = 3.228 MeV

We take a running b quark mass to take into account NLO corrections to the Hbb̄ vertex, while
all other fermions are massless:

mb = 2.9 GeV
me = 0
ms = 0
mc = 0

| Process library ’default_lib’: loading
| Process library ’default_lib’: ... success.
sqrts = 2.090000000000E+02
SM.mH = 1.150000000000E+02
SM.wH = 3.228000000000E-03
SM.mb = 2.900000000000E+00
SM.me = 0.000000000000E+00
SM.ms = 0.000000000000E+00
SM.mc = 0.000000000000E+00

To avoid soft-collinear singular phase-space regions, we apply an invariant mass cut on light
quark pairs:



15.3. HIGGS SEARCH AT LEP II 257

cuts = all M >= 10 GeV [q,Q]

Now, we integrate the signal process as well as the combined signal and background processes:
integrate (zh) { iterations = 5:5000}

integrate(nnbb,qqbb,bbbb,eebb,qqtt,bbtt) { iterations = 12:20000 }

| RNG: Initializing TAO random-number generator
| RNG: Setting seed for random-number generator to 21791
| Initializing integration for process zh:
| ------------------------------------------------------------------------
| Process [scattering]: ’zh’
| Library name = ’default_lib’
| Process index = 1
| Process components:
| 1: ’zh_i1’: e-, e+ => Z, H [omega]
| ------------------------------------------------------------------------
| Beam structure: [any particles]
| Beam data (collision):
| e- (mass = 0.0000000E+00 GeV)
| e+ (mass = 0.0000000E+00 GeV)
| sqrts = 2.090000000000E+02 GeV
| Phase space: generating configuration ...
| Phase space: ... success.
| Phase space: writing configuration file ’zh_i1.phs’
| Phase space: 1 channels, 2 dimensions
| Phase space: found 1 channel, collected in 1 grove.
| Phase space: Using 1 equivalence between channels.
| Phase space: wood
| Applying user-defined cuts.
| OpenMP: Using 8 threads
| Starting integration for process ’zh’
| Integrate: iterations = 5:5000
| Integrator: 1 chains, 1 channels, 2 dimensions
| Integrator: Using VAMP channel equivalences
| Integrator: 5000 initial calls, 20 bins, stratified = T
| Integrator: VAMP
|=============================================================================|
| It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] |
|=============================================================================|

1 4608 1.6114109E+02 5.52E-04 0.00 0.00* 99.43
2 4608 1.6114220E+02 5.59E-04 0.00 0.00 99.43
3 4608 1.6114103E+02 5.77E-04 0.00 0.00 99.43
4 4608 1.6114111E+02 5.74E-04 0.00 0.00* 99.43
5 4608 1.6114103E+02 5.66E-04 0.00 0.00* 99.43

|-----------------------------------------------------------------------------|
5 23040 1.6114130E+02 2.53E-04 0.00 0.00 99.43 0.82 5

|=============================================================================|
[.....]

Because the other integrations look rather similar, we refrain from displaying them here, too. As
a next step, we define titles, descriptions and axis labels for the histograms we want to generate.
There are two of them, one os the invisible mass distribution, the other is the di-b-jet invariant
mass. Both histograms are taking values between 70 and 130 GeV with bin widths of half a
GeV:

$description =
"A WHIZARD Example. Light Higgs search at LEP. A 115 GeV pseudo-Higgs

has been added. Luminosity enlarged by two orders of magnitude."
$y_label = "$N_{\textrm{events}}$"



258 CHAPTER 15. EXAMPLES

1 Invisible mass distribution in e+e− → νν̄bb̄

AWHIZARD Example. Light Higgs search at LEP. A 115 GeV pseudo-Higgs
has been added. Luminosity enlarged by two orders of magnitude.

0

50

100

150

70 80 90 100 110 120 130
Mνν/GeV

Nevents

Data within bounds:
〈Observable〉 = 90.87± 0.14 [nentries = 1034]

All data:
〈Observable〉 = 89.59± 0.28 [nentries = 1070]

2 bb invariant mass distribution in e+e− →
νν̄bb̄

AWHIZARD Example. Light Higgs search at LEP. A 115 GeV pseudo-Higgs
has been added. Luminosity enlarged by two orders of magnitude.

0

50

100

150

70 80 90 100 110 120 130
Mbb̄/GeV

Nevents

Data within bounds:
〈Observable〉 = 99.31± 0.36 [nentries = 1050]

All data:
〈Observable〉 = 97.86± 0.48 [nentries = 1070]

3 Dijet invariant mass distribution in e+e− →
qq̄bb̄

AWHIZARD Example. Light Higgs search at LEP. A 115 GeV pseudo-Higgs
has been added. Luminosity enlarged by two orders of magnitude.

0

100

200

300

400

70 80 90 100 110 120 130
Mqq̄/GeV

Nevents

Data within bounds:
〈Observable〉 = 91.97± 0.12 [nentries = 3186]

All data:
〈Observable〉 = 92.99± 0.62 [nentries = 4607]

Figure 15.3: Upper line: final state bb+Emiss, histogram of the invisible mass distribution (left),
and of the di-b distribution (right). Lower plot: light dijet distribution in the bbjj final state.



15.3. HIGGS SEARCH AT LEP II 259

$title = "Invisible mass distribution in $e^+e^- \to \nu\bar\nu b \bar b$"
$x_label = "$M_{\nu\nu}$/GeV"
histogram m_invisible (70 GeV, 130 GeV, 0.5 GeV)

$title = "$bb$ invariant mass distribution in $e^+e^- \to \nu\bar\nu b \bar b$"
$x_label = "$M_{b\bar b}$/GeV"
histogram m_bb (70 GeV, 130 GeV, 0.5 GeV)

The analysis is initialized by defining the two records for the invisible mass and the invariant
mass of the two b jets:

analysis = record m_invisible (eval M [n,N]);
record m_bb (eval M [b,B])

In order to have enough statistics, we enlarge the LEP integrated luminosity at 209 GeV by
more than two orders of magnitude:

luminosity = 10

We start event generation by simulating the process with two b jets and two neutrinos in the
final state:

simulate (nnbb)

As a third histogram, we define the dijet invariant mass of two light jets:
$title = "Dijet invariant mass distribution in $e^+e^- \to q \bar q b \bar b$"
$x_label = "$M_{q\bar q}$/GeV"
histogram m_jj (70 GeV, 130 GeV, 0.5 GeV)

Then we simulate the 4-jet process defining the light-dijet distribution as a local record:
simulate (qqbb) { analysis = record m_jj (eval M / 1 GeV [combine [q,Q]]) }

Finally, we compile the analysis,
compile_analysis { $out_file = "lep_higgs.dat" }

| Starting simulation for process ’nnbb’
| Simulate: using integration grids from file ’nnbb_m1.vg’
| RNG: Initializing TAO random-number generator
| RNG: Setting seed for random-number generator to 21798
| OpenMP: Using 8 threads
| Simulation: using n_events as computed from luminosity value
| Events: writing to raw file ’nnbb.evx’
| Events: generating 1070 unweighted, unpolarized events ...
| Events: event normalization mode ’1’
| ... event sample complete.
Warning: Encountered events with excess weight: 207 events ( 19.346 %)
| Maximum excess weight = 1.534E+00
| Average excess weight = 4.909E-02
| Events: closing raw file ’nnbb.evx’
$title = "Dijet invariant mass distribution in $e^+e^- \to q \bar q b \bar b$"
$x_label = "$M_{q\bar q}$/GeV"
| Starting simulation for process ’qqbb’
| Simulate: using integration grids from file ’qqbb_m1.vg’
| RNG: Initializing TAO random-number generator
| RNG: Setting seed for random-number generator to 21799



260 CHAPTER 15. EXAMPLES

| OpenMP: Using 8 threads
| Simulation: using n_events as computed from luminosity value
| Events: writing to raw file ’qqbb.evx’
| Events: generating 4607 unweighted, unpolarized events ...
| Events: event normalization mode ’1’
| ... event sample complete.
Warning: Encountered events with excess weight: 112 events ( 2.431 %)
| Maximum excess weight = 8.875E-01
| Average excess weight = 4.030E-03
| Events: closing raw file ’qqbb.evx’
$out_file = "lep_higgs.dat"
| Opening file ’lep_higgs.dat’ for output
| Writing analysis data to file ’lep_higgs.dat’
| Closing file ’lep_higgs.dat’ for output
| Compiling analysis results display in ’lep_higgs.tex’

The graphical analysis of the events generated by WHIZARD are shown in Fig. 15.3. In the upper
left, the invisible mass distribution in the bb̄+Emiss state is shown, peaking around the Z mass.
The upper right shows the M(bb̄) distribution in the same final state, while the lower plot has
the invariant mass distribution of the two non-b-tagged (light) jets in the bbjj final state. The
latter shows only the Z peak, while the former exhibits the narrow would-be 115 GeV Higgs
state.

15.4 Deep Inelastic Scattering at HERA

15.5 W endpoint at LHC

15.6 SUSY Cascades at LHC

15.7 Polarized WW at ILC



Chapter 16

Technical details – Advanced Spells

16.1 Efficiency and tuning
Since massless fermions and vector bosons (or almost massless states in a certain approximation)
lead to restrictive selection rules for allowed helicity combinations in the initial and final state.
To make use of this fact for the efficiency of the WHIZARD program, we are applying some sort of
heuristics: WHIZARD dices events into all combinatorially possible helicity configuration during
a warm-up phase. The user can specify a helicity threshold which sets the number of zeros
WHIZARD should have got back from a specific helicity combination in order to ignore that
combination from now on. By that mechanism, typically half up to more than three quarters of
all helicity combinations are discarded (and hence the corresponding number of matrix element
calls). This reduces calculation time up to more than one order of magnitude. WHIZARD shows
at the end of the integration those helicity combinations which finally contributed to the process
matrix element.

Note that this list – due to the numerical heuristics – might very well depend on the number
of calls for the matrix elements per iteration, and also on the corresponding random number
seed.

261



262 CHAPTER 16. TECHNICAL DETAILS – ADVANCED SPELLS



Chapter 17

New External Physics Models

It is never possible to include all incarnations of physics models that can be described by
the maybe weirdest form of a quantum field theory in a tailor-made implementation within a
program like WHIZARD. Users clearly want to be able to use their own special type of model; in
order to do so there are external tools to translate models described by their field content and
Lagrangian densities into Feynman rules and make them available in an event generator like
WHIZARD. In this chapter, we describe the interfaces to two such external models, SARAH and
FeynRules.

The FeynRules interface had been started already for the legacy version WHIZARD1 (where
it had to be downloaded from https://whizard.hepforge.org as a separate package), but
for the WHIZARDtwo release series it has been included in the FeynRules package (from their
version v1.6.0 on). Note that there was a regression for the usage of external models (from
either SARAH or FeynRules) in the first release of series v2.2, v2.2.0. This has been fixed in all
upcoming versions.

Besides using SARAH or FeynRules via their interfaces, there is now a much easier way to let
those programs output model files in the "Universal FeynRules Output" (or UFO). This option
does not have any principle limitations for models, and also does not rely on the never truly
constant interfaces between two different tools. Their usage is described in Sec. 17.3.

17.1 New physics models via SARAH

SARAH [75,76,77,78,79] is a Mathematica [80] package which derives for a given model the
minimum conditions of the vacuum, the mass matrices, and vertices at tree-level as well as
expressions for the one-loop corrections for all masses and the full two-loop renormalization
group equations (RGEs). The vertices can be exported to be used with WHIZARD/O’Mega. All
other information can be used to generate Fortran source code for the RGE solution tool and
spectrum generator SPheno [81,82] to get a spectrum generator for any model. The advantage is
that SPheno calculates a consistent set of parameters (couplings, masses, rotation matrices, decay
widths) which can be used as input for WHIZARD. SARAH and SPheno can be also downloaded
from the HepForge server:

263

https://whizard.hepforge.org


264 CHAPTER 17. NEW EXTERNAL PHYSICS MODELS

https://sarah.hepforge.org
https://spheno.hepforge.org

17.1.1 WHIZARD/O’Mega model files from SARAH

Generating the model files

Here we are giving only the information relevant to generate models for WHIZARD. For more
details about the installation of SARAH and an exhaustion documentation about its usage, confer
the SARAH manual.

To generate the model files for WHIZARD/O’Mega with SARAH, a new Mathematica session
has to be started. SARAH is loaded via

<<SARAH-4.2.1/SARAH.m;

if SARAH has been stored in the applications directory of Mathematica. Otherwise, the full path
has to be given

<<[Path_to_SARAH]/SARAH.m;

To get an overview which models are delivered with SARAH, the command ShowModels can
be used. As an example, we use in the following the triplet extended MSSM (TMSSM) and
initialize it in SARAH via

Start["TMSSM"];

Finally, the output intended for WHIZARD/O’Mega is started via
MakeWHIZARD[Options]

The possible options of the MakeWHIZARD command are

1. WriteOmega, with values: True or False, default: True
Defines if the model files for O’Mega should be written

2. WriteWHIZARD, with values: True or False, default: True
Defines if the model files for WHIZARD should be written

3. Exclude, with values: list of generic type, Default: {SSSS}
Defines which generic vertices are not exported to the model file

4. WOModelName, with values: string, default: name of the model in SARAH followed by _sarah
Gives the possibility to change the model name

5. MaximalCouplingsPerFile, with values: integer, default: 150
Defines the maximal number of couplings written per file

6. Version, with values: formatted number, Default: 2.2.1 1,
Defines the version of WHIZARD for which the model file is generated

All options and the default values are also shown in the Mathematica session via
Options[MakeWHIZARD].

1Due to a regression in WHIZARD version v2.2.0, SARAH models cannot be successfully linked within that
version. Hence, the default value here has been set to version number 2.2.1

https://sarah.hepforge.org
https://spheno.hepforge.org


17.1. NEW PHYSICS MODELS VIA SARAH 265

Using the generated model files with WHIZARD

After the interface has completed evaluation, the generated files can be found in the subdirectory
WHIZARD_Omega of SARAHs output directory. In order to use it the generated code must be
compiled and installed. For this purpose, open a terminal, enter the output directory

<PATH_to_SARAH>/Output/TMSSM/EWSB/WHIZARD_Omega/

and run
./configure
make install

By default, the last command installs the compiled model into .whizard in current user’s home
directory where it is automatically picked up by WHIZARD. Alternative installation paths can be
specified using the --prefix option to WHIZARD.

./configure --prefix=/path/to/installation/prefix

If the files are installed into the WHIZARD installation prefix, the program will also pick them up
automatically, while WHIZARD’s --localprefix option must be used to communicate any other
choice to WHIZARD. In case WHIZARD is not available in the binary search path, the WO_CONFIG
environment variable can be used to point configure to the binaries

./configure WO_CONFIG=/path/to/whizard/binaries

More information on the available options and their syntax can be obtained with the --help
option.

After the model is compiled it can be used in WHIZARD as
model = tmssm_sarah

17.1.2 Linking SPheno and WHIZARD
As mentioned above, the user can also use SPheno to generate spectra for its models. This is
done by means of Fortran code for SPheno, exported from SARAH. To do so, the user has to
apply the command MakeSPheno[]. For more details about the options of this command and
how to compile and use the SPheno output, we refer to the SARAH manual.
As soon as the SPheno version for the given model is ready it can be used to generate files with
all necessary numerical values for the parameters in a format which is understood by WHIZARD.
For this purpose, the corresponding flag in the Les Houches input file of SPheno has to be
turned on:

Block SPhenoInput # SPheno specific input
...
75 1 # Write WHIZARD files

Afterwards, SPheno returns not only the spectrum file in the standard SUSY Les Houches
accord (SLHA) format (for more details about the SLHA and the WHIZARD SLHA interface cf.
Sec. 10.2), but also an additional file called WHIZARD.par.TMSSM for our example. This file can
be used in the SINDARIN input file via

include ("WHIZARD.par.TMSSM")



266 CHAPTER 17. NEW EXTERNAL PHYSICS MODELS

17.1.3 BSM Toolbox

A convenient way to install SARAH together with WHIZARD, SPheno and some other codes are
the BSM Toolbox scripts 2 [83]. These scripts are available at

https://sarah.hepforge.org/Toolbox.html

The Toolbox provides two scripts. First, the configure script is used via
toolbox-src-dir> mkdir build
toolbox-src-dir> cd build
toolbox-src-dir> ../configure

The configure script checks for the requirements of the different packages and downloads all
codes. All downloaded archives will be placed in the tarballs subdirectory of the directory
containing the configure script. Command line options can be used to disable specific packages
and to point the script to custom locations of compilers and of the Mathematica kernel; a full
list of those can be obtained by calling configure with the --help option.

After configure finishes successfully, make can be called to build all configured packages
toolbox-build-dir> make

configure creates also the second script which automates the implementation of a new
model into all packages. The butler script takes as argument the name of the model in SARAH,
e.g.

> ./butler TMSSM

The butler script runs SARAH to get the output in the same form as the WHIZARD/O’Mega model
files and the code for SPheno. Afterwards, it installs the model in all packages and compiles the
new WHIZARD/O’Mega model files as well as the new SPheno module.

2Those script have been published under the name SUSY Toolbox but SARAH is with version 4 no longer
restricted to SUSY models

https://sarah.hepforge.org/Toolbox.html


17.2. NEW PHYSICS MODELS VIA FEYNRULES 267

17.2 New physics models via FeynRules

In this section, we present the interface between the external tool FeynRules [84,85,86] and
WHIZARD. FeynRules is a Mathematica [80] package that allows to derive Feynman rules from
any perturbative quantum field theory-based Lagrangian in an automated way. It can be
downloaded from

http://feynrules.irmp.ucl.ac.be/

The input provided by the user is threefold and consists of the Lagrangian defining the model,
together with the definitions of all the particles and parameters that appear in the model.
Once this information is provided, FeynRules can perform basic checks on the sanity of the
implementation (e.g. hermiticity, normalization of the quadratic terms), and finally computes all
the interaction vertices associated with the model and store them in an internal format for later
processing. After the Feynman rules have been obtained, FeynRules can export the interaction
vertices to WHIZARD via a dedicated interface [87]. The interface checks whether all the vertices
are compliant with the structures supported by WHIZARD’s matrix element generator O’Mega,
and discard them in the case they are not supported. The output of the interface consists of
a set of files organized in a single directory which can be injected into WHIZARD/O’Mega and
used as any other built-in models. Together with the model files, a framework is created which
allows to communicate the new models to WHIZARD in a well defined way, after which step the
model can be used exactly like the built-in ones. This specifically means that the user is not
required to manually modify the code of WHIZARD/O’Mega, the models created by the interface
can be used directly without any further user intervention. We first describe the installation and
general usage of the interface, and then list the general properties like the supported particle
types, color quantum numbers and Lorentz structures as well as types of gauge interactions.

17.2.1 Installation and Usage of the WHIZARD-FeynRules interface

Installation and basic usage: From FeynRules version 1.6.0 onward, the interface to
WHIZARD is part of the FeynRules distribution3. In addition, the latest version of the interface
can be downloaded from the WHIZARD homepage on HepForge. There you can also find an
installer that can be used to inject the interface into an existing FeynRules installation (which
allows to use the interface with the FeynRules release series1.4.x where it is not part of the
package).

Once installed, the interface can be called and used in the same way FeynRules’ other
interfaces described in [84]. The details of how to install and use FeynRules itself can be found
there, [84,85,86]. Here, we only describe how to use the interface to inject new models into
WHIZARD. For example, once the FeynRules environment has been initialized and a model has
been loaded, the command

WriteWOOutput[L]

3Note that though the main interface of FeynRules to WHIZARD is for the most recent WHIZARD release, but
also the legacy branch WHIZARD1 is supported.

http://feynrules.irmp.ucl.ac.be/


268 CHAPTER 17. NEW EXTERNAL PHYSICS MODELS

will call the FeynmanRules command to extract the Feynman rules from the Lagrangian L,
translate them together with the model data and finally write the files necessary for using the
model within WHIZARD to an output directory (the name of which is inferred from the model
name by default). Options can be added for further control over the translation process (see
Sec. 17.2.2). Instead of using a Lagrangian, it is also possible to call the interface on a pure
vertex list. For example, the following command

WriteWOOutput[Input -> list]

will directly translate the vertex list list. Note that this vertex list must be given in flavor-
expanded form in order for the interface to process it correctly.

The interface also supports the WriteWOExtParams command described in [84]. Issuing
WriteWOExtParams[filename]

will write a list of all the external parameters to filename. This is done in the form of a
SINDARIN script. The only option accepted by the command above is the target version of
WHIZARD, set by the option WOWhizardVersion.

During execution, the interface will print out a series of messages. It is highly advised to
carefully read through this output as it not only summarizes the settings and the location of the
output files, but also contains information on any skipped vertices or potential incompatibilities
of the model with WHIZARD.

After the interface has run successfully and written the model files to the output directory,
the model must be imported into WHIZARD. For doing so, the model files have to be compiled
and can then be installed independently of WHIZARD. In the simplest scenario, assuming that the
output directory is the current working directory and that the WHIZARD binaries can be found
in the current ${PATH}, the installation is performed by simply executing

./configure~\&\&~make clean~\&\&~make install

This will compile the model and install it into the directory ${HOME}/.whizard, making it
fully available to WHIZARD without any further intervention. The build system can be adapted
to more complicated cases through several options to the configure which are listed in the
INSTALL file created in the output directory. A detailed explanation of all options can be found
in Sec. 17.2.2.

Supported fields and vertices: The following fields are currently supported by the interface:
scalars, Dirac and Majorana fermions, vectors and symmetric tensors. The set of accepted
operators, the full list of which can be found in Tab. 17.1, is a subset of all the operators
supported by O’Mega. While still limited, this list is sufficient for a large number of BSM models.
In addition, a future version of WHIZARD/O’Mega will support the definition of completely general
Lorentz structures in the model, allowing the interface to translate all interactions handled by
FeynRules. This will be done by means of a parser within O’Mega of the UFO file format for
model files from FeynRules.

Color: Color is treated in O’Mega in the color flow decomposition, with the flow structure
being implicitly determined from the representations of the particles present at the vertex.
Therefore, the interface has to strip the color structure from the vertices derived by FeynRules



17.2. NEW PHYSICS MODELS VIA FEYNRULES 269

Particle spins Supported Lorentz structures
FFS All operators of dimension four are supported.
FFV All operators of dimension four are supported.
SSS All dimension three interactions are supported.
SVV Supported operators:

dimension 3: O3 = V µ
1 V2µϕ

dimension 5: O5 = ϕ (∂µV ν
1 − ∂νV µ

1 ) (∂µV2ν − ∂νV2µ)
Note that O5 generates the effective gluon-gluon-Higgs couplings
obtained by integrating out heavy quarks.

SSV (ϕ1∂
µϕ2 − ϕ2∂

µϕ1)Vµ type interactions are supported.
SSVV All dimension four interactions are supported.
SSSS All dimension four interactions are supported.
VVV All parity-conserving dimension four operators are supported, with

the restriction that non-gauge interactions may be split into
several vertices and can only be handled if all three fields are
mutually different.

VVVV All parity conserving dimension four operators are supported.
TSS, TVV, TFF The three point couplings in the Appendix of Ref. [89] are

supported.

Table 17.1: All Lorentz structures currently supported by the WHIZARD-FeynRules interface,
sorted with respect to the spins of the particles. “S” stands for scalar, “F” for fermion (either
Majorana or Dirac) and “V” for vector.

before writing them out to the model files. While this process is straightforward for all color
structures which correspond only to a single flow assignment, vertices with several possible
flow configurations must be treated with care in order to avoid mismatches between the flows
assigned by O’Mega and those actually encoded in the couplings. To this end, the interface
derives the color flow decomposition from the color structure determined by FeynRules and
rejects all vertices which would lead to a wrong flow assignment by O’Mega (these rejections are
accompanied by warnings from the interface)4.

At the moment, the SU(3)C representations supported by both WHIZARD and the interface
are singlets (1), triplets (3), antitriplets (3̄) and octets (8). Tab. 17.2 shows all combinations of
these representations which can form singlets together with the support status of the respective
color structures in WHIZARD and the interface. Although the supported color structures do
not comprise all possible singlets, the list is sufficient for a large number of SM extensions.
Furthermore, a future revision of WHIZARD/O’Mega will allow for explicit color flow assignments,
thus removing most of the current restrictions.

4For the old WHIZARD1 legacy branch, there was a maximum number of external color flows that had to
explicitly specified. Essentially, this is n8 − 1

2n3 where n8 is the maximum number of external color octets and
n3 is the maximum number of external triplets and antitriplets. This can be set in the WHIZARD/FeynRules
interface by the WOMaxNcf command, whose default is 4.



270 CHAPTER 17. NEW EXTERNAL PHYSICS MODELS

SU(3)C representations Support status
111, 3̄31, 3̄38,
1111, 3̄311, 3̄381

Fully supported by the interface

888, 8881 Supported only if at least two of the octets are identical particles.
881, 8811 Fully supported by the interface5.

3̄388 Supported only if the octets are identical particles.

8888

The only supported flow structure is

1 2

34

· Γ(1, 2, 3, 4) + all acyclic permutations

where Γ(1, 2, 3, 4) represents the Lorentz structure associated with
the first flow.

333, 3̄3̄3̄, 3331
3̄3̄3̄1, 3̄3̄33

Unsupported (at the moment)

Table 17.2: All possible combinations of three or four SU(3)C representations supported by
FeynRules which can be used to build singlets, together with the support status of the corre-
sponding color structures in WHIZARD and the interface.

Running αS: While a running strong coupling is fully supported by the interface, a choice
has to be made which quantities are to be reevaluated when the strong coupling is evolved.
By default aS, G (see Ref. [84] for the nomenclature regarding the QCD coupling) and any
vertex factors depending on them are evolved. The list of internal parameters that are to be
recalculated (together with the vertex factors depending on them) can be extended (beyond aS
and G) by using the option WORunParameters when calling the interface 6.

Gauge choices: The interface supports the unitarity, Feynman and Rξ gauges. The choice
of gauge must be communicated to the interface via the option WOGauge. Note that massless
gauge bosons are always treated in Feynman gauge.

If the selected gauge is Feynman or Rξ, the interface can automatically assign the proper
masses to the Goldstone bosons. This behavior is requested by using the WOAutoGauge option.
In the Rξ gauges, the symbol representing the gauge ξ must be communicated to the interface
by using the WOGaugeSymbol option (the symbol is automatically introduced into the list of
external parameters if WOAutoGauge is selected at the same time). This feature can be used to
automatically extend models implemented in Feynman gauge to the Rξ gauges.

Since WHIZARD (at least until the release series 2.3) is a tree-level tool working with helicity
amplitudes, the ghost sector is irrelevant for WHIZARD and hence dropped by the interface.

6As the legacy branch, WHIZARD1, does not support a running strong coupling, this is also vetoed by the
interface when using WHIZARD1.x.



17.2. NEW PHYSICS MODELS VIA FEYNRULES 271

WOWhizardVersion WHIZARD versions supported
"2.0.3" (default) 2.0.3+
"2.0" 2.0.0 – 2.0.2
"1.96" 1.96+ (deprecated)
"1.93" 1.93 – 1.95 (deprecated)
"1.92" 1.92 (deprecated)

Table 17.3: Currently available choices for the WOWhizardVersion option, together with the
respective WHIZARD versions supported by them.

17.2.2 Options of the WHIZARD-FeynRules interface

In the following we present a comprehensive list of all the options accepted by WriteWOOutput.
Additionally, we note that all options of the FeynRules command FeynmanRules are accepted
by WriteWOOutput, which passes them on to FeynmanRules.

Input
An optional vertex list to use instead of a Lagrangian (which can then be omitted).

WOWhizardVersion
Select the WHIZARD version for which code is to be generated. The currently available
choices are summarized in Tab. 17.3. This list will expand as the program evolves. To
get a summary of all choices available in a particular version of the interface, use the
command ?WOWhizardVersion.

WOModelName
The name under which the model will be known to WHIZARD7. The default is determined
from the FeynRules model name.

Output
The name of the output directory. The default is determined from the FeynRules model
name.

WOGauge
Gauge choice (cf. Sec. 17.2.1). Possible values are: WOUnitarity (default), WOFeynman,
WORxi

WOGaugeParameter
The external or internal parameter representing the gauge ξ in the Rξ gauges (cf.
Sec. 17.2.1). Default: Rxi

WOAutoGauge
Automatically assign the Goldstone boson masses in the Feynman and Rξ gauges and
automatically append the symbol for ξ to the parameter list in the Rξ gauges. Default:
False

7For versions 1.9x, model names must start with “fr_” if they are to be picked up by WHIZARD automatically.



272 CHAPTER 17. NEW EXTERNAL PHYSICS MODELS

WORunParameters
The list of all internal parameters which will be recalculated if αS is evolved (see above)8.
Default: {aS, G}

WOFast
If the interface drops vertices which are supported, this option can be set to False to
enable some more time consuming checks which might aid the identification. Default:
True

WOMaxCouplingsPerFile
The maximum number of couplings that are written to a single Fortran file. If compilation
takes too long or fails, this can be lowered. Default: 500

WOVerbose
Enable verbose output and in particular more extensive information on any skipped
vertices. Default: False

17.2.3 Validation of the interface

The output of the interface has been extensively validated. Specifically, the integrated cross
sections for all possible 2 → 2 processes in the FeynRules SM, the MSSM and the Three-Site
Higgsless Model have been compared between WHIZARD, MadGraph, and CalcHep, using the
respective FeynRules interfaces as well as the in-house implementations of these models (the
Three-Site Higgsless model not being available in MadGraph). Also, different gauges have been
checked for WHIZARD and CalcHep. In all comparisons, excellent agreement within the Monte
Carlo errors was achieved. The detailed comparison including examples of the comparison tables
can be found in [87].

17.2.4 Examples for the WHIZARD-/FeynRules interface

Here, we will use the Standard Model, the MSSM and the Three-Site Higgsless Model as prime
examples to explain the usage of the interface. Those are the models that have been used in the
validation of the interface in [87]. The examples are constructed to show the application of the
different options of the interface and to serve as a starting point for the generation of the user’s
own WHIZARD versions of other FeynRules models.

WHIZARD-FeynRules example: Standard Model

To start off, we will create Whizard 2 versions of the Standard Model as implemented in
FeynRules for different gauge choices.

8Not available for versions older than 2.0.0



17.2. NEW PHYSICS MODELS VIA FEYNRULES 273

SM: Unitarity Gauge In order to invoke FeynRules, we change to the corresponding
directory and load the program in Mathematica via

$FeynRulesPath =
SetDirectory["<path-to-FeynRules>"];

<<FeynRules‘

The model is loaded by
LoadModel["Models/SM/SM.fr"];
FeynmanGauge = False;

Note that the second line is required to switch the Standard Model to Unitarity gauge as opposed
to Feynman gauge (which is the default). Generating a WHIZARD model is now simply done by

WriteWOOutput[LSM];

After invokation, the interface first gives a short summary of the setup
Short model name is "fr_standard_model"
Gauge: Unitarity
Generating code for WHIZARD / O’Mega

version 2.0.3
Maximum number of couplings per FORTRAN

module: 500
Extensive lorentz structure checks disabled.

Note that, as we have not changed any options, those settings represent the defaults. The
output proceeds with the calculation of the Feynman rules from the Standard Model Lagrangian
LSM. After the rules have been derived, the interface starts generating output and tries to match
the vertices to their WHIZARD/O’Mega counterparts.

10 of 75 vertices processed...
20 of 75 vertices processed...
30 of 75 vertices processed...
40 of 75 vertices processed...
50 of 75 vertices processed...
60 of 75 vertices processed...
70 of 75 vertices processed...

processed a total of 75 vertices, kept 74
of them and threw away 1, 1 of which
contained ghosts or goldstone bosons.

The last line of the above output is particularily interesting, as it informs us that everything
worked out correctly: the interface was able to match all vertices, and the only discarded vertex
was the QCD ghost interaction. After the interface has finished running, the model files in the
output directory are ready to use and can be compiled using the procedure described in the
previous section.

SM: Feynman and Rξ gauges As the Standard Model as implemented in FeynRules also
supports Feynman gauge, we can use the program to generate a Feynman gauge version of the
model. Loading FeynRules and the model proceeds as above, with the only difference being
the change



274 CHAPTER 17. NEW EXTERNAL PHYSICS MODELS

FeynmanGauge = True;

In order to inform the interface about the modified gauge, we have to add the option WOGauge
WriteWOOutput[LSM, WOGauge -> WOFeynman];

The modified gauge is reflected in the output of the interface
Short model name is "fr_standard_model"
Gauge: Feynman
Generating code for WHIZARD / O’Mega

version 2.0.3
Maximum number of couplings per FORTRAN

module: 500
Extensive lorentz structure checks disabled.

The summary of the vertex identification now takes the following form
processed a total of 163 vertices, kept 139

of them and threw away 24, 24 of which
contained ghosts.

Again, this line tells us that there were no problems — the only discarded interactions involved
the ghost sector which is irrelevant for the tree-level part of WHIZARD.

For a tree-level calculation, the only difference between the different gauges from the
perspective of the interface are the gauge boson propagators and the Goldstone boson masses.
Therefore, the interface can automatically convert a model in Feynman gauge to a model in Rξ

gauge. To this end, the call to the interface must be changed to
WriteWOOutput[LSM, WOGauge -> WORxi,

WOAutoGauge -> True];

The WOAutoGauge argument instructs the interface to automatically

1. Introduce a symbol for the gauge parameter ξ into the list of external parameters

2. Generate the Goldstone boson masses from those of the associated gauge bosons (ignoring
the values provided by FeynRules)

The modified setup is again reflected in the interface output
Short model name is "fr_standard_model"
Gauge: Rxi
Gauge symbol: "Rxi"
Generating code for WHIZARD / O’Mega

version 2.0.3
Maximum number of couplings per FORTRAN

module: 500
Extensive lorentz structure checks disabled.

Note the default choice Rxi for the name of the ξ parameter – this can be modified via the
option WOGaugeParameter.

While the WOAutoGauge feature allows to generate Rξ gauged models from models imple-
mented in Feynman gauge, it is of course also possible to use models genuinely implemented in
Rξ gauge by setting this parameter to False. Also, note that the choice of gauge only affects
the propagators of massive fields. Massless gauge bosons are always treated in Feynman gauge.



17.2. NEW PHYSICS MODELS VIA FEYNRULES 275

Compilation and usage In order to compile and use the freshly generated model files, change
to the output directory which can be determined from the interface output (in this example,
it is fr_standard_model-WO). Assuming that WHIZARD is available in the binary search path,
compilation and installation proceeds as described above by executing

./configure && make && make install

The model is now ready and can be used similarly to the builtin WHIZARD models. For example,
a minimal WHIZARD input file for calculating the e+e− −→ W+W− scattering cross section in
the freshly generated model would look like

model = fr_standard_model
process test = "e+", "e-" -> "W+", "W-"
sqrts = 500 GeV
integrate (test)

WHIZARD/FeynRules example: MSSM

In this Section, we illustrate the usage of the interface between FeynRules and Whizard in the
context of the MSSM. All the parameters of the model are then ordered in Les Houches blocks
and counters following the SUSY Les Houches Accord (SLHA) [52,53,54] (cf. also Sec. 10.2).

After having downloaded the model from the FeynRules website, we store it in a new
directory, labelled MSSM, of the model library of the local installation of FeynRules. The model
can then be loaded in Mathematica as in the case of the SM example above

$FeynRulesPath =
SetDirectory["<path-to-FeynRules>"];

<<FeynRules‘
LoadModel["Models/MSSM/MSSM.fr"];
FeynmanGauge = False;

We are again adopting unitarity gauge.
The number of vertices associated to supersymmetric Lagrangians is in general very large

(several thousands). For such models with many interactions, it is recommended to first extract
all the Feynman rules of the theory before calling the interface between WHIZARD and FeynRules.
The reason is related to the efficiency of the interface which takes a lot of time in the extraction
of the interaction vertices. In the case one wishes to study the phenomenology of several
benchmark scenarios, this procedure, which is illustrated below, allows to use the interface
in the best way. The Feynman rules are derived from the Lagrangian once and for all and
then reused by the interface for each set of WHIZARD model files to be produced, considerably
speeding up the generation of multiple model files issued from a single Lagrangian. In addition,
the scalar potential of supersymmetric theories contains a large set of four scalar interactions,
in general irrelevant for collider phenomenology. These vertices can be neglected with the
help of the Exclude4Scalars->True option of both interface commands FeynmanRules and
WriteWOOutput. The Feynman rules of the MSSM are then computed within the Mathematica
notebook by

rules = FeynmanRules[lag,
Exclude4Scalars->True, FlavorExpand->True];

where lag is the variable containing the Lagrangian.



276 CHAPTER 17. NEW EXTERNAL PHYSICS MODELS

By default, all the parameters of the model are set to the value of 1. A complete parameter
<slha_params>.dat file must therefore be loaded. Such a parameter file can be downloaded
from the FeynRules website or created by hand by the user, and loaded into FeynRules as

ReadLHAFile[Input -> "<slha_params>.dat"];

This command does not reduce the size of the model output by removing vertices with vanishing
couplings. However, if desired, this task could be done with the LoadRestriction command
(see Ref. [90] for details).

The vertices are exported to WHIZARD by the command
WriteWOOutput[Input -> rules];

Note that the numerical values of the parameters of the model can be modified directly from
WHIZARD, without having to generate a second time the WHIZARD model files from FeynRules.
A SINDARIN script is created by the interface with the help of the instruction

WriteWOExtParams["parameters.sin"];

and can be further modified according to the needs of the user.

WHIZARD-FeynRules example: Three-Site Higgsless Model

The Three-Site Higgsless model or Minimal Higgsless model (MHM) has been implemented into
LanHEP [91], FeynRules and independently into WHIZARD [39], and the collider phenomenology
has been studied by making use of these implementations [91,50,39]. Furthermore, the indepen-
dent implementations in FeynRules and directly into Whizard have been compared and found
to agree [87]. After the discovery of a Higgs boson at the LHC in 2012, such a model is not
in good agreement with experimental data any more. Here, we simply use it as a guinea pig
to describe the handling of a model with non-renormalizable interactions with the FeynRules
interface, and discuss how to generate WHIZARD model files for it. The model has been imple-
mented in Feynman gauge as well as unitarity gauge and contains the variable FeynmanGauge
which can be set to True or False. When set to True, the option WOGauge-> WOFeynman must
be used, as explained in [87]. Rξ gauge can also be accomplished with this model by use of the
options WOGauge -> WORxi and WOAutoGauge -> True.

Since this model makes use of a nonlinear sigma field of the form

Σ = 1 + iπ − 1

2
π2 + · · · (17.1)

many higher dimensional operators are included in the model which are not currently not sup-
ported by WHIZARD. Even for a future release of WHIZARD containing general Lorentz structures in
interaction vertices, the user would be forced to expand the series only up to a certain order. Al-
though WHIZARD can reject these vertices and print a warning message to the user, it is preferable
to remove the vertices right away in the interface by the option MaxCanonicalDimension->4.
This is passed to the command FeynmanRules and restricts the Feynman rules to those of
dimension four and smaller9.

9MaxCanonicalDimension is an option of the FeynmanRules function rather than of the interface, itself. In
fact, the interface accepts all the options of FeynmanRules and simply passes them on to the latter.



17.3. NEW PHYSICS MODELS VIA THE UFO FILE FORMAT 277

As the use of different gauges was already illustrated in the SM example, we discuss the
model only in Feynman gauge here. We load FeynRules:

$FeynRulesPath =
SetDirectory["<path-to-FeynRules>"];

<<FeynRules‘

The MHM model itself is then loaded by
SetDirectory["<path-to-MHM>"];
LoadModel["3-Site-particles.fr",

"3-Site-parameters.fr",
"3-Site-lagrangian.fr"];

FeynmanGauge = True;

where <path-to-MHM> is the path to the directory where the MHM model files are stored and
where the output of the WHIZARD interface will be written. The WHIZARD interface is then
initiated:

WriteWOOutput[LGauge, LGold, LGhost, LFermion,
LGoldLeptons, LGoldQuarks,
MaxCanonicalDimension->4,
WOGauge->WOFeynman, WOModelName->"fr_mhm"];

where we have also made use of the option WOModelName to change the name of the model as
seen by WHIZARD. As in the case of the SM, the interface begins by writing a short informational
message:

Short model name is "fr_mhm"
Gauge: Feynman
Generating code for WHIZARD / O’Mega

version 2.0.3
Automagically assigning Goldstone

boson masses...
Maximum number of couplings per FORTRAN

module: 500
Extensive lorentz structure checks disabled.

After calculating the Feynman rules and processing the vertices, the interface gives a summary:
processed a total of 922 vertices, kept 633

of them and threw away 289, 289 of which
contained ghosts.

showing that no vertices were missed. The files are stored in the directory fr_mhm and are ready
to be installed and used with WHIZARD.

17.3 New physics models via the UFO file format

In this section, we describe how to use the Universal FeynRules Output (UFO, [88]) format for
physics models inside WHIZARD. Please refer the manuals of e.g. FeynRules manual for details on
how to generate a UFO file for your favorite physics model. UFO files are a collection of Python



278 CHAPTER 17. NEW EXTERNAL PHYSICS MODELS

scripts that encode the particles, the couplings, the Lorentz structures, the decays, as well as
parameters, vertices and propagators of the corresponding model. They reside in a directory of
the exact name of the model they have been created from.

If the user wants to generate events for processes from a physics model from a UFO file, then
this directory of scripts generated by FeynRules is immediately available if it is a subdirectory
of the working directory of WHIZARD. The directory name will be taken as the model name. (The
UFO-model file name must not start with a non-letter character, i.e. especially not a number.
In case such a file name wants to be used at all costs, the model name in the SINDARIN script
has to put in quotation marks, but this is not guaranteed to always work.) Then, a UFO model
named, e.g., test_model is accessed by an extra ufo tag in the model assignment:

model = test_model (ufo)

If desired, WHIZARD can access a directory of UFO files elsewhere on the file system. For
instance, if FeynRules output resides in the subdirectory MyMdl of /home/users/john/ufo,
WHIZARD can use the model named MyMdl as follows

model = MyMdl (ufo (’/home/users/john/my_ufo_models’))

that is, the SINDARIN keyword ufo can take an argument. Note however, that the latter approach
can backfire — in case just the working directory is packed and archived for future reference.



Appendix A

SINDARIN Reference

In the SINDARIN language, there are certain pre-defined constructors or commands that cannot
be used in different context by the user, which are e.g. alias, beams, integrate, simulate
etc. A complete list will be given below. Also units are fixed, like degree, eV, keV, MeV, GeV,
and TeV. Again, these tags are locked and not user-redefinable. Their functionality will be
listed in detail below, too. Furthermore, a variable with a preceding question mark, ?, is a
logical, while a preceding dollar, $, denotes a character string variable. Also, a lot of unary and
binary operators exist, + - \ , = : => < > <= >= ˆ () [] {} ==, as well as quotation
marks, ". Note that the different parentheses and brackets fulfill different purposes, which will
be explained below. Comments in a line can either be marked by a hash, #, or an exclamation
mark, !.

A.1 Commands and Operators
We begin the SINDARIN reference with all commands, operators, functions and constructors.
The list of variables (which can be set to change behavior of WHIZARD) can be found in the next
section.

• +
1) Arithmetic operator for addition of integers, reals and complex numbers. Exam-
ple: real mm = mH + mZ (cf. also -, *, /, ˆ). 2) It also adds different particles
for inclusive process containers: process foo = e1, E1 => (e2, E2) + (e3, E3). 3)
It also serves as a shorthand notation for the concatenation of (→) combine opera-
tions on particles/subevents, e.g. cuts = any 170 GeV < M < 180 GeV [b + lepton +
invisible].

• -
Arithmetic operator for subtraction of integers, reals and complex numbers. Example:
real foo = 3.1 - 5.7 (cf. also +, *, /, ˆ).

• /
Arithmetic operator for division of integers, reals and complex numbers. Example: scale

279

==


280 APPENDIX A. SINDARIN REFERENCE

= mH / 2 (cf. also +, *, -, ˆ).

• *
Arithmetic operator for multiplication of integers, reals and complex numbers. Example:
complex z = 2 * I (cf. also +, /, -, ˆ).

• ˆ
Arithmetic operator for exponentiation of integers, reals and complex numbers. Example:
real z = xˆ2 + yˆ2 (cf. also +, /, -, ˆ).

• <
Arithmetic comparator between values that checks for ordering of two values: <val1>
< <val2> tests whether val1 is smaller than val2. Allowed for integer and real values.
Note that this is an exact comparison if tolerance is set to zero. For a finite value of
tolerance it is a “fuzzy” comparison. (cf. also tolerance, <>, ==, >, >=, <=)

• >
Arithmetic comparator between values that checks for ordering of two values: <val1>
> <val2> tests whether val1 is larger than val2. Allowed for integer and real values.
Note that this is an exact comparison if tolerance is set to zero. For a finite value of
tolerance it is a “fuzzy” comparison. (cf. also tolerance, <>, ==, >, >=, <=)

• <=
Arithmetic comparator between values that checks for ordering of two values: <val1> <=
<val2> tests whether val1 is smaller than or equal val2. Allowed for integer and real
values. Note that this is an exact comparison if tolerance is set to zero. For a finite
value of tolerance it is a “fuzzy” comparison. (cf. also tolerance, <>, ==, >, <, >=)

• >=
Arithmetic comparator between values that checks for ordering of two values: <val1> >=
<val2> tests whether val1 is larger than or equal val2. Allowed for integer and real
values. Note that this is an exact comparison if tolerance is set to zero. For a finite
value of tolerance it is a “fuzzy” comparison. (cf. also tolerance, <>, ==, >, <, >=)

• ==
Arithmetic comparator between values that checks for identity of two values: <val1> ==
<val2>. Allowed for integer and real values. Note that this is an exact comparison if
tolerance is set to zero. For a finite value of tolerance it is a “fuzzy” comparison. (cf.
also tolerance, <>, >, <, >=, <=)

• <>
Arithmetic comparator between values that checks for two values being unequal: <val1>
<> <val2>. Allowed for integer and real values. Note that this is an exact comparison if
tolerance is set to zero. For a finite value of tolerance it is a “fuzzy” comparison. (cf.
also tolerance, ==, >, <, >=, <=)



A.1. COMMANDS AND OPERATORS 281

• !
The exclamation mark tells SINDARIN that everything that follows in that line should be
treated as a comment. It is the same as (→) #.

• #
The hash tells SINDARIN that everything that follows in that line should be treated as a
comment. It is the same as (→) !.

• &
Concatenates two or more particle lists/subevents and hence acts in the same way as the
subevent function (→) join: let @visible = [photon] & [colored] & [lepton] in
.... (cf. also join, combine, collect, extract, sort).

• $
Constructor at the beginning of a variable name, $<string_var>, that specifies a string
variable.

• @
Constructor at the beginning of a variable name, @<subevt_var>, that specifies a subevent
variable, e.g. let @W_candidates = combine ["mu-", "numubar"] in ....

• =
Binary constructor to appoint values to commands, e.g. <command> = <expr> or
<command> <var_name> = <expr>.

• %
Constructor that gives the percentage of a number, so in principle multiplies a real number
by 0.01. Example: 1.23 % is equal to 0.0123.

• :
Separator in alias expressions for particles, e.g. alias neutrino = n1:n2:n3:N1:N2:N3.
(cf. also alias)

• ;
Concatenation operator for logical expressions: lexpr1 ; lexpr2. Evaluates lexpr1 and
throws the result away, then evaluates lexpr2 and returns that result. Used in analysis
expressions. (cf. also analysis, record)

• /+
Incrementor for (→) scan ranges, that increments additively, scan <num_spec> <num>
= (<lower val> => <upper val> /+ <step size>). E.g. scan int i = (1 => 5 /+
2) scans over the values 1, 3, 5. For real ranges, it divides the interval between upper and
lower bound into as many intervals as the incrementor provides, e.g. scan real r = (1
=> 1.5 /+ 0.2) runs over 1.0, 1.333, 1.667, 1.5.



282 APPENDIX A. SINDARIN REFERENCE

• /+/
Incrementor for (→) scan ranges, that increments additively, but the number after
the incrementor is the number of steps, not the step size: scan <num_spec> <num> =
(<lower val> => <upper val> /+/ <steps>). It is only available for real scan ranges,
and divides the interval <upper val> - <lower val> into <steps> steps, e.g. scan
real r = (1 => 1.5 /+/ 3) runs over 1.0, 1.25, 1.5.

• /-
Incrementor for (→) scan ranges, that increments subtractively, scan <num_spec> <num>
= (<lower val> => <upper val> /- <step size>). E.g. scan int i = (9 => 0 /+
3) scans over the values 9, 6, 3, 0. For real ranges, it divides the interval between upper
and lower bound into as many intervals as the incrementor provides, e.g. scan real r =
(1 => 0.5 /- 0.2) runs over 1.0, 0.833, 0.667, 0.5.

• /*
Incrementor for (→) scan ranges, that increments multiplicatively, scan <num_spec>
<num> = (<lower val> => <upper val> /* <step size>). E.g. scan int i = (1
=> 4 /* 2) scans over the values 1, 2, 4. For real ranges, it divides the interval be-
tween upper and lower bound into as many intervals as the incrementor provides, e.g.
scan real r = (1 => 5 /* 2) runs over 1.0, 2.236 (i.e.

√
5), 5.0.

• /*/
Incrementor for (→) scan ranges, that increments multiplicatively, but the number after
the incrementor is the number of steps, not the step size: scan <num_spec> <num> =
(<lower val> => <upper val> /*/ <steps>). It is only available for real scan ranges,
and divides the interval <upper val> - <lower val> into <steps> steps, e.g. scan
real r = (1 => 9 /*/ 4) runs over 1.000, 2.080, 4.327, 9.000.

• //
Incrementor for (→) scan ranges, that increments by division, scan <num_spec> <num> =
(<lower val> => <upper val> // <step size>). E.g. scan int i = (13 => 0 //
3) scans over the values 13, 4, 1, 0. For real ranges, it divides the interval between upper
and lower bound into as many intervals as the incrementor provides, e.g. scan real r =
(5 => 1 // 2) runs over 5.0, 2.236 (i.e.

√
5), 1.0.

• =>
Binary operator that is used in several different contexts: 1) in process declarations
between the particles specifying the initial and final state, e.g. process <proc_name>
= <in1>, <in2> => <out1>, ....; 2) for the specification of beams when structure
functions are applied to the beam particles, e.g. beams = p, p => pdf_builtin; 3) for
the specification of the scan range in the scan <var> <var_name> = (<scan_start> =>
<scan_end> <incrementor>) (cf. also process, beams, scan)

• %d
Format specifier in analogy to the C language for the print out on screen by the (→)



A.1. COMMANDS AND OPERATORS 283

printf or into strings by the (→) sprintf command. It is used for decimal integer
numbers, e.g. printf "one = %d" (i). The difference between %i and %d does not play
a role here. (cf. also printf, sprintf, %i, %e, %f, %g, %E, %F, %G, %s)

• %e
Format specifier in analogy to the C language for the print out on screen by the (→)
printf or into strings by the (→) sprintf command. It is used for floating-point numbers
in standard form [-]d.ddd e[+/-]ddd. Usage e.g. printf "pi = %e" (PI). (cf. also
printf, sprintf, %d, %i, %f, %g, %E, %F, %G, %s)

• %E
Same as (→) %e, but using upper-case letters. (cf. also printf, sprintf, %d, %i, %e, %f,
%g, %F, %G, %s)

• %f
Format specifier in analogy to the C language for the print out on screen by the (→)
printf or into strings by the (→) sprintf command. It is used for floating-point numbers
in fixed-point form. Usage e.g. printf "pi = %f" (PI). (cf. also printf, sprintf, %d,
%i, %e, %g, %E, %F, %G, %s)

• %F
Same as (→) %f, but using upper-case letters. (cf. also printf, sprintf, %d, %i, %e, %f,
%g, %E, %G, %s)

• %g
Format specifier in analogy to the C language for the print out on screen by the (→)
printf or into strings by the (→) sprintf command. It is used for floating-point numbers
in normal or exponential notation, whichever is more approriate. Usage e.g. printf "pi
= %g" (PI). (cf. also printf, sprintf, %d, %i, %e, %f, %E, %F, %G, %s)

• %G
Same as (→) %g, but using upper-case letters. (cf. also printf, sprintf, %d, %i, %e, %f,
%g, %E, %F, %s)

• %i
Format specifier in analogy to the C language for the print out on screen by the (→)
printf or into strings by the (→) sprintf command. It is used for integer numbers, e.g.
printf "one = %i" (i). The difference between %i and %d does not play a role here.
(cf. printf, sprintf, %d, %e, %f, %g, %E, %F, %G, %s)

• %s
Format specifier in analogy to the C language for the print out on screen by the (→)
printf or into strings by the (→) sprintf command. It is used for logical or string
variables e.g. printf "foo = %s" ($method). (cf. printf, sprintf, %d, %i, %e, %f, %g,
%E, %F, %G)



284 APPENDIX A. SINDARIN REFERENCE

• abarn
Physical unit, stating that a number is in attobarns (10−18 barn). (cf. also nbarn, fbarn,
pbarn)

• abs
Numerical function that takes the absolute value of its argument: abs (<num_val>) yields
|<num_val>|. (cf. also conjg, sgn, mod, modulo)

• acos
Numerical function asin (<num_val>) that calculates the arccosine trigonometric function
(inverse of cos) of real and complex numerical numbers or variables. (cf. also sin, cos,
tan, asin, atan)

• alias
This allows to define a collective expression for a class of particles, e.g. to define a generic
expression for leptons, neutrinos or a jet as alias lepton = e1:e2:e3:E1:E2:E3, alias
neutrino = n1:n2:n3:N1:N2:N3, and alias jet = u:d:s:c:U:D:S:C:g, respectively.

• all
all is a function that works on a logical expression and a list, all <log_expr> [<list>],
and returns true if and only if log_expr is fulfilled for all entries in list, and false
otherwise. Examples: all Pt > 100 GeV [lepton] checks whether all leptons are harder
than 100 GeV, all Dist > 2 [u:U, d:D] checks whether all pairs of corresponding
quarks are separated in R space by more than 2. Logical expressions with all can be
logically combined with and and or. (cf. also any, and, no, and or)

• alt_setup
This command allows to specify alternative setups for a process/list of processes, alt_setup
= { <setup1> } [, { <setup2> } , ...]. An alternative setup can be a resetting of
a coupling constant, or different cuts etc. It can be particularly used in a (→) rescan
procedure.

• analysis
This command, analysis = <log_expr>, allows to define an analysis as a logical expres-
sion, with a syntax similar to the (→) cuts or (→) selection command. Note that a
(→) formally is a logical expression.

• and
This is the standard two-place logical connective that has the value true if both of its
operands are true, otherwise a value of false. It is applied to logical values, e.g. cut
expressions. (cf. also all, no, or).

• any
any is a function that works on a logical expression and a list, any <log_expr> [<list>],
and returns true if log_expr is fulfilled for any entry in list, and false otherwise.
Examples: any PDG == 13 [lepton] checks whether any lepton is a muon, any E > 2 *



A.1. COMMANDS AND OPERATORS 285

mW [jet] checks whether any jet has an energy of twice the W mass. Logical expressions
with any can be logically combined with and and or. (cf. also all, and, no, and or)

• as
cf. compile

• ascii
Specifier for the sample_format command to demand the generation of the standard
WHIZARD verbose/debug ASCII event files. (cf. also $sample, $sample_normalization,
sample_format)

• asin
Numerical function asin (<num_val>) that calculates the arcsine trigonometric function
(inverse of sin) of real and complex numerical numbers or variables. (cf. also sin, cos,
tan, acos, atan)

• atan
Numerical function atan (<num_val>) that calculates the arctangent trigonometric func-
tion (inverse of tan) of real and complex numerical numbers or variables. (cf. also sin,
cos, tan, asin, acos)

• athena
Specifier for the sample_format command to demand the generation of the ATHENA
variant for HEPEVT ASCII event files. (cf. also $sample, $sample_normalization,
sample_format)

• beam
Constructor that specifies a particle (in a subevent) as beam particle. It is used in cuts,
analyses or selections, e.g. cuts = all Theta > 20 degree [beam lepton, lepton].
(cf. also incoming, outgoing, cuts, analysis, selection, record)

• beam_events
Beam structure specifier to read in lepton collider beamstrahlung’s spectra from external
files as pairs of energy fractions: beams: e1, E1 => beam_events. Note that this is
a pair spectrum that has to be applied to both beams simultaneously. (cf. also beams,
$beam_events_file, ?beam_events_warn_eof)

• beams
This specifies the contents and structure of the beams: beams = <prt1>, <prt2> [
=> <str_fun1> ....]. If this command is absent in the input file, WHIZARD auto-
matically takes the two incoming partons (or one for decays) of the corresponding
process as beam particles, and no structure functions are applied. Protons and an-
tiprotons as beam particles are predefined as p and pbar, respectively. A structure
function, like pdf_builtin, ISR, EPA and so on are switched on as e.g. beams = p, p
=> lhapdf. Structure functions can be specified for one of the two beam particles only,
of the structure function is not a spectrum. (cf. also beams_momentum, beams_theta,



286 APPENDIX A. SINDARIN REFERENCE

beams_phi, beams_pol_density, beams_pol_fraction, beam_events, circe1, circe2,
energy_scan, epa, ewa, isr, lhapdf, pdf_builtin).

• beams_momentum
Command to set the momenta (or energies) for the two beams of a scattering process:
beams_momentum = <mom1>, <mom2> to allow for asymmetric beam setups (e.g. HERA:
beams_momentum = 27.5 GeV, 920 GeV). Two arguments must be present for a scattering
process, but the command can be used with one argument to integrate and simulate a decay
of a moving particle. (cf. also beams, beams_theta, beams_phi, beams_pol_density,
beams_pol_fraction)

• beams_phi
Same as (→) beams_theta, but to allow for a non-vanishing beam azimuth angle, too. (cf.
also beams, beams_theta, beams_momentum, beams_pol_density, beams_pol_fraction)

• beams_pol_density
This command allows to specify the initial state for polarized beams by the syntax:
beams_pol_density = @(<pol_spec_1>), @(<pol_spec_2>). Two polarization speci-
fiers are mandatory for scattering, while one can be used for decays from polarized probes.
The specifier <pol_spec_i> can be empty (no polarization), has one entry (for a definite
helicity/spin orientation), or ranges of entries of a spin density matrix. The command
can be used globally, or as a local argument of the integrate command. For detailed
information, see Sec. 5.6.1. It is also possible to use variables as placeholders in the
specifiers. Note that polarization is assumed to be complete, for partial polarization use
(→) beams_pol_fraction. (cf. also beams, beams_theta, beams_phi, beams_momentum,
beams_pol_fraction)

• beams_pol_fraction
This command allows to specify the amount of polarization when using polarized beams
(→ beams_pol_density). The syntax is: beams_pol_fraction = <frac_1>, <frac_2>.
Two fractions must be present for scatterings, being real numbers between 0 and 1. A
specification with percentage is also possible, e.g. beams_pol_fraction = 80%, 40%. (cf.
also beams, beams_theta, beams_phi, beams_momentum, beams_pol_density)

• beams_theta
Command to set a crossing angle (with respect to the z axis) for one or both of the beams
of a scattering process: beams_theta = <angle1>, <angle2> to allow for asymmetric
beam setups (e.g. beams_angle = 0, 10 degree). Two arguments must be present for
a scattering process, but the command can be used with one argument to integrate and
simulate a decay of a moving particle. (cf. also beams, beams_phi, beams_momentum,
beams_pol_density, beams_pol_fraction)

• by
Constructor that replaces the default sorting criterion (according to PDG codes) of the
(→) sort function on particle lists/subevents by one given by a unary or binary particle



A.1. COMMANDS AND OPERATORS 287

observable: sort by <observable> [<particles> [, <ref_particles>] ]. (cf. also
sort, extract, join, collect, combine, +)

• ceiling
This is a function ceiling (<num_val>) that gives the least integer greater than or
equal to <num_val>, e.g. int i = ceiling (4.56789) gives i = 5. (cf. also int, nint,
floor)

• circe1
Beam structure specifier for the CIRCE1 structure function for beamstrahlung at a linear
lepton collider: beams = e1, E1 => circe1. Note that this is a pair spectrum, so
the specifier acts for both beams simultaneously. (cf. also beams, ?circe1_photons,
?circe1_photon2, circe1_sqrts, ?circe1_generate, ?circe1_map, circe1_eps,
circe1_mapping_slope, circe1_ver, circe1_rev, $circe1_acc, circe1_chat)

• circe2
Beam structure specifier for the lepton-collider structure function for photon spectra,
CIRCE2: beams = A, A => circe2. Note that this is a pair spectrum, an application
to only one beam is not possible. (cf. also beams, ?circe2_polarized, $circe2_file,
$circe2_design)

• clear
This command allows to clear a variable set before: clear (<clearable var.>) resets
the variable <clearable var.> which could be the beams, the unstable settings, sqrts,
any kind of cuts or scale expressions, any user-set variable etc. The syntax of the
command is completely analogous to (→) show.

• close_out
With the command, close_out ("<out_file">) user-defined information like data or
(→) printf statements can be written out to a user-defined file. The command closes an
I/O stream to an external file <out_file>. (cf. also open_out, $out_file, printf)

• cluster
Command that allows to cluster all particles in a subevent to a set of jets: cluster
[<particles>]. It also to cluster particles subject to a certain boolean condition, cluster
if <condition> [<particles>]. At the moment only available if the FastJet package
is linked. (cf. also jet_r, combine, jet_algorithm, kt_algorithm,
cambridge_[for_passive_]algorithm, antikt_algorithm, plugin_algorithm,
genkt_[for_passive_]algorithm, ee_kt_algorithm, ee_genkt_algorithm, ?keep_flavors_when_clustering)

• collect
The collect [<list>] operation collects all particles in the list <list> into a one-entry
subevent with a four-momentum of the sum of all four-momenta of non-overlapping
particles in <list>. (cf. also combine, select, extract, sort)



288 APPENDIX A. SINDARIN REFERENCE

• complex
Defines a complex variable. The syntax is e.g. complex x = 2 + 3 * I. (cf. also int,
real)

• combine
The combine [<list1>, <list2>] operation makes a particle list whose entries are the
result of adding (the momenta of) each pair of particles in the two input lists list1, list2.
For example, combine [incoming lepton, lepton] constructs all mutual pairings of an
incoming lepton with an outgoing lepton (an alias for the leptons has to be defined, of
course). (cf. also collect, select, extract, sort, +)

• compile
The compile () command has no arguments (the parentheses can also been left out:
/compile (). The command is optional, it invokes the compilation of the process(es)
(i.e. the matrix element file(s)) to be compiled as a shared library. This shared object
file has the standard name default_lib.so and resides in the .libs subdirectory of
the corresponding user workspace. If the user has defined a different library name
lib_name with the library command, then WHIZARD compiles this as the shared object
.libs/lib_name.so. (This allows to split process classes and to avoid too large libraries.)
Another possibility is to use the command compile as "static_name". This will compile
and link the process library in a static way and create the static executable static_name
in the user workspace. (cf. also library)

• compile_analysis
The compile_analysis statement does the same as the write_analysis command,
namely to tell WHIZARD to write the analysis setup by the user for the SINDARIN input
file under consideration. If no $out_file is provided, the histogram tables/plot data etc.
are written to the default file whizard_analysis.dat. In addition to write_analysis,
compile_analysis also invokes the WHIZARD LATEXroutines for producing postscript or
PDF output of the data (unless the flag → ?analysis_file_only is set to true). (cf.
also $out_file, write_analysis, ?analysis_file_only)

• conjg
Numerical function that takes the complex conjugate of its argument: conjg (<num_val>)
yields <num_val>∗. (cf. also abs, sgn, mod, modulo)

• cos
Numerical function cos (<num_val>) that calculates the cosine trigonometric function of
real and complex numerical numbers or variables. (cf. also sin, tan, asin, acos, atan)

• cosh
Numerical function cosh (<num_val>) that calculates the hyperbolic cosine function of
real and complex numerical numbers or variables. Note that its inverse function is part of
the Fortran2008 status and hence not realized. (cf. also sinh, tanh)



A.1. COMMANDS AND OPERATORS 289

• count
Subevent function that counts the number of particles or particle pairs in a subevent:
count [<particles_1> [, <particles_2>]]. This can also be a counting subject to a
condition: count if <condition> [<particles_1> [, <particles_2>]].

• cuts
This command defines the cuts to be applied to certain processes. The syntax is: cuts
= <log_class> <log_expr> [<unary or binary particle (list) arg>], where the
cut expression must be initialized with a logical classifier log_class like all, any, no. The
logical expression log_expr contains the cut to be evaluated. Note that this need not only
be a kinematical cut expression like E > 10 GeV or 5 degree < Theta < 175 degree,
but can also be some sort of trigger expression or event selection. Whether the expression is
evaluated on particles or pairs of particles depends on whether the discriminating variable
is unary or binary, Dist being obviously binary, Pt being unary. Note that some variables
are both unary and binary, e.g. the invariant mass M . Cut expressions can be connected
by the logical connectives and and or. The cuts statement acts on all subsequent process
integrations and analyses until a new cuts statement appears. (cf. also all, any, Dist, E,
M, no, Pt).

• debug
Specifier for the sample_format command to demand the generation of the very ver-
bose WHIZARD ASCII event file format intended for debugging. (cf. also $sample,
sample_format, $sample_normalization)

• degree
Expression specifying the physical unit of degree for angular variables, e.g. the cut
expression function Theta. (if no unit is specified for angular variables, radians are used;
cf. rad, mrad).

• Dist
Binary observable specifier, that gives the η-ϕ- (pseudorapidity-azimuth) distance R =√

(∆η)2 + (∆ϕ)2 between the momenta of the two particles: eval Dist [jet, jet]. (cf.
also eval, cuts, selection, Theta, Eta, Phi)

• dump
Specifier for the sample_format command to demand the generation of the intrinsic
WHIZARD event record format (output of the particle_t type container). (cf. also
$sample, sample_format, $sample_normalization

• E
Unary (binary) observable specifier for the energy of a single (two) particle(s), e.g. eval
E ["W+"], all E > 200 GeV [b, B]. (cf. eval, cuts, selection)

• else
Constructor for providing an alternative in a conditional clause: if <log_expr> then
<expr 1> else <expr 2> endif. (cf. also if, elsif, endif, then).



290 APPENDIX A. SINDARIN REFERENCE

• elsif
Constructor for concatenating more than one conditional clause with each other: if
<log_expr 1> then <expr 1> elsif <log_expr 2> then <expr 2> ...endif. (cf. also
if, else, endif, then).

• endif
Mandatory constructor to conclude a conditional clause: if <log_expr> then ...endif.
(cf. also if, else, elsif, then).

• energy_scan
Beam structure specifier for the energy scan structure function: beams = e1, E1 =>
energy_scan. This pair spectrum that has to be applied to both beams simultaneously
can be used to scan over a range of collider energies without using the scan command.
(cf. also beams, scan, ?energy_scan_normalize)

• epa
Beam structure specifier for the equivalent-photon approximation (EPA), i.e the Weizsäcker-
Williams structure function: e.g. beams = e1, E1 => epa (applied to both beams), or e.g.
beams = e1, u => epa, none (applied to only one beam). (cf. also beams, epa_alpha,
epa_x_min, epa_mass, epa_q_max, epa_q_min, ?epa_recoil, ?epa_keep_energy)

• Eta
Unary and also binary observable specifier, that as a unary observable gives the pseudora-
pidity of a particle momentum. The pseudorapidity is given by η = − log [tan(θ/2)], where
θ is the angle with the beam direction. As a binary observable, it gives the pseudorapidity
difference between the momenta of two particles, where θ is the enclosed angle: eval Eta
[e1], all abs (Eta) < 3.5 [jet, jet]. (cf. also eval, cuts, selection, Rap, abs)

• eV
Physical unit, stating that the corresponding number is in electron volt. (cf. also keV,
meV, MeV, GeV, TeV)

• eval
Evaluator that tells WHIZARD to evaluate the following expr: eval <expr>. Examples
are: eval Rap [e1], eval M / 1 GeV [combine [q,Q]] etc. (cf. also cuts, selection,
record, sum, prod)

• ewa
Beam structure specifier for the equivalent-photon approximation (EWA): e.g. beams = e1,
E1 => ewa (applied to both beams), or e.g. beams = e1, u => ewa, none (applied to
only one beam). (cf. also beams, ewa_x_min, ewa_pt_max, ewa_mass, ?ewa_keep_energy,
?ewa_recoil)

• exec
Constructor exec ("<cmd_name>") that demands WHIZARD to execute/run the com-



A.1. COMMANDS AND OPERATORS 291

mand cmd_name. For this to work that specific command must be present either in the
path of the operating system or as a command in the user workspace.

• exit
Command to finish the WHIZARD run (and not execute any further code beyond the
appearance of exit in the SINDARIN file. The command (which is the same as → quit)
allows for an argument, exit (<expr>), where the expression can be executed, e.g. a
screen message or an exit code.

• exp
Numerical function exp (<num_val>) that calculates the exponential of real and complex
numerical numbers or variables. (cf. also sqrt, log, log10)

• expect
The binary function expect compares two numerical expressions whether they fulfill a
certain ordering condition or are equal up to a specific uncertainty or tolerance which can
bet set by the specifier tolerance, i.e. in principle it checks whether a logical expression
is true. The expect function does actually not just check a value for correctness, but
also records its result. If failures are present when the program terminates, the exit code
is nonzero. The syntax is expect (<num1> <log_comp> <num2>), where <num1> and
<num2> are two numerical values (or corresponding variables) and <log_comp> is one
of the following logical comparators: <, >, <=, >=, ==, <>. (cf. also <, >, <=, >=, ==, <>,
tolerance).

• extract
Subevent function that either extracts the first element of a particle list/subevent: extract
[ <particles>], or the element at position <index_value> of the particle list: extract
index <index_value> [ <particles>]. Negative index values count from the end of
the list. (cf. also sort, combine, collect, +, index)

• factorization_scale
This is a command, factorization_scale = <expr>, that sets the factorization scale of
a process or list of processes. It overwrites a possible scale set by the (→) scale command.
<expr> can be any kinematic expression that leads to a result of momentum dimension
one, e.g. 100 GeV, eval Pt [e1]. (cf. also renormalization_scale).

• false
Constructor stating that a logical expression or variable is false, e.g. ?<log_var> = false.
(cf. also true).

• fbarn
Physical unit, stating that a number is in femtobarns (10−15 barn). (cf. also nbarn, abarn,
pbarn)



292 APPENDIX A. SINDARIN REFERENCE

• floor
This is a function floor (<num_val>) that gives the greatest integer less than or equal to
<num_val>, e.g. int i = floor (4.56789) gives i = 4. (cf. also int, nint, ceiling)

• gaussian
Beam structure specifier that imposes a Gaussian energy distribution, separately for each
beam. The σ values are set by gaussian_spread1 and gaussian_spread2, respectively.

• GeV
Physical unit, energies in 109 electron volt. This is the default energy unit of WHIZARD.
(cf. also eV, keV, MeV, meV, TeV)

• graph
This command defines the necessary information regarding producing a graph of a function
in WHIZARD’s internal graphical gamelan output. The syntax is: graph <record_name>
{ <optional arguments> }. The record with name <record_name> has to be defined,
either before or after the graph definition. Possible optional arguments of the graph
command are the minimal and maximal values of the axes (x_min, x_max, y_min, y_max).
(cf. plot, histogram, record)

• Hel
Unary observable specifier that allows to specify the helicity of a particle, e.g. all Hel
== -1 [e1] in a selection. (cf. also eval, cuts, selection)

• hepevt
Specifier for the sample_format command to demand the generation of HEPEVT ASCII
event files. (cf. also $sample, sample_format)

• hepevt_verb
Specifier for the sample_format command to demand the generation of the extended or
verbose version of HEPEVT ASCII event files. (cf. also $sample, sample_format)

• hepmc
Specifier for the sample_format command to demand the generation of HepMC ASCII
event files. Note that this is only available if the HepMC package is installed and correctly
linked. (cf. also $sample, sample_format, ?hepmc_output_cross_section)

• histogram
This command defines the necessary information regarding plotting data as a histogram, in
the form of: histogram <record_name> { <optional arguments> }. The record with
name <record_name> has to be defined, either before or after the histogram definition.
Possible optional arguments of the histogram command are the minimal and maximal
values of the axes (x_min, x_max, y_min, y_max). (cf. graph, plot, record)

• Ht
Subeventary observable specifier for the transverse mass (

√
p2T +m2 in the c.m. frame)



A.1. COMMANDS AND OPERATORS 293

summed over all particles in the subevent given as argument, e.g. eval Ht [t:T:Z]. (cf.
eval, sum, prod, Pt, M)

• if
Conditional clause with the construction if <log_expr> then <expr> [else <expr>
...] endif. Note that there must be an endif statement. For more complicated ex-
pressions it is better to use expressions in parentheses: if (<log_expr>) then {<expr>}
else {<expr>} endif. Examples are a selection of up quarks over down quarks depend-
ing on a logical variable: if ?ok then u else d, or the setting of an integer variable
depending on the rapidity of some particle: if (eta > 0) then { a = +1} else { a
= -1}. (cf. also elsif, endif, then)

• in
Second part of the constructor to let a variable be local to an expression. It has the syntax
let <var> = <value> in <expression>. E.g. let int a = 3 in let int b = 4 in
<expression> (cf. also let)

• include
The include statement, include ("file.sin") allows to include external SINDARIN files
file.sin into the main WHIZARD input file. A standard example is the inclusion of the
standard cut file default_cuts.sin.

• incoming
Constructor that specifies particles (or subevents) as incoming. It is used in cuts, analyses
or selections, e.g. cuts = all Theta > 20 degree [incoming lepton, lepton]. (cf.
also beam, outgoing, cuts, analysis, selection, record)

• index
Specifies the position of the element of a particle to be extracted by the subevent function
(→) extract: extract index <index_value> [ <particles>]. Negative index values
count from the end of the list. (cf. also extract, sort, combine, collect, +)

• int
1) This is a constructor to specify integer constants in the input file. Strictly speaking,
it is a unary function setting the value int_val of the integer variable int_var: int
<int_var> = <int_val>. Note that is mandatory for all user-defined variables. (cf. also
real and complex) 2) It is a function int (<num_val>) that converts real and complex
numbers (here their real parts) into integers. (cf. also nint, floor, ceiling)

• integrate
The integrate (<proc_name>) { <integrate_options> } command invokes the inte-
gration (phase-space generation and Monte-Carlo sampling) of the process proc_name
(which can also be a list of processes) with the integration options <integrate_options>.
Possible options are (1) via $integration_method = "<intg. method>" the integra-
tion method (the default being VAMP), (2) the number of iterations and calls per



294 APPENDIX A. SINDARIN REFERENCE

integration during the Monte-Carlo phase-space integration via the iterations spec-
ifier; (3) goal for the accuracy, error or relative error (accuracy_goal, error_goal,
relative_error_goal). (4) Invoking only phase space generation (?phs_only = true),
(5) making test calls of the matrix element. (cf. also iterations, accuracy_goal,
error_goal, relative_error_goal, error_threshold)

• isr
Beam structure specifier for the lepton-collider/QED initial-state radiation (ISR) structure
function: e.g. beams = e1, E1 => isr (applied to both beams), or e.g. beams = e1,
u => isr, none (applied to only one beam). (cf. also beams, isr_alpha, isr_q_max,
isr_mass, isr_order, ?isr_recoil, ?isr_keep_energy)

• iterations (default: internal heuristics)
Option to set the number of iterations and calls per iteration during the Monte-Carlo phase-
space integration process. The syntax is iterations = <n_iterations>:<n_calls>.
Note that this can be also a list, separated by colons, which breaks up the integration
process into passes of the specified number of integrations and calls each. It works for all
integration methods. For VAMP, there is the additional option to specify whether grids and
channel weights should be adapted during iterations ("g", "w", "gw" for both, or "" for no
adaptation). (cf. also integrate, accuracy_goal, error_goal, relative_error_goal,
error_threshold).

• join
Subevent function that concatenates two particle lists/subevents if there is no overlap:
join [<particles>, <new_particles>]. The joining of the two lists can also be made
depending on a condition: join if <condition> [<particles>, <new_particles>].
(cf. also &, collect, combine, extract, sort, +)

• keV
Physical unit, energies in 103 electron volt. (cf. also eV, meV, MeV, GeV, TeV)

• kT
Binary particle observable that represents a jet kT clustering measure: kT [j1, j2] gives
the following kinematic expression: 2min(E2

j1, E
2
j2)/Q

2 × (1− cos θj1,j2). At the moment,
Q2 = 1.

• let
This allows to let a variable be local to an expression. It has the syntax let <var> =
<value> in <expression>. E.g. let int a = 3 in let int b = 4 in <expression>
(cf. also in)

• lha
Specifier for the sample_format command to demand the generation of the WHIZARD
version 1 style (deprecated) LHA ASCII event format files. (cf. also $sample,
sample_format)



A.1. COMMANDS AND OPERATORS 295

• lhapdf
This is a beams specifier to demand calling LHAPDF parton densities as structure functions
to integrate processes in hadron collisions. Note that this only works if the external
LHAPDF library is present and correctly linked. (cf. beams, $lhapdf_dir, $lhapdf_file,
lhapdf_photon, $lhapdf_photon_file, lhapdf_member, lhapdf_photon_scheme)

• lhapdf_photon
This is a beams specifier to demand calling LHAPDF parton densities as structure functions to
integrate processes in hadron collisions with a photon as initializer of the hard scattering
process. Note that this only works if the external LHAPDF library is present and cor-
rectly linked. (cf. beams, lhapdf, $lhapdf_dir, $lhapdf_file, $lhapdf_photon_file,
lhapdf_member, lhapdf_photon_scheme)

• lhef
Specifier for the sample_format command to demand the generation of the Les Houches
Accord (LHEF) event format files, with XML headers. There are several different versions
of this format, which can be selected via the $lhef_version specifier (cf. also $sample,
sample_format, $lhef_version, $lhef_extension, ?lhef_write_sqme_prc,
?lhef_write_sqme_ref, ?lhef_write_sqme_alt)

• library
The command library = "<lib_name>" allows to specify a separate shared object library
archive lib_name.so, not using the standard library default_lib.so. Those libraries
(when using shared libraries) are located in the .libs subdirectory of the user workspace.
Specifying a separate library is useful for splitting up large lists of processes, or to restrict
a larger number of different loaded model files to one specific process library. (cf. also
compile, $library_name)

• log
Numerical function log (<num_val>) that calculates the natural logarithm of real and
complex numerical numbers or variables. (cf. also sqrt, exp, log10)

• log10
Numerical function log10 (<num_val>) that calculates the base 10 logarithm of real and
complex numerical numbers or variables. (cf. also sqrt, exp, log)

• long
Specifier for the sample_format command to demand the generation of the long variant
of HEPEVT ASCII event files. (cf. also $sample, sample_format)

• M
Unary (binary) observable specifier for the (signed) mass of a single (two) particle(s), e.g.
eval M [e1], any M = 91 GeV [e2, E2]. (cf. eval, cuts, selection)



296 APPENDIX A. SINDARIN REFERENCE

• M2
Unary (binary) observable specifier for the mass squared of a single (two) particle(s), e.g.
eval M2 [e1], all M2 > 2*mZ [e2, E2]. (cf. eval, cuts, selection)

• max
Numerical function with two arguments max (<var1>, <var2>) that gives the maximum
of the two arguments: max(var1, var2). It can act on all combinations of integer and real
variables. Example: real heavier_mass = max (mZ, mH). (cf. also min)

• meV
Physical unit, stating that the corresponding number is in 10−3 electron volt. (cf. also eV,
keV, MeV, GeV, TeV)

• MeV
Physical unit, energies in 106 electron volt. (cf. also eV, keV, meV, GeV, TeV)

• min
Numerical function with two arguments min (<var1>, <var2>) that gives the minimum
of the two arguments: min(var1, var2). It can act on all combinations of integer and real
variables. Example: real lighter_mass = min (mZ, mH). (cf. also max)

• mod
Numerical function for integer and real numbers mod (x, y) that computes the remainder
of the division of x by y (which must not be zero). (cf. also abs, conjg, sgn, modulo)

• model (default: SM)
With this specifier, model = <model_name>, one sets the hard interaction physics model
for the processes defined after this model specification. The list of available models can be
found in Table 10.1. Note that the model specification can appear arbitrarily often in a
SINDARIN input file, e.g. for compiling and running processes defined in different physics
models. (cf. also $model_name)

• modulo
Numerical function for integer and real numbers modulo (x, y) that computes the value
of x modulo y. (cf. also abs, conjg, sgn, mod)

• mokka
Specifier for the sample_format command to demand the generation of the MOKKA
variant for HEPEVT ASCII event files. (cf. also $sample, sample_format)

• mrad
Expression specifying the physical unit of milliradians for angular variables. This default
in WHIZARD is rad. (cf. degree, rad).

• nbarn
Physical unit, stating that a number is in nanobarns (10−9 barn). (cf. also abarn, fbarn,
pbarn)



A.1. COMMANDS AND OPERATORS 297

• n_in
Integer variable that accesses the number of incoming particles of a process. It can be
used in cuts or in an analysis. (cf. also sqrts_hat, cuts, record, n_out, n_tot)

• Nacl
Unary observable specifier that returns the total number of open anticolor lines of a
particle or subevent (i.e., composite particle). Defined only if ?colorize_subevt is true..
(cf. also Ncol, ?colorize_subevt)

• Ncol
Unary observable specifier that returns the total number of open color lines of a particle or
subevent (i.e., composite particle). Defined only if ?colorize_subevt is true.. (cf. also
Nacl, ?colorize_subevt)

• nint
This is a function nint (<num_val>) that converts real numbers into the closest integer,
e.g. int i = nint (4.56789) gives i = 5. (cf. also int, floor, ceiling)

• no
no is a function that works on a logical expression and a list, no <log_expr> [<list>],
and returns true if and only if log_expr is fulfilled for none of the entries in list, and
false otherwise. Examples: no Pt < 100 GeV [lepton] checks whether no lepton is
softer than 100 GeV. It is the logical opposite of the function all. Logical expressions
with no can be logically combined with and and or. (cf. also all, any, and, and or)

• none
Beams specifier that can used to explicitly not apply a structure function to a beam, e.g.
in HERA physics: beams = e1, P => none, pdf_builtin. (cf. also beams)

• not
This is the standard logical negation that converts true into false and vice versa. It is
applied to logical values, e.g. cut expressions. (cf. also and, or).

• n_out
Integer variable that accesses the number of outgoing particles of a process. It can be
used in cuts or in an analysis. (cf. also sqrts_hat, cuts, record, n_in, n_tot)

• n_tot
Integer variable that accesses the total number of particles (incoming plus outgoing) of
a process. It can be used in cuts or in an analysis. (cf. also sqrts_hat, cuts, record,
n_in, n_out)

• observable
With this, observable = <obs_spec>, the user is able to define a variable specifier
obs_spec for observables. These can be reused in the analysis, e.g. as a record, as
functions of the fundamental kinematical variables of the processes. (cf. analysis,
record)



298 APPENDIX A. SINDARIN REFERENCE

• open_out
With the command, open_out ("<out_file">) user-defined information like data or (→)
printf statements can be written out to a user-defined file. The command opens an I/O
stream to an external file <out_file>. (cf. also close_out, $out_file, printf)

• or
This is the standard two-place logical connective that has the value true if one of its
operands is true, otherwise a value of false. It is applied to logical values, e.g. cut
expressions. (cf. also and, not).

• outgoing
Constructor that specifies particles (or subevents) as outgoing. It is used in cuts, analy-
ses or selections, e.g. cuts = all Theta > 20 degree [incoming lepton, outgoing
lepton]. Note that the outgoing keyword is redundant and included only for complete-
ness: outgoing lepton has the same meaning as lepton. (cf. also beam, incoming, cuts,
analysis, selection, record)

• P
Unary (binary) observable specifier for the spatial momentum

√
p⃗2 of a single (two)

particle(s), e.g. eval P ["W+"], all P > 200 GeV [b, B]. (cf. eval, cuts, selection)

• pbarn
Physical unit, stating that a number is in picobarns (10−12 barn). (cf. also abarn, fbarn,
nbarn)

• pdf_builtin
This is a beams specifier for WHIZARD’s internal PDF structure functions to integrate
processes in hadron collisions. (cf. beams, pdf_builtin_photon, $pdf_builtin_file)

• pdf_builtin_photon
This is a beams specifier for WHIZARD’s internal PDF structure functions to integrate
processes in hadron collisions with a photon as initializer of the hard scattering process.
(cf. beams, $pdf_builtin_file)

• PDG
Unary observable specifier that allows to specify the PDG code of a particle, e.g. eval
PDG [e1], giving 11. (cf. also eval, cuts, selection)

• Phi
Unary and also binary observable specifier, that as a unary observable gives the azimuthal
angle of a particle’s momentum in the detector frame (beam into +z direction). As a
binary observable, it gives the azimuthal difference between the momenta of two particles:
eval Phi [e1], all Phi > Pi [jet, jet]. (cf. also eval, cuts, selection, Theta)

• photon_isolation
Logical function photon_isolation if <condition> [<list1> , <list2>] that cuts



A.1. COMMANDS AND OPERATORS 299

out event where the photons in <list1> do not fulfill the condition <condition> and are
not isolated from hadronic (and electromagnetic) activity, i.e. the photon fragmentation.
(cf. also cluster, collect, combine, extract, select, sort, +)

• photon_recombination
Similar to the cluster statement takes a subevent as argument and combines a (single)
photon with the closest non-photon object given in the subevent. Depends on the SINDARIN
variable photon_rec_r0 which gives the R radius within which the photon is recombined.
(cf. also cluster, collect, combine)

• Pl
Unary (binary) observable specifier for the longitudinal momentum (pz in the c.m. frame)
of a single (two) particle(s), e.g. eval Pl ["W+"], all Pl > 200 GeV [b, B]. (cf. eval,
cuts, selection)

• plot
This command defines the necessary information regarding plotting data as a graph, in
the form of: plot <record_name> { <optional arguments> }. The record with name
<record_name> has to be defined, either before or after the plot definition. Possible
optional arguments of the plot command are the minimal and maximal values of the axes
(x_min, x_max, y_min, y_max). (cf. graph, histogram, record)

• polarized
Constructor to instruct WHIZARD to retain polarization of the corresponding particles in
the generated events: polarized <prt1> [, <prt2> , ...]. (cf. also unpolarized,
simulate, ?polarized_events)

• printf
Command that allows to print data as screen messages, into logfiles or into user-defined
output files: printf "<string_expr>". There exist format specifiers, very similar to the C
command printf, e.g. printf "%i" (123). (cf. also open_out, close_out, $out_file,
?out_advance, sprintf, %d, %i, %e, %f, %g, %E, %F, %G, %s)

• process
Allows to set a hard interaction process, either for a decay process with name <decay_proc>
as process <decay_proc> = <mother> => <daughter1>, <daughter2>, ..., or for a
scattering process with name <scat_proc as process <scat_proc> = <in1>, <in2> =>
<out1>, <out2>, .... Note that there can be arbitrarily many processes to be defined
in a SINDARIN input file. There are two options for particle/process sums: flavor sums:
<prt1>:<prt2>:..., where all masses have to be identical, and inclusive sums, <prt1> +
<prt2> + .... The latter can be done on the level of individual particles, or sums over
whole final states. Here, masses can differ, and terms will be translated into different
process components. The process command also allows for optional arguments, e.g. to
specify a numerical identifier (cf. process_num_id), the method how to generate the
code for the matrix element(s): $method, possible methods are either with the O’Mega



300 APPENDIX A. SINDARIN REFERENCE

matrix element generator, using template matrix elements with different normalizations, or
completely internal matrix element; for O’Mega matrix elements there is also the possibility
to specify possible restrictions (cf. $restrictions).

• prod
Takes the product of an expression <expr> over the elements of the given subevent
<subevt>, prod <expr> [<subevt>], e.g. prod Hel [e1:E1] (cf. eval, sum).

• Pt
Unary (binary) observable specifier for the transverse momentum (

√
p2x + p2y in the c.m.

frame) of a single (two) particle(s), e.g. eval Pt ["W+"], all Pt > 200 GeV [b, B].
(cf. eval, cuts, selection)

• Px
Unary (binary) observable specifier for the x-component of the momentum of a single
(two) particle(s), e.g. eval Px ["W+"], all Px > 200 GeV [b, B]. (cf. eval, cuts,
selection)

• Py
Unary (binary) observable specifier for the y-component of the momentum of a single
(two) particle(s), e.g. eval Py ["W+"], all Py > 200 GeV [b, B]. (cf. eval, cuts,
selection)

• Pz
Unary (binary) observable specifier for the z-component of the momentum of a single
(two) particle(s), e.g. eval Pz ["W+"], all Pz > 200 GeV [b, B]. (cf. eval, cuts,
selection)

• quit
Command to finish the WHIZARD run (and not execute any further code beyond the
appearance of quit in the SINDARIN file. The command (which is the same as → exit)
allows for an argument, quit (<expr>), where the expression can be executed, e.g. a
screen message or an quit code.

• rad
Expression specifying the physical unit of radians for angular variables. This is the default
in WHIZARD. (cf. degree, mrad).

• Rap
Unary and also binary observable specifier, that as a unary observable gives the rapidity
of a particle momentum. The rapidity is given by y = 1

2
log [(E + pz)/(E − pz)]. As a

binary observable, it gives the rapidity difference between the momenta of two particles:
eval Rap [e1], all abs (Rap) < 3.5 [jet, jet]. (cf. also eval, cuts, selection,
Eta, abs)



A.1. COMMANDS AND OPERATORS 301

• read_slha
Tells WHIZARD to read in an input file in the SUSY Les Houches accord (SLHA), as
read_slha ("slha_file.slha"). Note that the files for the use in WHIZARD should
have the suffix .slha. (cf. also write_slha, ?slha_read_decays, ?slha_read_input,
?slha_read_spectrum)

• real
This is a constructor to specify real constants in the input file. Strictly speaking, it
is a unary function setting the value real_val of the real variable real_var: real
<real_var> = <real_val>. (cf. also int and complex)

• real_epsilon
Predefined real; the relative uncertainty intrinsic to the floating point type of the Fortran
compiler with which WHIZARD has been built.

• real_precision
Predefined integer; the decimal precision of the floating point type of the Fortran compiler
with which WHIZARD has been built.

• real_range
Predefined integer; the decimal range of the floating point type of the Fortran compiler
with which WHIZARD has been built.

• real_tiny
Predefined real; the smallest number which can be represented by the floating point type
of the Fortran compiler with which WHIZARD has been built.

• record
The record constructor provides an internal data structure in SINDARIN input files. Its
syntax is in general record <record_name> (<cmd_expr>). The <cmd_expr> could be
the definition of a tuple of points for a histogram or an eval constructor that tells WHIZARD
e.g. by which rule to calculate an observable to be stored in the record record_name.
Example: record h (12) is a record for a histogram defined under the name h with the
single data point (bin) at value 12; record rap1 (eval Rap [e1]) defines a record with
name rap1 which has an evaluator to calculate the rapidity (predefined WHIZARD function)
of an outgoing electron. (cf. also eval, histogram, plot)

• renormalization_scale
This is a command, renormalization_scale = <expr>, that sets the renormalization
scale of a process or list of processes. It overwrites a possible scale set by the (→) scale
command. <expr> can be any kinematic expression that leads to a result of momentum
dimension one, e.g. 100 GeV, eval Pt [e1]. (cf. also factorization_scale).

• rescan
This command allows to rescan event samples with modified model parameter, beam
structure etc. to recalculate (analysis) observables, e.g.:



302 APPENDIX A. SINDARIN REFERENCE

rescan "<event_file>" (<proc_name>) { <rescan_setup>}.
"<event_file>" is the name of the event file and <proc_name> is the process whose
(existing) event file of arbitrary size that is to be rescanned. Several flags allow to
reconstruct the beams (→ ?recover_beams), to reuse only the hard process but rebuild
the full events (→ ?update_event), to recalculate the matrix element (→ ?update_sqme)
or to recalculate the individual event weight (→ ?update_weight). Further rescan options
are redefining model parameter input, or defining a completely new alternative setup (→
alt_setup) (cf. also $rescan_input_format)

• results
Only used in the combination show (results). Forces WHIZARD to print out a results
summary for the integrated processes. (cf. also show)

• reweight
The reweight = <expr> command allows to give for a process or list of processes an
alternative weight, given by any kind of scalar expression <expr>, e.g. reweight =
0.2 or reweight = (eval M2 [e1, E1]) / (eval M2 [e2, E2]). (cf. also alt_setup,
weight, rescan)

• sample_format
Variable that allows the user to specify additional event formats beyond the WHIZARD
native binary event format. Its syntax is sample_format = <format>, where <format>
can be any of the following specifiers: hepevt, hepevt_verb, ascii, athena, debug,
long, short, hepmc, lhef, lha, lha_verb, stdhep, stdhep_up, lcio, mokka. (cf. also
$sample, simulate, hepevt, ascii, athena, debug, long, short, hepmc, lhef, lha,
stdhep, stdhep_up, lcio, mokka, $sample_normalization, ?sample_pacify,
sample_max_tries, sample_split_n_evt, sample_split_n_kbytes)

• scale
This is a command, scale = <expr>, that sets the kinematic scale of a process or list
of processes. Unless overwritten explicitly by (→) factorization_scale and/or (→)
renormalization_scale it sets both scales. <expr> can be any kinematic expression
that leads to a result of momentum dimension one, e.g. scale = 100 GeV, scale = eval
Pt [e1].

• scan
Constructor to perform loops over variables or scan over processes in the integration
procedure. The syntax is scan <var> <var_name> (<value list> or <value_init>
=> <value_fin> /<incrementor> <increment>) { <scan_cmd> }. The variable var
can be specified if it is not a real, e.g. an integer. var_name is the name of the variable
which is also allowed to be a predefined one like seed. For the scan, one can either
specify an explicit list of values value list, or use an initial and final value and a
rule to increment. The scan_cmd can either be just a show to print out the scanned
variable or the integration of a process. Examples are: scan seed (32 => 1 // 2) {
show (seed_value) } , which runs the seed down in steps 32, 16, 8, 4, 2, 1 (division



A.1. COMMANDS AND OPERATORS 303

by two). scan mW (75 GeV, 80 GeV => 82 GeV /+ 0.5 GeV, 83 GeV => 90 GeV /*
1.2) { show (sw) } scans over the W mass for the values 75, 80, 80.5, 81, 81.5, 82, 83
GeV, namely one discrete value, steps by adding 0.5 GeV, and increase by 20 % (the latter
having no effect as it already exceeds the final value). It prints out the corresponding
value of the effective mixing angle which is defined as a dependent variable in the model
input file(s). scan sqrts (500 GeV => 600 GeV /+ 10 GeV) { integrate (proc) }
integrates the process proc in eleven increasing 10 GeV steps in center-of-mass energy
from 500 to 600 GeV. (cf. also /+, /+/, /-, /*, /*/, //)

• select
Subevent function select if <condition> [<list1> [ , <list2>]] that selects all
particles in <list1> that satisfy the condition <condition>. The second particle list
<list2> is for conditions that depend on binary observables. (cf. also collect, combine,
extract, sort, +)

• select_b_jet
Subevent function select if <condition> [<list1> [ , <list2>]] that selects all
particles in <list1> that are b jets and satisfy the condition <condition>. The second
particle list <list2> is for conditions that depend on binary observables. (cf. also
cluster, collect, combine, extract, select, sort, +)

• select_c_jet
Subevent function select if <condition> [<list1> [ , <list2>]] that selects all
particles in <list1> that are c jets (but not b jets) and satisfy the condition <condition>.
The second particle list <list2> is for conditions that depend on binary observables. (cf.
also cluster, collect, combine, extract, select, sort, +)

• select_light_jet
Subevent function select if <condition> [<list1> [ , <list2>]] that selects all
particles in <list1> that are light(-flavor) jets and satisfy the condition <condition>.
The second particle list <list2> is for conditions that depend on binary observables. (cf.
also cluster, collect, combine, extract, select, sort, +)

• select_non_b_jet
Subevent function select if <condition> [<list1> [ , <list2>]] that selects all
particles in <list1> that are not b jets (c and light jets) and satisfy the condition
<condition>. The second particle list <list2> is for conditions that depend on binary
observables. (cf. also cluster, collect, combine, extract, select, sort, +)

• selection
Command that allows to select particular final states in an analysis selection, selection
= <log_expr>. The term log_expr can be any kind of logical expression. The syntax
matches exactly the one of the (→) cuts command. E.g. selection = any PDG == 13
is an electron selection in a lepton sample.



304 APPENDIX A. SINDARIN REFERENCE

• sgn
Numerical function for integer and real numbers that gives the sign of its argument: sgn
(<num_val>) yields +1 if <num_val> is positive or zero, and −1 otherwise. (cf. also abs,
conjg, mod, modulo)

• short
Specifier for the sample_format command to demand the generation of the short variant
of HEPEVT ASCII event files. (cf. also $sample, sample_format)

• show
This is a unary function that is operating on specific constructors in order to print
them out in the WHIZARD screen output as well as the log file whizard.log. Exam-
ples are show(<parameter_name>) to issue a specific parameter from a model or a con-
stant defined in a SINDARIN input file, show(integral(<proc_name>)), show(library),
show(results), or show(<var>) for any arbitrary variable. Further possibilities are
show(real), show(string), show(logical) etc. to allow to show all defined real, string,
logical etc. variables, respectively. (cf. also library, results)

• simulate
This command invokes the generation of events for the process proc by means of
simulate (<proc>). Optional arguments: $sample, sample_format, checkpoint (cf.
also integrate, luminosity, n_events, $sample, sample_format, checkpoint, ?unweighted,
safety_factor, ?negative_weights, sample_max_tries, sample_split_n_evt, sample_split_n_kbytes)

• sin
Numerical function sin (<num_val>) that calculates the sine trigonometric function of
real and complex numerical numbers or variables. (cf. also cos, tan, asin, acos, atan)

• sinh
Numerical function sinh (<num_val>) that calculates the hyperbolic sine function of real
and complex numerical numbers or variables. Note that its inverse function is part of the
Fortran2008 status and hence not realized. (cf. also cosh, tanh)

• sort
Subevent function that allows to sort a particle list/subevent either by increasing PDG
code: sort [<particles>] (particles first, then antiparticles). Alternatively, it can sort
according to a unary or binary particle observable (in that case there is a second particle list,
where the first particle is taken as a reference): sort by <observable> [<particles>
[, <ref_particles>]]. (cf. also extract, combine, collect, join, by, +)

• sprintf
Command that allows to print data into a string variable: sprintf "<string_expr>".
There exist format specifiers, very similar to the C command sprintf, e.g. sprintf "%i"
(123). (cf. printf, %d, %i, %e, %f, %g, %E, %F, %G, %s)



A.1. COMMANDS AND OPERATORS 305

• sqrt
Numerical function sqrt (<num_val>) that calculates the square root of real and complex
numerical numbers or variables. (cf. also exp, log, log10)

• sqrts_hat
Real variable that accesses the partonic energy of a hard-scattering process. It can be
used in cuts or in an analysis, e.g. cuts = sqrts_hat > <num> [ <phys_unit> ]. The
physical unit can be one of the following eV, keV, MeV, GeV, and TeV. (cf. also sqrts, cuts,
record)

• stable
This constructor allows particles in the final states of processes in decay cascade set-up to
be set as stable, and not letting them decay. The syntax is stable <prt_name> (cf. also
unstable)

• stdhep
Specifier for the sample_format command to demand the generation of binary StdHEP
event files based on the HEPEVT common block. (cf. also $sample, sample_format)

• stdhep_up
Specifier for the sample_format command to demand the generation of binary Std-
HEP event files based on the HEPRUP/HEPEUP common blocks. (cf. also $sample,
sample_format)

• sum
Takes the sum of an expression <expr> over the elements of the given subevent <subevt>,
sum <expr> [<subevt>], e.g. sum Pt/2 [jets] (cf. eval, prod).

• tan
Numerical function tan (<num_val>) that calculates the tangent trigonometric function
of real and complex numerical numbers or variables. (cf. also sin, cos, asin, acos, atan)

• tanh
Numerical function tanh (<num_val>) that calculates the hyperbolic tangent function of
real and complex numerical numbers or variables. Note that its inverse function is part of
the Fortran2008 status and hence not realized. (cf. also cosh, sinh)

• TeV
Physical unit, for energies in 1012 electron volt. (cf. also eV, keV, MeV, meV, GeV)

• then
Mandatory phrase in a conditional clause: if <log_expr> then <expr 1> ...endif.
(cf. also if, else, elsif, endif).

• Theta
Unary and also binary observable specifier, that as a unary observable gives the angle



306 APPENDIX A. SINDARIN REFERENCE

process zee = Z => e1, E1
process zuu = Z => u, U
process zz = e1, E1 => Z, Z
compile
integrate (zee) { iterations = 1:100 }
integrate (zuu) { iterations = 1:100 }
sqrts = 500 GeV
integrate (zz) { iterations = 3:5000, 2:5000 }
unstable Z (zee, zuu)

Figure A.1: SINDARIN input file for unstable particles and inclusive decays.

between a particle’s momentum and the beam axis (+z direction). As a binary observable, it
gives the angle enclosed between the momenta of the two particles: eval Theta [e1], all
Theta > 30 degrees [jet, jet]. (cf. also eval, cuts, selection, Phi, Theta_star)

• Theta_star
Binary observable specifier, that gives the polar angle enclosed between the momenta of
the two particles in the rest frame of the mother particle (momentum sum of the two
particle): eval Theta_star [jet, jet]. (cf. also eval, cuts, selection, Theta)

• true
Constructor stating that a logical expression or variable is true, e.g. ?<log_var> = true.
(cf. also false).

• unpolarized
Constructor to force WHIZARD to discard polarization of the corresponding particles in
the generated events: unpolarized <prt1> [, <prt2> , ...]. (cf. also polarized,
simulate, ?polarized_events)

• unstable
This constructor allows to let final state particles of the hard interaction undergo a
subsequent (cascade) decay (in the on-shell approximation). For this the user has to define
the list of desired decay channels as unstable <mother> (<decay1>, <decay2>, ....),
where mother is the mother particle, and the argument is a list of decay channels. Note
that – unless the ?auto_decays = true flag has been set – these decay channels have to
be provided by the user as in the example in Fig. A.1. First, the Z decays to electrons and
up quarks are generated, then ZZ production at a 500 GeV ILC is called, and then both
Zs are decayed according to the probability distribution of the two generated decay matrix
elements. This obviously allows also for inclusive decays. (cf. also stable, ?auto_decays)

• weight
This is a command, weight = <expr>, that allows to specify a weight for a process or list



A.2. VARIABLES 307

of processes. <expr> can be any expression that leads to a scalar result, e.g. weight =
0.2, weight = eval Pt [jet]. (cf. also rescan, alt_setup, reweight)

• write_analysis
The write_analysis statement tells WHIZARD to write the analysis setup by the user for
the SINDARIN input file under consideration. If no $out_file is provided, the histogram
tables/plot data etc. are written to the default file whizard_analysis.dat. Note that the
related command compile_analysis does the same as write_analysis but in addition
invokes the WHIZARD LATEXroutines for producing postscript or PDF output of the data.
(cf. also $out_file, compile_analysis)

• write_slha
Demands WHIZARD to write out a file in the SUSY Les Houches accord (SLHA) format.
(cf. also read_slha, ?slha_read_decays, ?slha_read_input, ?slha_read_spectrum)

A.2 Variables

A.2.1 Rebuild Variables

• ?rebuild_events (default: false)
This logical variable, if set true triggers WHIZARD to newly create an event sample, even if
nothing seems to have changed, including the MD5 checksum. This can be used when
manually manipulating some settings. (cf also ?rebuild_grids, ?rebuild_library,
?rebuild_phase_space)

• ?rebuild_grids (default: false)
The logical variable ?rebuild_grids forces WHIZARD to newly create the VAMP grids
when using VAMP as an integration method, even if they are already present. (cf. also
?rebuild_events, ?rebuild_library, ?rebuild_phase_space)

• ?rebuild_library (default: false)
The logical variable ?rebuild_library = true/false specifies whether the library(-ies)
for the matrix element code for processes is re-generated (incl. possible Makefiles etc.) by
the corresponding ME method (e.g. if the process has been changed, but not its name).
This can also be set as a command-line option whizard –rebuild. The default is false,
i.e. code is never re-generated if it is present and the MD5 checksum is valid. (cf. also
?recompile_library, ?rebuild_grids, ?rebuild_phase_space)

• ?rebuild_phase_space (default: false)
This logical variable, if set true, triggers recreation of the phase space file by WHIZARD(̇cf.
also ?rebuild_events, ?rebuild_grids, ?rebuild_library)

• ?recompile_library (default: false)
The logical variable ?recompile_library = true/false specifies whether the library(-
ies) for the matrix element code for processes is re-compiled (e.g. if the process code



308 APPENDIX A. SINDARIN REFERENCE

has been manually modified by the user). This can also be set as a command-line
option whizard –recompile. The default is false, i.e. code is never re-compiled if its
corresponding object file is present. (cf. also ?rebuild_library)

A.2.2 Standard Variables

• accuracy_goal (default: 0.00000E+00)
Real parameter that allows the user to set a minimal accuracy that should be achieved in
the Monte-Carlo integration of a certain process. If that goal is reached, grid and weight
adapation stop, and this result is used for simulation. (cf. also integrate, iterations,
error_goal, relative_error_goal, error_threshold)

• ?allow_decays (default: true)
Master flag to switch on cascade decays for final state particles as an event transform.
As a default, it is switched on. (cf. also ?auto_decays, auto_decays_multiplicity,
?auto_decays_radiative, ?decay_rest_frame)

• ?allow_hadronization (default: true)
Master flag to switch on hadronization as an event transform. As a default, it is switched
on. (cf. also ?ps_ ...., $ps_ ..., ?mlm_ ..., ?hadronization_active)

• ?allow_shower (default: true)
Master flag to switch on (initial and final state) parton shower, matching/merging as an
event transform. As a default, it is switched on. (cf. also ?ps_ ...., $ps_ ..., ?mlm_
..., ?hadronization_active)

• ?alpha_evolve_analytic (default: true)
Flag that tells WHIZARD to use analytic running formulae for α instead of a numeric Runge-
Kutta. (cf. also alpha_order, ?alpha_is_fixed, alpha_nf, alpha_nlep, ?alpha_from_me)

• ?alpha_is_fixed (default: true)
Flag that tells WHIZARD to use a non-running QED α. Note that this has to be set explicitly
to false if the user wants to use one of the running α options. (cf. also alpha_order,
alpha_nf, alpha_lep, ?alphas_from_me

• alpha_nf (default: -1)
Integer parameter that sets the number of active quark flavors for the internal evolution
for running α in WHIZARD. The default, -1, keeps it equal to alphas_nf alpha_is_fixed,
alphas_order, ?alpha_from_me, ?alpha_evolve_analytic

• alpha_nlep (default: 1)
Integer parameter that sets the number of active leptons in the running of α in WHIZARD.
The deffault isone, with only the electron considered massless (cf. also alpha_is_fixed,
alpha_nf, alpha_order, ?alpha_from_me, ?alpha_evolve_analytic)



A.2. VARIABLES 309

• alpha_order (default: 0)
Integer parameter that sets the order of the internal evolution for running α in WHIZARD:
the default, 0, is LO running, 1 is NLO. (cf. also alpha_is_fixed, alpha_nf, alphas_lep,
?alpha_from_me)

• alpha_power (default: 2)
Fixes the electroweak coupling powers used by BLHA matrix element generators. Setting
these values is necessary for the correct generation of OLP-files. Having inconsistent values
yields to error messages by the corresponding OLP-providers.

• ?alphas_from_lambda_qcd (default: false)
Flag that tells WHIZARD to use its internal running αs from αs(ΛQCD). Note that in
that case ?alphas_is_fixed has to be set explicitly to false. (cf. also alphas_order,
?alphas_is_fixed, ?alphas_from_lhapdf, alphas_nf, ?alphas_from_pdf_builtin,
?alphas_from_mz, lambda_qcd)

• ?alphas_from_lhapdf (default: false)
Flag that tells WHIZARD to use a running αs from the LHAPDF library (which has to
be correctly linked). Note that ?alphas_is_fixed has to be set explicitly to false.
(cf. also alphas_order, ?alphas_is_fixed, ?alphas_from_pdf_builtin, alphas_nf,
?alphas_from_mz, ?alphas_from_lambda_qcd, lambda_qcd)

• ?alphas_from_mz (default: false)
Flag that tells WHIZARD to use its internal running αs from αs(MZ). Note that in that
case ?alphas_is_fixed has to be set explicitly to false. (cf. also alphas_order,
?alphas_is_fixed, ?alphas_from_lhapdf, alphas_nf, ?alphas_from_pdf_builtin,
?alphas_from_lambda_qcd, lambda_qcd)

• ?alphas_from_pdf_builtin (default: false)
Flag that tells WHIZARD to use a running αs from the internal PDFs. Note that in
that case ?alphas_is_fixed has to be set explicitly to false. (cf. also alphas_order,
?alphas_is_fixed, ?alphas_from_lhapdf, alphas_nf, ?alphas_from_mz,
?alphas_from_lambda_qcd, lambda_qcd)

• ?alphas_is_fixed (default: true)
Flag that tells WHIZARD to use a non-running QCD αs. Note that this has to be set explicitly
to false if the user wants to use one of the running αs options. (cf. also alphas_order,
?alphas_from_lhapdf, ?alphas_from_pdf_builtin, alphas_nf, ?alphas_from_mz,
?alphas_from_lambda_qcd, lambda_qcd)

• alphas_nf (default: 5)
Integer parameter that sets the number of active quark flavors for the internal evo-
lution for running αs in WHIZARD. (cf. also alphas_is_fixed, ?alphas_from_lhapdf,
?alphas_from_pdf_builtin, alphas_order, ?alphas_from_mz,
?alphas_from_lambda_qcd, lambda_qcd)



310 APPENDIX A. SINDARIN REFERENCE

• alphas_order (default: 0)
Integer parameter that sets the order of the internal evolution for running αs in WHIZARD:
the default, 0, is LO running, 1 is NLO, 2 is NNLO. (cf. also alphas_is_fixed,
?alphas_from_lhapdf, ?alphas_from_pdf_builtin, alphas_nf, ?alphas_from_mz,
?alphas_from_lambda_qcd, lambda_qcd)

• alphas_power (default: 0)
Fixes the strong coupling powers used by BLHA matrix element generators. Setting these
values is necessary for the correct generation of OLP-files. Having inconsistent values
yields to error messages by the corresponding OLP-providers.

• ?analysis_file_only (default: false)
Allows to specify that only LATEX files for WHIZARD’s graphical analysis are written out,
but not processed. (cf. compile_analysis, write_analysis)

• antikt_algorithm (fixed value: 2)
Specifies a jet algorithm for the (→) jet_algorithm command, used in the (→) cluster
subevent function. At the moment only available for the interfaced external FastJet pack-
age. (cf. also kt_algorithm, cambridge_[for_passive_]algorithm, plugin_algorithm,
genkt_[for_passive_]algorithm, ee_[gen]kt_algorithm, jet_r)

• ?auto_decays (default: false)
Flag, particularly as optional argument of the (→) unstable command, that tells WHIZARD
to automatically determine the decays of that particle up to the final state multplicity
(→) auto_decays_multiplicity. Depending on the flag (→) ?auto_decays_radiative,
radiative decays will be taken into account or not. (cf. also unstable, ?isotropic_decay,
?diagonal_decay)

• auto_decays_multiplicity (default: 2)
Integer parameter, that sets – for the (→) ?auto_decays option to let WHIZARD automati-
cally determine the decays of a particle set as (→) unstable – the maximal final state multi-
plicity that is taken into account. The default is 2. The flag ?auto_decays_radiative de-
cides whether radiative decays are taken into account. (cf. also unstable, ?auto_decays)

• ?auto_decays_radiative (default: false)
If WHIZARD’s automatic detection of decay channels are switched on (→ ?auto_decays
for the (→) unstable command, this flags decides whether radiative decays (e.g. con-
taining additional photon(s)/gluon(s)) are taken into account or not. (cf. also unstable,
auto_decays_multiplicity)

• $beam_events_file
String variable that allows to set the name of the external file from which a beamstrahlung’s
spectrum for lepton colliders as pairs of energy fractions is read in. (cf. also beam_events,
?beam_events_warn_eof)



A.2. VARIABLES 311

• ?beam_events_warn_eof (default: true)
Flag that tells WHIZARD to issue a warning when in a simulation the end of an external file
for beamstrahlung’s spectra for lepton colliders are reached, and energy fractions from the
beginning of the file are reused. (cf. also beam_events, $beam_events_file)

• $blha_ew_scheme (default: "alpha_internal")
String variable that transfers the electroweak renormalization scheme via BLHA to the
one-loop provider. Possible values are GF or Gmu for the Gµ scheme, alpha_internal
(default, Gµ scheme, but value of αS calculated internally by WHIZARD), alpha_mz and
alpha_0 (or alpha_thompson) for different schemes with α as input.

• blha_top_yukawa (default: -1.00000E+00)
If this value is set, the given value will be used as the top Yukawa coupling instead of
the top mass. Note that having different values for yt and mt must be supported by your
OLP-library and yield errors if this is not the case.

• $born_me_method (default: "")
This string variable specifies the method for the matrix elements to be used in the evaluation
of the Born part of the NLO computation. The default is the empty string, i.e. the $method
being the intrinsic O’Mega matrix element generator ("omega"), other options are: "ovm",
"unit_test", "template", "template_unity", "threshold", "gosam", "openloops".
Note that this option is inoperative if no NLO calculation is specified in the process
definition. If you want ot use different matrix element methods in a LO computation,
use the usual method command. (cf. also $correlation_me_method, $dglap_me_method,
$loop_me_method and $real_tree_me_method.)

• cambridge_algorithm (fixed value: 1)
Specifies a jet algorithm for the (→) jet_algorithm command, used in the (→) cluster
subevent function. At the moment only available for the interfaced external FastJet pack-
age. (cf. also kt_algorithm, cambridge_for_passive_algorithm, plugin_algorithm,
genkt_[for_passive_]algorithm, ee_[gen]kt_algorithm, jet_r)

• cambridge_for_passive_algorithm (fixed value: 11)
Specifies a jet algorithm for the (→) jet_algorithm command, used in the (→) cluster
subevent function. At the moment only available for the interfaced external FastJet
package. (cf. also kt_algorithm, cambridge_algorithm, plugin_algorithm,
genkt_[for_passive_]algorithm, ee_[gen]kt_algorithm, jet_r)

• channel_weights_power (default: 2.50000E-01)
Real parameter that allows to vary the exponent of the channel weights for the VAMP
integrator.

• ?check_event_file (default: true)
Setting this to false turns off all sanity checks when reading a raw event file with previously
generated events. Use this at your own risk; the program may return wrong results or
crash if data do not match. (cf. also ?check_grid_file, ?check_phs_file)



312 APPENDIX A. SINDARIN REFERENCE

• ?check_event_weights_against_xsection (default: false)
Activates an internal recording of event weights when unweighted events are generated.
At the end of the simulation, the mean value of the weights and its standard deviation are
displayed. This allows to cross-check event generation and integration, because the value
displayed must be equal to the integration result.

• ?check_grid_file (default: true)
Setting this to false turns off all sanity checks when reading a grid file with previous
integration data. Use this at your own risk; the program may return wrong results or
crash if data do not match. (cf. also ?check_event_file, ?check_phs_file)

• ?check_phs_file (default: true)
Setting this to false turns off all sanity checks when reading a previously generated phase-
space configuration file. Use this at your own risk; the program may return wrong results
or crash if data do not match. (cf. also ?check_event_file, ?check_grid_file)

• checkpoint (default: 0)
Setting this integer variable to a positive integer n instructs simulate to print out a progress
summary every n events.

• $circe1_acc (default: "SBAND")
String variable that specifies the accelerator type for the CIRCE1 structure function for
lepton-collider beamstrahlung. (?circe1_photons, ?circe1_photon2, circe1_sqrts,
?circe1_generate, ?circe1_map, circe1_eps, circe1_mapping_slope, circe1_ver,
circe1_rev, circe1_chat, ?circe1_with_radiation)

• circe1_chat (default: 0)
Chattiness of the CIRCE1 structure function for lepton-collider beamstrahlung. The
higher the integer value, the more information will be given out by the CIRCE1 package.
(?circe1_photons, ?circe1_photon2, circe1_sqrts, ?circe1_generate, ?circe1_map,
circe1_eps, circe1_mapping_slope, circe1_ver,
circe1_rev, $circe1_acc, ?circe1_with_radiation)

• circe1_eps (default: 1.00000E-05)
Real parameter, that takes care of the mapping of the peak in the lepton collider beam-
strahlung structure function spectrum of CIRCE1. (cf. also circe1, ?circe1_photons,
?circe1_photon2, circe1_sqrts, ?circe1_generate, ?circe1_map, circe1_eps,
circe1_mapping_slope, circe1_ver, circe1_rev, $circe1_acc, circe1_chat,
?circe1_with_radiation)

• ?circe1_generate (default: true)
Flag that determines whether the CIRCE1 structure function for lepton collider beam-
strahlung uses the generator mode for the spectrum, or a pre-defined (semi-)analytical
parameterization. Default is the generator mode. (cf. also circe1, ?circe1_photon1,
?circe1_photon2, circe1_sqrts, ?circe1_map, circe1_mapping_slope, circe1_eps,
circe1_ver, circe1_rev, $circe1_acc, circe1_chat, ?circe1_with_radiation)



A.2. VARIABLES 313

• ?circe1_map (default: true)
Flag that determines whether the CIRCE1 structure function for lepton collider beam-
strahlung uses special mappings for s-channel resonances. (cf. also circe1, ?circe1_photon1,
?circe1_photon2, circe1_sqrts, ?circe1_generate, circe1_mapping_slope, circe1_eps,
circe1_ver, circe1_rev, $circe1_acc, circe1_chat, ?circe1_with_radiation)

• circe1_mapping_slope (default: 2.00000E+00)
Real parameter that allows to vary the slope of the mapping function for the CIRCE1
structure function for lepton collider beamstrahlung from the default value 2.. (cf.
also circe1, ?circe1_photon1, ?circe1_photon2, circe1_sqrts, ?circe1_generate,
?circe1_map, circe1_eps, circe1_ver, circe1_rev, $circe1_acc, circe1_chat,
?circe1_with_radiation)

• ?circe1_photon1 (default: false)
Flag to tell WHIZARD to use the photon of the CIRCE1 beamstrahlung structure func-
tion as initiator for the hard scattering process in the first beam. (cf. also circe1,
?circe1_photon2, circe1_sqrts, ?circe1_generate, ?circe1_map, circe1_eps,
circe1_mapping_slope, circe1_ver, circe1_rev, $circe1_acc, circe1_chat,
?circe1_with_radiation)

• ?circe1_photon2 (default: false)
Flag to tell WHIZARD to use the photon of the CIRCE1 beamstrahlung structure func-
tion as initiator for the hard scattering process in the second beam. (cf. also circe1,
?circe1_photon1, circe1_sqrts, ?circe1_generate, ?circe1_map, circe1_eps,
circe1_mapping_slope, circe1_ver, circe1_rev, $circe1_acc, circe1_chat,
?circe1_with_radiation)

• circe1_rev (default: 0)
Integer parameter that sets the internal revision number of the CIRCE1 structure function
for lepton-collider beamstrahlung. The default 0 translates always into the most recent
version; older versions have to be accessed through the explicit revision date. For more
details cf. the CIRCE1manual. (cf. also circe1, ?circe1_photon1, ?circe1_photon2,
?circe1_generate, ?circe1_map, circe1_eps, circe1_mapping_slope, circe1_sqrts,
circe1_ver, $circe1_acc, circe1_chat, ?circe1_with_radiation)

• circe1_sqrts
Real parameter that allows to set the value of the collider energy for the lepton collider
beamstrahlung structure function CIRCE1. If not set,

√
s is taken. (cf. also circe1,

?circe1_photon1, ?circe1_photon2, ?circe1_generate, ?circe1_map, circe1_eps,
circe1_mapping_slope, circe1_ver, circe1_rev, $circe1_acc, circe1_chat,
?circe1_with_radiation)

• circe1_ver (default: 0)
Integer parameter that sets the internal versioning number of the CIRCE1 structure
function for lepton-collider beamstrahlung. It has to be set by the user explicitly, it



314 APPENDIX A. SINDARIN REFERENCE

takes values from one to ten. (cf. also circe1, ?circe1_photon1, ?circe1_photon2,
?circe1_generate, ?circe1_map, circe1_eps, circe1_mapping_slope, circe1_sqrts,
circe1_rev, $circe1_acc, circe1_chat, ?circe1_with_radiation)

• ?circe1_with_radiation (default: false)
This logical decides whether the additional photon or electron ("beam remnant") will be con-
sidered in the event record or not. (?circe1_photons, ?circe1_photon2, circe1_sqrts,
?circe1_generate, ?circe1_map, circe1_eps, circe1_mapping_slope, circe1_ver,
circe1_rev, $circe1_acc)

• $circe2_design (default: "*")
String variable that sets the collider design for the CIRCE2 structure function for photon
collider spectra. (cf. also circe2, $circe2_file, ?circe2_polarized)

• $circe2_file
String variable by which the corresponding photon collider spectrum for the CIRCE2 struc-
ture function can be selected. (cf. also circe2, ?circe2_polarized, $circe2_design)

• ?circe2_polarized (default: true)
Flag whether the photon spectra from the CIRCE2 structure function for lepton colliders
should be treated polarized. (cf. also circe2, $circe2_file, $circe2_design)

• ?ckkw_matching (default: false)
Master flag that switches on the CKKW(-L) (LO) matching between hard scattering matrix
elements and QCD parton showers. Note that this is not yet (completely) implemented in
WHIZARD. (cf. also ?allow_shower, ?ps_ ..., $ps_ ..., ?mlm_ ...)

• ?colorize_subevt (default: false)
Flag that enables color-index tracking in the subevent (subevt) objects that are used for
internal event analysis.

• ?combined_nlo_integration (default: false)
When this option is set to true, the NLO integration will not be performed in the separate
components, but instead the sum of all components will be integrated directly. When
fixed-order NLO events are requested, this integration mode is possible, but not necessary.
However, it is necessary for POWHEG events.

• $compile_workspace
If set, create process source code and process-driver library code in a subdirectory with
this name. If non-existent, the directory will be created. (cf. also $job_id, $run_id,
$integrate_workspace)

• $correlation_me_method (default: "")
This string variable specifies the method for the matrix elements to be used in the
evaluation of the color (and helicity) correlated part of the NLO computation. The
default is the same as the $method, i.e. the intrinsic O’Mega matrix element generator



A.2. VARIABLES 315

("omega"), other options are: "ovm", "unit_test", "template", "template_unity",
"threshold", "gosam", "openloops". (cf. also $born_me_method, $dglap_me_method,
$loop_me_method and
$real_tree_me_method.)

• $dalitz_plot (default: "")
This string variable has two purposes: when different from the empty string, it switches on
generation of the Dalitz plot file (ASCII tables) for the real emitters. The string variable
itself provides the file name.

• ?debug_decay (default: true)
Flag that decides whether decay information will be displayed in the ASCII debug event for-
mat (→) debug. (cf. also sample_format, $sample, $debug_extension, ?debug_process,
?debug_transforms, ?debug_verbose)

• $debug_extension (default: "debug")
String variable that allows via $debug_extension = "<suffix>" to specify the suffix for
the file name.suffix to which events in a long verbose format with debugging information
are written. If not set, the default file name and suffix is <process_name>.debug. (cf.
also sample_format, $sample, ?debug_process, ?debug_transforms, ?debug_decay,
?debug_verbose)

• ?debug_process (default: true)
Flag that decides whether process information will be displayed in the ASCII debug event
format (→) debug. (cf. also sample_format, $sample, $debug_extension, ?debug_decay,
?debug_transforms, ?debug_verbose)

• ?debug_transforms (default: true)
Flag that decides whether information about event transforms will be displayed in the
ASCII debug event format (→) debug. (cf. also sample_format, $sample, ?debug_decay,
$debug_extension, ?debug_process, ?debug_verbose)

• ?debug_verbose (default: true)
Flag that decides whether extensive verbose information will be included in the ASCII
debug event format (→) debug. (cf. also sample_format, $sample, $debug_extension,
?debug_decay, ?debug_transforms, ?debug_process)

• decay_helicity
If this parameter is given an integer value, any particle decay triggered by a subsequent
unstable declaration will receive a projection on the given helicity state for the un-
stable particle. (cf. also unstable, ?isotropic_decay, ?diagonal_decay. The latter
parameters, if true, take precdence over any ?decay_helicity setting.)

• ?decay_rest_frame (default: false)
Flag that allows to force a particle decay to be simulated in its rest frame. This simplifies



316 APPENDIX A. SINDARIN REFERENCE

the calculation for decays as stand-alone processes, but makes the process unsuitable for
use in a decay chain.

• $description (default: "")
String variable that allows to specify a description text for the analysis, $description
= "<LaTeX analysis descr.>". This line appears below the title of a corresponding
analysis, on top of the respective plot. (cf. also analysis, n_bins, ?normalize_bins,
$obs_unit, $x_label, $y_label, ?y_log, ?x_log, graph_width_mm, graph_height_mm,
x_min, x_max, y_min, y_max, $gmlcode_bg, $gmlcode_fg, ?draw_base, ?draw_histogram,
?fill_curve, ?draw_piecewise, ?draw_curve, ?draw_errors, $symbol, ?draw_symbols,
$fill_options, $draw_options, $err_options)

• $dglap_me_method (default: "")
This string variable specifies the method for the matrix elements to be used in the eval-
uation of the DGLAP remnants of the NLO computation. The default is the same as
$method, i.e. the O’Mega matrix element generator ("omega"), other options are: "ovm",
"unit_test", "template", "template_unity", "threshold", "gosam", "openloops".
(cf. also
$born_me_method, $correlation_me_method, $loop_me_method and $real_tree_me_method.)

• ?diagonal_decay (default: false)
Flag that – in case of using factorized production and decays using the (→) unstable
command – tells WHIZARD instead of full spin correlations to take only the diagonal
entries in the spin-density matrix (i.e. classical spin correlations). (cf. also unstable,
?auto_decays, decay_helicity, ?isotropic_decay)

• ?disable_subtraction (default: false)
Disables the subtraction of soft and collinear divergences from the real matrix element.

• ?draw_base
Settings for WHIZARD’s internal graphics output: flag that tells WHIZARD to insert a
base statement in the analysis code to calculate the plot data from a data set. (cf. also
?normalize_bins, $obs_label, $obs_unit, $title, $description, $x_label, $y_label,
graph_width_mm, graph_height_mm, ?y_log, ?x_log, x_min, x_max, y_min, y_max,
$gmlcode_fg, $gmlcode_bg, ?draw_curve, ?draw_piecewise, ?fill_curve, $symbol,
?draw_histogram, ?draw_errors, ?draw_symbols, $fill_options, $draw_options,
$err_options)

• ?draw_curve
Settings for WHIZARD’s internal graphics output: flag that tells WHIZARD to either plot
data as a continuous line or as a histogram (if → ?draw_histogram is set true). (cf. also
?normalize_bins, $obs_label, $obs_unit, $title, $description, $x_label, $y_label,
graph_width_mm, graph_height_mm, ?y_log, ?x_log, x_min, x_max, y_min, y_max,
$gmlcode_fg, $gmlcode_bg, ?draw_base, ?draw_piecewise, ?fill_curve, ?draw_histogram,
?draw_errors, ?draw_symbols, $fill_options, $draw_options, $err_options, $symbol)



A.2. VARIABLES 317

• ?draw_errors
Settings for WHIZARD’s internal graphics output: flag that determines whether error bars
should be drawn or not. (cf. also ?normalize_bins, $obs_label, $obs_unit, $title,
$description, $x_label, $y_label, graph_width_mm, graph_height_mm, ?y_log, ?x_log,
x_min, x_max, y_min, y_max, $gmlcode_fg, $gmlcode_bg, ?draw_base, ?draw_piecewise,
?fill_curve, ?draw_histogram, ?draw_curve, ?draw_symbols, $fill_options,
$draw_options, $err_options, $symbol)

• ?draw_histogram
Settings for WHIZARD’s internal graphics output: flag that tells WHIZARD to either plot
data as a histogram or as a continuous line (if → ?draw_curve is set true). (cf. also
?normalize_bins, $obs_label, $obs_unit, $title, $description, $x_label, $y_label,
graph_width_mm, graph_height_mm, ?y_log, ?x_log, x_min, x_max, y_min, y_max,
$gmlcode_fg, $gmlcode_bg, ?draw_base, ?draw_piecewise, ?fill_curve, ?draw_curve,
?draw_errors, ?draw_symbols, $fill_options, $draw_options, $err_options, $symbol)

• $draw_options
Settings for WHIZARD’s internal graphics output: $draw_options = "<LaTeX_code>" is a
string variable that allows to set specific drawing options for plots and histograms. For
more details see the gamelan manual. (cf. also ?normalize_bins, $obs_label, $obs_unit,
$title, $description, $x_label, $y_label, graph_width_mm, graph_height_mm, ?y_log,
?x_log, x_min, x_max, y_min, y_max, $gmlcode_fg, $gmlcode_bg, ?draw_base,
?draw_piecewise, ?fill_curve, ?draw_histogram, ?draw_errors, ?draw_symbols,
$fill_options, ?draw_histogram, $err_options, $symbol)

• ?draw_piecewise
Settings for WHIZARD’s internal graphics output: flag that tells WHIZARD to data from a data
set piecewise, i.e. histogram style. (cf. also ?normalize_bins, $obs_label, $obs_unit,
$title, $description, $x_label, $y_label, graph_width_mm, graph_height_mm, ?y_log,
?x_log, x_min, x_max, y_min, y_max, $gmlcode_fg, $gmlcode_bg, ?draw_curve, ?draw_base,
?fill_curve, $symbol, ?draw_histogram, ?draw_errors, ?draw_symbols, $fill_options,
$draw_options, $err_options)

• ?draw_symbols
Settings for WHIZARD’s internal graphics output: flag that determines whether particu-
lar symbols (specified by → $symbol = "<LaTeX_code>") should be used for plotting
data points (cf. also ?normalize_bins, $obs_label, $obs_unit, $title, $description,
$x_label, $y_label, graph_width_mm, graph_height_mm, ?y_log, ?x_log, x_min, x_max,
y_min, y_max, $gmlcode_fg, $gmlcode_bg, ?draw_base, ?draw_piecewise, ?fill_curve,
?draw_histogram, ?draw_curve, ?draw_errors, $fill_options, $draw_options,
$err_options, $symbol)

• ?dump_compressed (default: false)
Flag that, if set to true, issues a very compressed and clear version of the dump (→) event



318 APPENDIX A. SINDARIN REFERENCE

format. (cf. also sample_format, $sample, dump, $dump_extension, ?dump_screen,
?dump_summary, ?dump_weights)

• $dump_extension (default: "pset.dat")
String variable that allows via $dump_extension = "<suffix>" to specify the suffix for
the file name.suffix to which events in WHIZARD’s internal particle set format are written.
If not set, the default file name and suffix is <process_name>.pset.dat. (cf. also
sample_format, $sample, dump, ?dump_compressed, ?dump_screen, ?dump_summary,
?dump_weights)

• ?dump_screen (default: false)
Flag that, if set to true, outputs events for the dump (→) event format on screen instead of
to a file. (cf. also sample_format, $sample, dump, ?dump_compressed, $dump_extension,
?dump_summary, ?dump_weights)

• ?dump_summary (default: false)
Flag that, if set to true, includes a summary with momentum sums for incoming and
outgoing particles as well as for beam remnants in the dump (→) event format. (cf. also
sample_format, $sample, dump, ?dump_compressed, $dump_extension, ?dump_screen,
?dump_weights)

• ?dump_weights (default: false)
Flag that, if set to true, includes cross sections, weights and excess in the dump (→) event
format. (cf. also sample_format, $sample, dump, ?dump_compressed, $dump_extension,
?dump_screen, ?dump_summary)

• ee_genkt_algorithm (fixed value: 53)
Specifies a jet algorithm for the (→) jet_algorithm command, used in the (→) cluster
subevent function. At the moment only available for the interfaced external FastJet pack-
age. (cf. also kt_algorithm, cambridge_[for_passive_]algorithm, plugin_algorithm,
genkt_[for_passive_]algorithm, ee_kt_algorithm, jet_r), jet_p)

• ee_kt_algorithm (fixed value: 50)
Specifies a jet algorithm for the (→) jet_algorithm command, used in the (→) cluster
subevent function. At the moment only available for the interfaced external FastJet pack-
age. (cf. also kt_algorithm, cambridge_[for_passive_]algorithm, plugin_algorithm,
genkt_[for_passive_]algorithm, ee_genkt_algorithm, jet_r)

• ellis_sexton_scale (default: -1.00000E+00)
Real positive paramter for the Ellis-Sexton scaleQ used both in the finite one-loop
contribution provided bythe OLP and in the virtual counter terms. The NLO cross section
isindependent of Q. Therefore, this allows for debugging ofthe implemention of the virtual
counter terms. As the defaultQ = µR is chosen. So far, setting this parameteronly works
for OpenLoops2, otherwise the default behaviour is invoked.



A.2. VARIABLES 319

• ?energy_scan_normalize (default: false)
Normalization flag for the energy scan structure function: if set the total cross section is
normalized to unity. (cf. also energy_scan)

• epa_alpha (default: 0.00000E+00)
For the equivalent photon approximation (EPA), this real parameter sets the value of αem

used in the structure function. If not set, it is taken from the parameter set of the physics
model in use (cf. also epa, epa_x_min, epa_mass, epa_e_max, epa_q_min, ?epa_recoil,
?epa_keep_energy, $epa_mode, ?epa_handler, $epa_handler_mode)

• ?epa_handler (default: false)
Activate EPA handler for event generation (no effect on integration). Requires epa_recoil
= false

• $epa_handler_mode (default: "trivial")
Operation mode for the EPA event handler. Allowed values: trivial (no effect), recoil
(recoil kinematics with two beams)

• ?epa_keep_energy (default: false)
As the splitting kinematics for the EPA structure function violates Lorentz invariance
when the recoil is switched on, this flag forces energy conservation when set to true,
otherwise violating energy conservation. (cf. also epa, epa_x_min, epa_mass, epa_alpha,
epa_q_min, ?epa_recoil, $epa_mode, ?epa_handler, $epa_handler_mode)

• epa_mass (default: 0.00000E+00)
This real parameter allows to set by hand the mass of the incoming particle for the
equivalent-photon approximation (EPA). If not set, the mass for the initial beam particle is
taken from the model in use. (cf. also epa, epa_x_min, epa_e_max, epa_alpha, epa_q_min,
?epa_recoil, ?epa_keep_energy, $epa_mode. ?epa_handler, $epa_handler_mode)

• $epa_mode (default: "default")
For the equivalent photon approximation (EPA), this string variable defines the mode, i.e.
the explicit formula for the EPA distribution. For more details cf. the manual. Possible
are default (Budnev_617), Budnev_616e, log_power, log_simple, and log. (cf. also
epa, epa_x_min, epa_mass, epa_e_max, epa_q_min, ?epa_recoil, ?epa_keep_energy,
?epa_handler, $epa_handler_mode)

• epa_q_max (default: 0.00000E+00)
This real parameter allows to set the upper energy cutoff for the equivalent-photon ap-
proximation (EPA). If not set, WHIZARD simply takes the collider energy,

√
s. (cf. also epa,

epa_x_min, epa_mass, epa_alpha, epa_q_min, ?epa_recoil, $epa_mode, ?epa_keep_energy,
?epa_handler, $epa_handler_mode)

• epa_q_min (default: 0.00000E+00)
In the equivalent-photon approximation (EPA), this real parameters sets the minimal
value for the transferred momentum. Either this parameter or the mass of the beam



320 APPENDIX A. SINDARIN REFERENCE

particle has to be non-zero. (cf. also epa, epa_x_min, epa_mass, epa_alpha, epa_q_max,
?epa_recoil, ?epa_keep_energy, $epa_mode, ?epa_handler, $epa_handler_mode)

• ?epa_recoil (default: false)
Flag to switch on recoil, i.e. a non-vanishing pT -kick for the equivalent-photon approxi-
mation (EPA). (cf. also epa, epa_x_min, epa_mass, epa_alpha, epa_e_max, epa_q_min,
?epa_keep_energy, $epa_mode, ?epa_handler, $epa_handler_mode)

• epa_x_min (default: 0.00000E+00)
Real parameter that sets the lower cutoff for the energy fraction in the splitting for the
equivalent-photon approximation (EPA). This parameter has to be set by the user to a non-
zero value smaller than one. (cf. also epa, epa_e_max, epa_mass, epa_alpha, epa_q_min,
?epa_recoil, ?epa_keep_energy, $epa_mode, ?epa_handler, $epa_handler_mode)

• $err_options
Settings for WHIZARD’s internal graphics output: $err_options = "<LaTeX_code>" is
a string variable that allows to set specific drawing options for errors in plots and
histograms. For more details see the gamelan manual. (cf. also ?normalize_bins,
$obs_label, $obs_unit, $title, $description, $x_label, $y_label, graph_width_mm,
graph_height_mm, ?y_log, ?x_log, x_min, x_max, y_min, y_max, $gmlcode_fg, $gmlcode_bg,
?draw_base, ?draw_piecewise, ?fill_curve, ?draw_histogram, ?draw_errors,
?draw_symbols, $fill_options, ?draw_histogram, $draw_options, $symbol)

• error_goal (default: 0.00000E+00)
Real parameter that allows the user to set a minimal absolute error that should be achieved
in the Monte-Carlo integration of a certain process. If that goal is reached, grid and weight
adapation stop, and this result is used for simulation. (cf. also integrate, iterations,
accuracy_goal, relative_error_goal, error_threshold)

• error_threshold (default: 0.00000E+00)
The real parameter error_threshold = <num> declares that any error value (in absolute
numbers) smaller than <num> is to be considered zero. The units are fb for scatterings
and GeV for decays. (cf. also integrate, iterations, accuracy_goal, error_goal,
relative_error_goal)

• event_callback_interval (default: 0)
Setting this integer variable to a positive integer n instructs simulate to print out a progress
summary every n events.

• $event_file_version (default: "")
String variable that allows to set the format version of the WHIZARD internal binary event
format.

• event_index_offset (default: 0)
The value event_index_offset = <num> initializes the event counter for a subsequent
event sample. By default (value 0), the first event gets index value 1, incrementing by



A.2. VARIABLES 321

one for each generated event within a sample. The event counter is initialized again
for each new sample (i.e., integrate command). If events are read from file, and the
event file format supports event numbering, the event numbers will be taken from file
instead, and the value of event_index_offset has no effect. (cf. luminosity, $sample,
sample_format, ?unweighted, n_events)

• ?ewa_keep_energy (default: false)
As the splitting kinematics for the equivalent W approximation (EWA) violates Lorentz
invariance when the recoil is switched on, this flag forces energy conservation when set
to true, otherwise violating energy conservation. (cf. also ewa, ewa_x_min, ewa_pt_max,
ewa_mass, ?ewa_recoil)

• ewa_mass (default: 0.00000E+00)
This real parameter allows to set by hand the mass of the incoming particle for the
equivalent W approximation (EWA). If not set, the mass for the initial beam particle is
taken from the model in use. (cf. also ewa, ewa_x_min, ewa_pt_max, ?ewa_keep_energy,
?ewa_recoil)

• ewa_pt_max (default: 0.00000E+00)
This real parameter allows to set the upper pT cutoff for the equivalent W approximation
(EWA). If not set, WHIZARD simply takes the collider energy,

√
s. (cf. also ewa, ewa_x_min,

ewa_mass, ?ewa_keep_energy, ?ewa_recoil)

• ?ewa_recoil (default: false)
For the equivalent W approximation (EWA), this flag switches on recoil, i.e. non-collinear
splitting. (cf. also ewa, ewa_x_min, ewa_pt_max, ewa_mass, ?ewa_keep_energy)

• ewa_x_min (default: 0.00000E+00)
Real parameter that sets the lower cutoff for the energy fraction in the splitting for the
equivalent W approximation (EWA). This parameter has to be set by the user to a non-
zero value smaller than one. (cf. also ewa, ewa_pt_max, ewa_mass, ?ewa_keep_energy,
?ewa_recoil)

• $exclude_gauge_splittings (default: "c:b:t:e2:e3")
String variable that allows via $exclude_gauge_splittings = "<prt1>:<prt2>:..."
to exclude fermion flavors from gluon/photon splitting into fermion pairs beyond LO.
For example $exclude_gauge_splittings = "c:s:b:t" would lead to gl => u U and
gl => d D as possible splittings in QCD. It is important to keep in mind that only the
particles listed in the string are excluded! In QED this string would additionally allow
for all splittings into lepton pairs A => l L. Therefore, once set the variable acts as a
replacement of the default value, not as an addition! Note: "<prt>" can be both particle
or antiparticle. It will always exclude the corresponding fermion pair. An empty string
allows for all fermion flavors to take part in the splitting! Also, particles included in an
alias are not excluded by $exclude_gauge_splittings!



322 APPENDIX A. SINDARIN REFERENCE

• $extension_ascii_long (default: "long.evt")
String variable that allows via $extension_ascii_long = "<suffix>" to specify the
suffix for the file name.suffix to which events in the so called long variant of the WHIZARD
version 1 style HEPEVT ASCII format are written. If not set, the default file name and
suffix is <process_name>.long.evt. (cf. also sample_format, $sample)

• $extension_ascii_short (default: "short.evt")
String variable that allows via $extension_ascii_short = "<suffix>" to specify the
suffix for the file name.suffix to which events in the so called short variant of the WHIZARD
version 1 style HEPEVT ASCII format are written. If not set, the default file name and
suffix is <process_name>.short.evt. (cf. also sample_format, $sample)

• $extension_athena (default: "athena.evt")
String variable that allows via $extension_athena = "<suffix>" to specify the suffix
for the file name.suffix to which events in the ATHENA file format are written. If not set,
the default file name and suffix is <process_name>.athena.evt. (cf. also sample_format,
$sample)

• $extension_default (default: "evt")
String variable that allows via $extension_default = "<suffix>" to specify the suffix
for the file name.suffix to which events in a the standard WHIZARD verbose ASCII format
are written. If not set, the default file name and suffix is <process_name>.evt. (cf. also
sample_format, $sample)

• $extension_hepevt (default: "hepevt")
String variable that allows via $extension_hepevt = "<suffix>" to specify the suffix
for the file name.suffix to which events in the WHIZARD version 1 style HEPEVT ASCII
format are written. If not set, the default file name and suffix is <process_name>.hepevt.
(cf. also sample_format, $sample)

• $extension_hepevt_verb (default: "hepevt.verb")
String variable that allows via $extension_hepevt_verb = "<suffix>" to specify the
suffix for the file name.suffix to which events in the WHIZARD version 1 style extended or
verbose HEPEVT ASCII format are written. If not set, the default file name and suffix is
<process_name>.hepevt.verb. (cf. also sample_format, $sample)

• $extension_hepmc (default: "hepmc")
String variable that allows via $extension_hepmc = "<suffix>" to specify the suffix
for the file name.suffix to which events in the HepMC format are written. If not set,
the default file name and suffix is <process_name>.hepmc. (cf. also sample_format,
$sample)

• $extension_lcio (default: "slcio")
String variable that allows via $extension_lcio = "<suffix>" to specify the suffix for
the file name.suffix to which events in the LCIO format are written. If not set, the default
file name and suffix is <process_name>.slcio. (cf. also sample_format, $sample)



A.2. VARIABLES 323

• $extension_lha (default: "lha")
String variable that allows via $extension_lha = "<suffix>" to specify the suffix for
the file name.suffix to which events in the (deprecated) LHA format are written. If not
set, the default file name and suffix is <process_name>.lha. (cf. also sample_format,
$sample)

• $extension_lha_verb (default: "lha.verb")
String variable that allows via $extension_lha_verb = "<suffix>" to specify the suffix
for the file name.suffix to which events in the (deprecated) extended or verbose LHA for-
mat are written. If not set, the default file name and suffix is <process_name>.lha.verb.
(cf. also sample_format, $sample)

• $extension_mokka (default: "mokka.evt")
String variable that allows via $extension_mokka = "<suffix>" to specify the suffix
for the file name.suffix to which events in the MOKKA format are written. If not set,
the default file name and suffix is <process_name>.mokka.evt. (cf. also sample_format,
$sample)

• $extension_raw (default: "evx")
String variable that allows via $extension_raw = "<suffix>" to specify the suffix for
the file name.suffix to which events in WHIZARD’s internal format are written. If not
set, the default file name and suffix is <process_name>.evx. (cf. also sample_format,
$sample)

• $extension_stdhep (default: "hep")
String variable that allows via $extension_stdhep = "<suffix>" to specify the suffix
for the file name.suffix to which events in the StdHEP format via the HEPEVT common
block are written. If not set, the default file name and suffix is <process_name>.hep. (cf.
also sample_format, $sample)

• $extension_stdhep_ev4 (default: "ev4.hep")
String variable that allows via $extension_stdhep_ev4 = "<suffix>" to specify the
suffix for the file name.suffix to which events in the StdHEP format via the HEP-
EVT/HEPEV4 common blocks are written. <process_name>.up.hep is the default file
name and suffix, if this variable not set. (cf. also sample_format, $sample)

• $extension_stdhep_up (default: "up.hep")
String variable that allows via $extension_stdhep_up = "<suffix>" to specify the suffix
for the file name.suffix to which events in the StdHEP format via the HEPRUP/HEPEUP
common blocks are written. <process_name>.up.hep is the default file name and suffix,
if this variable not set. (cf. also sample_format, $sample)

• ?fatal_beam_decay (default: true)
Logical variable that let the user decide whether the possibility of a beam decay is treated
as a fatal error or only as a warning. An example is a process bt → X, where the bottom



324 APPENDIX A. SINDARIN REFERENCE

quark as an inital state particle appears as a possible decay product of the second incoming
particle, the top quark. This might trigger inconsistencies or instabilities in the phase
space set-up.

• $fc (default: "Fortran-compiler")
This string variable gives the Fortran compiler used within WHIZARD. It can only be
accessed, not set by the user. (cf. also $fcflags, $fclibs)

• $fcflags (default: "Fortran-flags")
This string variable gives the compiler flags for the Fortran compiler used within WHIZARD.
It can only be accessed, not set by the user. (cf. also $fc, $fclibs)

• $fclibs (default: "Fortran-libs")
This string variable gives the linked libraries for the Fortran compiler used within WHIZARD.
It can only be accessed, not set by the user. (cf. also $fc, $fcflags)

• ?fill_curve
Settings for WHIZARD’s internal graphics output: flag that tells WHIZARD to fill data curves
(e.g. as a histogram). The style can be set with → $fill_options = "<LaTeX_code>".
(cf. also ?normalize_bins, $obs_label, $obs_unit, $title, $description, $x_label,
$y_label, graph_width_mm, graph_height_mm, ?y_log, ?x_log, x_min, x_max, y_min,
y_max,
$gmlcode_fg, $gmlcode_bg, ?draw_base, ?draw_piecewise, ?draw_curve, ?draw_histogram,
?draw_errors, ?draw_symbols, $fill_options, $draw_options, $err_options, $symbol)

• $fill_options
Settings for WHIZARD’s internal graphics output: $fill_options = "<LaTeX_code>" is a
string variable that allows to set fill options when plotting data as filled curves with the →
?fill_curve flag. For more details see the gamelan manual. (cf. also ?normalize_bins,
$obs_label, $obs_unit, $title, $description, $x_label, $y_label, graph_width_mm,
graph_height_mm, ?y_log, ?x_log, x_min, x_max, y_min, y_max, $gmlcode_fg, $gmlcode_bg,
?draw_base, ?draw_piecewise, ?draw_curve, ?draw_histogram, ?draw_errors,
?draw_symbols, ?fill_curve, $draw_options, $err_options, $symbol)

• ?fixed_order_nlo_events (default: false)
Induces the generation of fixed-order NLO events.

• fks_delta_i (default: 2.00000E+00)
Real parameter for the FKS phase space that applies a cut to the y variable with 0 < δI ≤ 2
for initial state singularities only. The dependence on the parameter vanishes between
real subtraction and integrated subtraction term. For debugging purposes.

• fks_delta_o (default: 2.00000E+00)
Real parameter for the FKS phase space that applies a cut to the y variable with 0 < δo ≤ 2
for final state singularities only. The dependence on the parameter vanishes between real
subtraction and integrated subtraction term. For debugging purposes.



A.2. VARIABLES 325

• fks_dij_exp1 (default: 1.00000E+00)
Fine-tuning parameters of the FKS final state partition functions. The exact meaning
depends on the mapping implementation. (cf. also fks_dij_exp2, $fks_mapping_type,
fks_xi_min, fks_y_max)

• fks_dij_exp2 (default: 1.00000E+00)
Fine-tuning parameters of the FKS initial state partition functions. The exact meaning
depends on the mapping implementation. (cf. also fks_dij_exp1, $fks_mapping_type,
fks_xi_min, fks_y_max)

• $fks_mapping_type (default: "default")
Sets the FKS mapping type. Possible values are "default" and "resonances". The latter
option activates the resonance-aware subtraction mode and induces the generation of a soft
mismatch component. (cf. also fks_dij_exp1, fks_dij_exp2, fks_xi_min, fks_y_max)

• fks_xi_cut (default: 1.00000E+00)
(Experimental) Real parameter for the FKS phase space that applies a cut to ξ variable with
0 < ξcut ≤ ξmax. The dependence on the parameter vanishes between real subtraction and
integrated subtraction term. Could thus be used for debugging. This is not implemented
properly, use at your own risk!

• fks_xi_min (default: 0.00000E+00)
Real parameter for the FKS phase space that sets the numerical lower value of the ξ
variable. Valid for the value range [tiny_07, 1], where value inputs out of bounds will take
the value of the closest bound. Here, tiny_07 = 1E9_default * epsilon (0._default),
where epsilon is an intrinsic Fortran function. (cf. also fks_dij_exp1, fks_dij_exp2,
$fks_mapping_type, fks_y_max)

• fks_y_max (default: 1.00000E+00)
Real parameter for the FKS phase space that sets the numerical upper value of the
|y| variable. Valid for ranges [0, 1], where value inputs out of bounds will take the
value of the closest bound. Only supported for massless FSR. (cf. also fks_dij_exp1,
$fks_mapping_type, fks_dij_exp2)

• form_threads (default: 2)
The number of threads used by Gosam when matrix elements are evaluated using FORM

• form_workspace (default: 1000)
The size of the workspace Gosam requires from FORM. Inside FORM, it corresponds to the
heap size used by the algebra processor.

• gaussian_spread1 (default: 0.00000E+00)
Parameter that sets the energy spread (σ value) of the first beam for a Gaussian spectrum.
(cf. gaussian)



326 APPENDIX A. SINDARIN REFERENCE

• gaussian_spread2 (default: 0.00000E+00)
Ditto, for the second beam.

• genkt_algorithm (fixed value: 3)
Specifies a jet algorithm for the (→) jet_algorithm command, used in the (→) cluster
subevent function. At the moment only available for the interfaced external FastJet pack-
age. (cf. also kt_algorithm, cambridge_for_passive_algorithm, plugin_algorithm,
genkt_for_passive_algorithm, ee_[gen]kt_algorithm, jet_r), jet_p

• genkt_for_passive_algorithm (fixed value: 13)
Specifies a jet algorithm for the (→) jet_algorithm command, used in the (→) cluster
subevent function. At the moment only available for the interfaced external FastJet pack-
age. (cf. also kt_algorithm, cambridge_for_passive_algorithm, plugin_algorithm,
genkt_algorithm, ee_[gen]kt_algorithm, jet_r)

• gks_multiplicity (default: 0)
Jet multiplicity for the GKS merging scheme.

• $gmlcode_bg (default: "")
Settings for WHIZARD’s internal graphics output: string variable that allows to define a
background for plots and histograms (i.e. it is overwritten by the plot/histogram), e.g. a
grid: $gmlcode_bg = "standardgrid.lr(5);". For more details, see the gamelan manual.
(cf. also ?normalize_bins, $obs_label, $obs_unit, $title, $description, $x_label,
$y_label, graph_width_mm, graph_height_mm, ?y_log, ?x_log, x_min, x_max, y_min,
y_max, $gmlcode_fg, ?draw_histogram, ?draw_base, ?draw_piecewise,
?fill_curve, ?draw_curve, ?draw_errors, ?draw_symbols, $fill_options,
$draw_options, $err_options, $symbol)

• $gmlcode_fg (default: "")
Settings for WHIZARD’s internal graphics output: string variable that allows to define a
foreground for plots and histograms (i.e. it overwrites the plot/histogram), e.g. a grid:
$gmlcode_bg = "standardgrid.lr(5);". For more details, see the gamelan manual.
(cf. also ?normalize_bins, $obs_label, $obs_unit, $title, $description, $x_label,
$y_label, graph_width_mm, graph_height_mm, ?y_log, ?x_log, x_min, x_max, y_min,
y_max, $gmlcode_bg, ?draw_histogram, ?draw_base, ?draw_piecewise,
?fill_curve, ?draw_curve, ?draw_errors, ?draw_symbols, $fill_options,
$draw_options, $err_options, $symbol)

• $gosam_fc (default: "")
The Fortran compiler used by Gosam.

• $gosam_filter_lo (default: "")
The filter string given to Gosam in order to filter out tree-level diagrams. (cf. also
$gosam_filter_nlo, $gosam_symmetries)



A.2. VARIABLES 327

• $gosam_filter_nlo (default: "")
The same as $gosam_filter_lo, but for loop matrix elements. (cf. also $gosam_filter_nlo,
$gosam_symmetries)

• $gosam_symmetries (default: "family,generation")
String variable that is transferred to Gosam configuration file to determine whether certain
helicity configurations are considered to be equal. Possible values are flavour, family
etc. For more info see the Gosam manual.

• graph_height_mm (default: 90)
Settings for WHIZARD’s internal graphics output: integer value that sets the height of a
graph or histogram in millimeters. (cf. also ?normalize_bins, $obs_label, $obs_unit,
$title, $description, $x_label, $y_label, graph_width_mm, ?y_log, ?x_log, x_min,
x_max, y_min, y_max, $gmlcode_bg, $gmlcode_fg, ?draw_histogram, ?draw_base,
?draw_piecewise, ?fill_curve, ?draw_curve, ?draw_errors, ?draw_symbols,
$fill_options, $draw_options, $err_options, $symbol)

• graph_width_mm (default: 130)
Settings for WHIZARD’s internal graphics output: integer value that sets the width of a
graph or histogram in millimeters. (cf. also ?normalize_bins, $obs_label, $obs_unit,
$title, $description, $x_label, $y_label, graph_height_mm, ?y_log, ?x_log, x_min,
x_max, y_min, y_max, $gmlcode_bg, $gmlcode_fg, ?draw_histogram, ?draw_base,
?draw_piecewise, ?fill_curve, ?draw_curve, ?draw_errors, ?draw_symbols,
$fill_options, $draw_options, $err_options, $symbol)

• hadron_enhanced_fraction (default: 1.00000E-02)
Fraction of Lund strings that break with enhanced width. [not yet active]

• hadron_enhanced_width (default: 2.00000E+00)
Enhancement factor for the width of breaking Lund strings. [not yet active]

• ?hadronization_active (default: false)
Master flag to switch hadronization (through the attached PYTHIA package) on or off. As
a default, it is off. (cf. also ?allow_shower, ?ps_ ..., $ps_ ..., ?mlm_ ...)

• $hadronization_method (default: "PYTHIA6")
Determines whether WHIZARD’s own hadronization or the (internally included) PYTHIA6
should be used.

• ?helicity_selection_active (default: true)
Flag that decides whether WHIZARD uses a numerical selection rule for vanishing helicities:
if active, then, if a certain helicity combination yields an absolute (O’Mega) matrix element
smaller than a certain threshold (→ helicity_selection_threshold) more often than
a certain cutoff (→ helicity_selection_cutoff), it will be dropped.



328 APPENDIX A. SINDARIN REFERENCE

• helicity_selection_cutoff (default: 1000)
Integer parameter that gives the number a certain helicity combination of an (O’Mega)
amplitude has to be below a certain threshold (→ helicity_selection_threshold) in
order to be dropped from then on. (cf. also ?helicity_selection_active)

• helicity_selection_threshold (default: 1.00000E+10)
Real parameter that gives the threshold for the absolute value of a certain helicity combi-
nation of an (O’Mega) amplitude. If a certain number (→ helicity_selection_cutoff)
of calls stays below this threshold, that combination will be dropped from then on. (cf.
also ?helicity_selection_active)

• ?hepevt_ensure_order (default: false)
Flag to ensure that the particle set confirms the HEPEVT standard. This involves some
copying and reordering to guarantee that mothers and daughters are always next to each
other. Usually this is not necessary.

• $hepmc3_mode (default: "HepMC3")
This specifies the writer mode for HepMC3. Possible values are HepMC2, HepMC3 (default),
HepEVT, Root. and RootTree (cf. also hepmc)

• ?hepmc3_write_flows (default: false)
Flag for the HepMC3 event format that decideswhether to write out color flows. The
default is false. (cf. also hepmc)

• ?hepmc_output_cross_section (default: false)
Flag for the HepMC event format that allows to write out the cross section (and error)
from the integration together with each HepMC event. This can be used by programs like
Rivet to scale histograms according to the cross section. (cf. also hepmc)

• ?hoppet_b_matching (default: false)
Flag that switches on the matching between 4- and 5-flavor schemes for hadron collider
b-parton initiated processes. Works either with builtin PDFs or with the external LHAPDF
interface. Needs the external HOPPET library to be linked. (cf. beams, pdf_builtin,
lhapdf)

• $integrate_workspace
Character string that tells WHIZARD the subdirectory where to find the run-specific phase-
space configuration and the VAMP and VAMP2 grid files. If undefined (as per default),
WHIZARD creates them and searches for them in the current directory. (cf. also $job_id,
$run_id, $compile_workspace)

• $integration_method (default: "vamp")
This string variable specifies the method for performing the multi-dimensional phase-
space integration. The default is the VAMP algorithm ("vamp"), other options are via
the numerical midpoint rule ("midpoint") or an alternate VAMP2 implementation that is
MPI-parallelizable ("vamp2").



A.2. VARIABLES 329

• integration_results_verbosity (default: 1)
Integer parameter for the verbosity of the integration results in the process-specific logfile.

• ?integration_timer (default: true)
This flag switches the integration timer on and off, that gives the estimate for the duration
of the generation of 10,000 unweighted events for each integrated process.

• ?isotropic_decay (default: false)
Flag that – in case of using factorized production and decays using the (→) unstable
command – tells WHIZARD to switch off spin correlations completely (isotropic decay). (cf.
also unstable, ?auto_decays, decay_helicity, ?diagonal_decay)

• isr_alpha (default: 0.00000E+00)
For lepton collider initial-state QED radiation (ISR), this real parameter sets the value
of αem used in the structure function. If not set, it is taken from the parameter set of
the physics model in use (cf. also isr, isr_q_max, isr_mass, isr_order, ?isr_recoil,
?isr_keep_energy)

• ?isr_handler (default: false)
Activate ISR handler for event generation (no effect on integration). Requires isr_recoil
= false

• ?isr_handler_keep_mass (default: true)
If true (default), force the incoming partons of the hard process (after radiation) on their
mass shell. Otherwise, insert massless on-shell momenta. This applies only for event
generation (no effect on integration, cf. also ?isr_handler)

• $isr_handler_mode (default: "trivial")
Operation mode for the ISR event handler. Allowed values: trivial (no effect), recoil
(recoil kinematics with two photons)

• ?isr_keep_energy (default: false)
As the splitting kinematics for the ISR structure function violates Lorentz invariance
when the recoil is switched on, this flag forces energy conservation when set to true,
otherwise violating energy conservation. (cf. also isr, isr_q_max, isr_mass, isr_order,
?isr_recoil, ?isr_alpha)

• isr_log_order (default: 0)
For lepton collider initial-state QED radiation (ISR), this integer parameters sets the
logarithmic order: 0 (default) is LL, 1 is NLL. (cf. also isr, isr_q_max, isr_mass,
isr_alpha, ?isr_recoil, ?isr_keep_energy, isr_order)

• isr_mass (default: 0.00000E+00)
This real parameter allows to set by hand the mass of the incoming particle for lepton
collider initial-state QED radiation (ISR). If not set, the mass for the initial beam
particle is taken from the model in use. (cf. also isr, isr_q_max, isr_alpha, isr_order,
?isr_recoil, ?isr_keep_energy, isr_log_order)



330 APPENDIX A. SINDARIN REFERENCE

• isr_order (default: 3)
For lepton collider initial-state QED radiation (ISR), this integer parameter allows to
set the order up to which hard-collinear radiation is taken into account. Default is the
highest available, namely third order. (cf. also isr, isr_q_max, isr_mass, isr_alpha,
?isr_recoil, ?isr_keep_energy, isr_log_order)

• isr_q_in (default: -1.00000E+00)
This is the starting scale for the running of the QED coupling alpha. If negative, the
electron mass is taken. (cf. also isr, isr_q_max, isr_alpha, isr_order, ?isr_recoil,
?isr_keep_energy, isr_log_order)

• isr_q_max (default: 0.00000E+00)
This real parameter allows to set the scale of the initial-state QED radiation (ISR) structure
function. If not set, it is taken internally to be

√
s. (cf. also isr, isr_alpha, isr_mass,

isr_order, ?isr_recoil, ?isr_keep_energy)

• ?isr_recoil (default: false)
Flag to switch on recoil, i.e. a non-vanishing pT -kick for the lepton collider initial-state
QED radiation (ISR). (cf. also isr, isr, isr_alpha, isr_mass, isr_order, isr_q_max,
isr_log_order)

• jet_algorithm (default: 999)
Variable that allows to set the type of jet algorithm when using the external FastJet
library. It accepts one of the following algorithms: (→) kt_algorithm,
(→) cambridge_[for_passive_]algorithm, (→) antikt_algorithm, (→) plugin_algorithm,
(→) genkt_[for_passive_]algorithm, (→) ee_[gen]kt_algorithm). (cf. also cluster,
jet_p, jet_r, jet_ycut)

• jet_dcut (default: 0.00000E+00)
Value for the dij separation measure used in the e+e−kT algorithms that are available
via the interface to the FastJet package. (cf. also cluster, combine, kt_algorithm,
jet_algorithm, cambridge_[for_passive_]algorithm, antikt_algorithm,
plugin_algorithm, genkt_[for_passive_]algorithm, ee_[gen]kt_algorithm, jet_p,
jet_r)

• jet_p (default: 0.00000E+00)
Value for the exponent of the distance measure R in the generalized kT algorithms
that are available via the interface to the FastJet package. (cf. also cluster, combine,
jet_algorithm, kt_algorithm, cambridge_[for_passive_]algorithm, antikt_algorithm,
plugin_algorithm, genkt_[for_passive_]algorithm, ee_[gen]kt_algorithm, jet_r,
jet_ycut)

• jet_r (default: 0.00000E+00)
Value for the distance measure R used in some algorithms that are available via the interface
to the FastJet package. (cf. also cluster, combine, jet_algorithm, kt_algorithm,



A.2. VARIABLES 331

cambridge_[for_passive_]algorithm, antikt_algorithm,
plugin_algorithm, genkt_[for_passive_]algorithm, ee_[gen]kt_algorithm, jet_p,
jet_ycut)

• jet_ycut (default: 0.00000E+00)
Value for the y separation measure used in the Cambridge-Aachen algorithms that are avail-
able via the interface to the FastJet package. (cf. also cluster, combine, kt_algorithm,
jet_algorithm, cambridge_[for_passive_]algorithm, antikt_algorithm,
plugin_algorithm, genkt_[for_passive_]algorithm, ee_[gen]kt_algorithm, jet_p,
jet_r)

• $job_id
Arbitrary string that can be used for creating unique names. The variable is initialized
with the value of the job_id option on startup. (cf. also $compile_workspace, $run_id)

• ?keep_beams (default: false)
The logical variable ?keep_beams = true/false specifies whether beam particles and
beam remnants are included when writing event files. For example, in order to read Les
Houches accord event files into PYTHIA, no beam particles are allowed.

• ?keep_failed_events (default: false)
In the context of weighted event generation, if set to true, events with failed kinematics
will be written to the event output with an associated weight of zero. This way, the total
cross section can be reconstructed from the event output.

• ?keep_flavors_when_clustering (default: false)
The logical variable ?keep_flavors_when_clustering = true/false specifies whether
the flavor of a jet should be kept during cluster when a jet consists of one quark and
zero or more gluons. Especially useful for cuts on b-tagged jets (cf. also cluster).

• ?keep_flavors_when_recombining (default: true)
The logical variable ?keep_flavors_when_recombining = true/false specifies whether
the flavor of a particle should be kept during photon_recombination when a jet/lepton
consists of one lepton/quark and zero or more photons (cf. also photon_recombination).

• ?keep_remnants (default: true)
The logical variable ?keep_beams = true/false is respected only if ?keep_beams is set.
If true, beam remnants are tagged as outgoing particles if they have been neither showered
nor hadronized, i.e., have no children. If false, beam remnants are also included in the
event record, but tagged as unphysical. Note that for ISR and/or beamstrahlung spectra,
the radiated photons are considered as beam remnants.

• kt_algorithm (fixed value: 0)
Specifies a jet algorithm for the (→) jet_algorithm command, used in the (→) cluster
subevent function. At the moment only available for the interfaced external FastJet



332 APPENDIX A. SINDARIN REFERENCE

package. (cf. also cambridge_[for_passive_]algorithm, plugin_algorithm,
genkt_[for_passive_]algorithm, ee_[gen]kt_algorithm, jet_r)

• lambda_qcd (default: 2.00000E-01)
Real parameter that sets the value for ΛQCD used in the internal evolution for running αs

in WHIZARD. (cf. also alphas_is_fixed, ?alphas_from_lhapdf, alphas_nf,
?alphas_from_pdf_builtin, ?alphas_from_mz, ?alphas_from_lambda_qcd, alphas_order)

• lcio_run_id (default: 0)
Allows to set an integer run ID for the LCIO event format. Normally, the process ID is
taken as run ID, unless the flag (cf.) ?proc_as_run_id is set to false, cf. also process.

• $lhapdf_dir (default: "")
String variable that tells the path where the LHAPDF library and PDF sets can be found.
When the library has been correctly recognized during configuration, this is automatically
set by WHIZARD. (cf. also lhapdf, $lhapdf_file, lhapdf_photon, $lhapdf_photon_file,
lhapdf_member, lhapdf_photon_scheme)

• $lhapdf_file (default: "")
This string variable $lhapdf_file = "<pdf_set>" allows to specify the PDF set <pdf_set>
from the external LHAPDF library. It must match the exact name of the PDF set from the
LHAPDF library. The default is empty, and the default set from LHAPDF is taken. Only one
argument is possible, the PDF set must be identical for both beams, unless there are funda-
mentally different beam particles like proton and photon. (cf. also lhapdf, $lhapdf_dir,
lhapdf_photon, $lhapdf_photon_file, lhapdf_photon_scheme, lhapdf_member)

• lhapdf_member (default: 0)
Integer variable that specifies the number of the corresponding PDF set chosen via the
command (→) $lhapdf_file or (→) $lhapdf_photon_file from the external LHAPDF
library. E.g. error PDF sets can be chosen by this. (cf. also lhapdf, $lhapdf_dir,
$lhapdf_file, lhapdf_photon, $lhapdf_photon_file, lhapdf_photon_scheme)

• $lhapdf_photon_file (default: "")
String variable $lhapdf_photon_file = "<pdf_set>" analagous to (→) $lhapdf_file
for photon PDF structure functions from the external LHAPDF library. The name must
exactly match the one of the set from LHAPDF. (cf. beams, lhapdf, $lhapdf_dir,
$lhapdf_file, $lhapdf_photon_file, lhapdf_member, lhapdf_photon_scheme)

• lhapdf_photon_scheme (default: 0)
Integer parameter that controls the different available schemes for photon PDFs inside
the external LHAPDF library. For more details see the LHAPDF manual. (cf. also lhapdf,
$lhapdf_dir, $lhapdf_file, lhapdf_photon, $lhapdf_photon_file, lhapdf_member)

• $lhef_extension (default: "lhe")
String variable that allows via $lhef_extension = "<suffix>" to specify the suffix for
the file name.suffix to which events in the LHEF format are written. If not set, the default



A.2. VARIABLES 333

file name and suffix is <process_name>.lhe. (cf. also sample_format, $sample, lhef,
$lhef_extension, $lhef_version, ?lhef_write_sqme_prc, ?lhef_write_sqme_ref, ?lhef_write_sqme_alt)

• $lhef_version (default: "2.0")
Specifier for the Les Houches Accord (LHEF) event format files with XML headers to dis-
criminate among different versions of this format. (cf. also $sample, sample_format, lhef,
$lhef_extension, $lhef_extension, ?lhef_write_sqme_prc, ?lhef_write_sqme_ref,
?lhef_write_sqme_alt)

• ?lhef_write_sqme_alt (default: true)
Flag that decides whether in the (→) lhef event format alternative weights of the squared
matrix element shall be written in the LHE file. (cf. also $sample, sample_format, lhef,
$lhef_extension, $lhef_extension, ?lhef_write_sqme_prc, ?lhef_write_sqme_ref)

• ?lhef_write_sqme_prc (default: true)
Flag that decides whether in the (→) lhef event format the weights of the squared matrix
element of the corresponding process shall be written in the LHE file. (cf. also $sample,
sample_format, lhef, $lhef_extension, $lhef_extension, ?lhef_write_sqme_ref,
?lhef_write_sqme_alt)

• ?lhef_write_sqme_ref (default: false)
Flag that decides whether in the (→) lhef event format reference weights of the squared
matrix element shall be written in the LHE file. (cf. also $sample, sample_format, lhef,
$lhef_extension, $lhef_extension, ?lhef_write_sqme_prc, ?lhef_write_sqme_alt)

• $library_name
Similar to $model_name, this string variable is used solely to access the name of the
active process library, e.g. in printf statements. (cf. compile, library, printf, show,
$model_name)

• ?logging (default: true)
This logical – when set to false – suppresses writing out a logfile (default: whizard.log)
for the whole WHIZARD run, or when WHIZARD is run with the –no-logging option, to
suppress parts of the logging when setting it to true again at a later part of the SINDARIN
input file. Mainly for debugging purposes. (cf. also ?openmp_logging, ?mpi_logging)

• $loop_me_method (default: "")
This string variable specifies the method for the matrix elements to be used in the evaluation
of the virtual part of the NLO computation. The default is the empty string, i.e. the
same as $method. Working options are: "threshold", "openloops", "recola", "gosam".
(cf. also $real_tree_me_method, $correlation_me_method and $born_me_method.)

• luminosity (default: 0.00000E+00)
This specifier luminosity = <num> sets the integrated luminosity (in inverse femtobarns,
fb−1) for the event generation of the processes in the SINDARIN input files. Note that
WHIZARD itself chooses the number from the luminosity or from the n_events specifier,



334 APPENDIX A. SINDARIN REFERENCE

whichever would give the larger number of events. As this depends on the cross section
under consideration, it might be different for different processes in the process list. (cf.
n_events, $sample, sample_format, ?unweighted)

• max_bins (default: 20)
Integer parameter that modifies the settings of the VAMP integrator’s grid parameters. It
sets the maximal number of bins per integration dimension. (cf. iterations, min_bins,
min_calls_per_channel, min_calls_per_bin)

• ?me_verbose (default: false)
Flag determining whether the makefile command for generating and compiling the O’Mega
matrix element code is silent or verbose. Default is silent.

• $method (default: "omega")
This string variable specifies the method for the matrix elements to be used in the
evaluation. The default is the intrinsic O’Mega matrix element generator ("omega"),
other options are: "ovm", "unit_test", "template_unity", "threshold". For processes
defined "template", with nlo_calculation = ..., please refer to $born_me_method,
$real_tree_me_method, $loop_me_method and $correlation_me_method.

• min_bins (default: 3)
Integer parameter that modifies the settings of the VAMP integrator’s grid parameters. It
sets the minimal number of bins per integration dimension. (cf. iterations, max_bins,
min_calls_per_channel, min_calls_per_bin)

• min_calls_per_bin (default: 10)
Integer parameter that modifies the settings of the VAMP integrator’s grid parameters. It
sets the minimal number every bin in an integration dimension must be called. If the
number of calls from the iterations is too small, WHIZARD will automatically increase the
number of calls. (cf. iterations, min_calls_per_channel, min_bins, max_bins)

• min_calls_per_channel (default: 10)
Integer parameter that modifies the settings of the VAMP integrator’s grid parameters.
It sets the minimal number every channel must be called. If the number of calls from
the iterations is too small, WHIZARD will automatically increase the number of calls. (cf.
iterations, min_calls_per_bin, min_bins, max_bins)

• mlm_ETclusfactor (default: 2.00000E-01)
This real parameter is a factor that enters the calculation of the ycut measure for jet
clustering after the parton shower in the MLM jet matching between hard matrix elements
and QCD parton showers. (cf. also ?allow_shower, ?ps_ ..., $ps_ ..., mlm_ ...,
?hadronization_active)

• mlm_ETclusminE (default: 5.00000E+00)
This real parameter is a minimal energy that enters the calculation of the ycut measure
for jet clustering after the parton shower in the MLM jet matching between hard matrix



A.2. VARIABLES 335

elements and QCD parton showers. (cf. also ?allow_shower, ?ps_ ..., $ps_ ..., mlm_
..., ?hadronization_active)

• mlm_Eclusfactor (default: 1.00000E+00)
This real parameter is a factor that enters the calculation of the ycut measure for jet
clustering after the parton shower in the MLM jet matching between hard matrix elements
and QCD parton showers. (cf. also ?allow_shower, ?ps_ ..., $ps_ ..., mlm_ ...,
?hadronization_active)

• mlm_Emin (default: 0.00000E+00)
Real parameter that sets a minimal energy Emin value as an infrared cutoff in the
MLM jet matching between hard matrix elements and QCD parton showers. (cf. also
?allow_shower, ?ps_ ..., $ps_ ..., mlm_ ..., ?hadronization_active)

• mlm_Qcut_ME (default: 0.00000E+00)
Real parameter that in the MLM jet matching between hard matrix elements and QCD
parton shower sets a possible virtuality cut on jets from the hard matrix element. (cf. also
?allow_shower, ?ps_ ..., $ps_ ..., mlm_ ..., ?hadronization_active)

• mlm_Qcut_PS (default: 0.00000E+00)
Real parameter that in the MLM jet matching between hard matrix elements and QCD
parton shower sets a possible virtuality cut on jets from the parton shower. (cf. also
?allow_shower, ?ps_ ..., $ps_ ..., mlm_ ..., ?hadronization_active)

• mlm_Rclusfactor (default: 1.00000E+00)
This real parameter is a factor that enters the calculation of the ycut measure for jet
clustering after the parton shower in the MLM jet matching between hard matrix elements
and QCD parton showers. (cf. also ?allow_shower, ?ps_ ..., $ps_ ..., mlm_ ...,
?hadronization_active)

• mlm_Rmin (default: 0.00000E+00)
Real parameter that sets a minimal R distance value that enters the ycut jet clustering
measure in the MLM jet matching between hard matrix elements and QCD parton showers.
(cf. also ?allow_shower, ?ps_ ..., $ps_ ..., mlm_ ..., ?hadronization_active)

• mlm_etaclusfactor (default: 1.00000E+00)
This real parameter is a factor that enters the calculation of the ycut measure for jet
clustering after the parton shower in the MLM jet matching between hard matrix elements
and QCD parton showers. (cf. also ?allow_shower, ?ps_ ..., $ps_ ..., mlm_ ...,
?hadronization_active)

• mlm_etamax (default: 0.00000E+00)
This real parameter sets a maximal pseudorapidity that enters the MLM jet matching
between hard matrix elements and QCD parton showers. (cf. also ?allow_shower, ?ps_
..., $ps_ ..., mlm_ ..., ?hadronization_active)



336 APPENDIX A. SINDARIN REFERENCE

• ?mlm_matching (default: false)
Master flag to switch on MLM (LO) jet matching between hard matrix elements and
the QCD parton shower. (cf. also ?allow_shower, ?ps_ ..., $ps_ ..., mlm_ ...,
?hadronization_active)

• mlm_nmaxMEjets (default: 0)
This integer sets the maximal number of jets that are available from hard matrix elements
in the MLM jet matching between hard matrix elements and QCD parton shower. (cf.
also ?allow_shower, ?ps_ ..., $ps_ ..., mlm_ ..., ?hadronization_active)

• mlm_ptmin (default: 0.00000E+00)
This real parameter sets a minimal pT that enters the ycut jet clustering measure in the
MLM jet matching between hard matrix elements and QCD parton showers. (cf. also
?allow_shower, ?ps_ ..., $ps_ ..., mlm_ ..., ?hadronization_active)

• $model_name
This variable makes the locally used physics model available as a string, e.g. as show
($model_name). However, the user is not able to change the current model by setting this
variable to a different string. (cf. also model, $library_name, printf, show)

• ?mpi_logging (default: false)
This logical – when set to false – suppresses writing out messages about MPI paral-
lelization (number of used workers etc.) on screen and into the logfile (default name
whizard.log) for the whole WHIZARD run. Mainly for debugging purposes. (cf. also
?logging, ?openmp_logging)

• ?muli_active (default: false)
Master flag that switches on WHIZARD’s module for multiple interaction with interleaved
QCD parton showers for hadron colliders. Note that this feature is still experimental. (cf.
also ?allow_shower, ?ps_ ..., $ps_ ..., ?mlm_ ...)

• mult_call_dglap (default: 1.00000E+00)
(Real-valued) multiplier for the number of calls used in the integration of the DGLAP
remnant NLO component. This way, a higher accuracy can be achieved for this component,
while simultaneously avoiding redundant integration calls for the other components. (cf.
also mult_call_real, mult_call_virt)

• mult_call_real (default: 1.00000E+00)
(Real-valued) multiplier for the number of calls used in the integration of the real subtraction
NLO component. This way, a higher accuracy can be achieved for the real component,
while simultaneously avoiding redundant integration calls for the other components. (cf.
also mult_call_dglap, mult_call_virt)

• mult_call_virt (default: 1.00000E+00)
(Real-valued) multiplier for the number of calls used in the integration of the virtual
NLO component. This way, a higher accuracy can be achieved for this component, while



A.2. VARIABLES 337

simultaneously avoiding redundant integration calls for the other components. (cf. also
mult_call_dglap, mult_call_real)

• n_bins (default: 20)
Settings for WHIZARD’s internal graphics output: integer value that sets the number
of bins in histograms. (cf. also ?normalize_bins, $obs_label, $obs_unit, $title,
$description, $x_label, $y_label, graph_width_mm, graph_height_mm, ?y_log, ?x_log,
x_min, x_max, y_min, y_max, $gmlcode_bg, $gmlcode_fg, ?draw_histogram, ?draw_base,
?draw_piecewise, ?fill_curve, ?draw_curve, ?draw_errors, ?draw_symbols,
$fill_options, $draw_options, $err_options, $symbol)

• n_calls_test (default: 0)
Integer variable that allows to set a certain number of matrix element sampling test calls
without actually integrating the process under consideration. (cf. integrate)

• n_events (default: 0)
This specifier n_events = <num> sets the number of events for the event generation of the
processes in the SINDARIN input files. Note that WHIZARD itself chooses the number from
the n_events or from the luminosity specifier, whichever would give the larger number
of events. As this depends on the cross section under consideration, it might be different
for different processes in the process list. (cf. luminosity, $sample, sample_format,
?unweighted, event_index_offset)

• $negative_sf (default: "default")
String variable to set the behavior to either keep negative structure function/PDF values
or set them to zero. The default ("default") takes the first option for NLO and the
second for LO processes. Explicit behavior can be set with "positive" or "negative".

• ?negative_weights (default: false)
Flag that tells WHIZARD to allow negative weights in integration and simulation. (cf. also
simulate, ?unweighted)

• $nlo_correction_type (default: "QCD")
String variable which sets the NLO correction type via nlo_correction_type = "<type>"
to either "QCD", "EW", or to all with <type> set to "Full". Must be set before the process
statement.

• ?nlo_cut_all_real_sqmes (default: false)
Flag that decides whether in the case that the real component does not pass a cut, its
subtraction term shall be discarded for that phase space point as well or not. (cf. also
?nlo_use_born_scale)

• ?nlo_reuse_amplitudes_fks (default: false)
Only compute real and virtual amplitudes for subprocesses that give a different amplitude
and reuse the result for equivalent subprocesses. Might give a speed-up for some processes.



338 APPENDIX A. SINDARIN REFERENCE

Might break others, especially in cases where resonance histories are needed. Experimental
feature, use at your own risk!

• ?nlo_use_born_scale (default: false)
Flag that decides whether a scale expression defined for the Born component of an NLO pro-
cess shall be applied to all other components as well or not. (cf. also ?nlo_cut_all_real_sqmes)

• ?normalize_bins (default: false)
Settings for WHIZARD’s internal graphics output: flag that determines whether the weights
shall be normalized to the bin width or not. (cf. also n_bins, $obs_label, $obs_unit,
$title, $description, $x_label, $y_label, graph_width_mm, graph_height_mm, ?y_log,
?x_log, x_min, x_max, y_min, y_max, $gmlcode_bg, $gmlcode_fg, ?draw_histogram,
?draw_base, ?draw_piecewise, ?fill_curve, ?draw_curve, ?draw_errors, $symbol,
?draw_symbols, $fill_options, $draw_options, $err_options)

• $obs_label (default: "")
Settings for WHIZARD’s internal graphics output: this is a string variable $obs_label
= "<LaTeX_Code>" that allows to attach a label to a plotted or histogrammed observ-
able. (cf. also n_bins, ?normalize_bins, $obs_unit, $title, $description, $x_label,
$y_label, ?y_log, ?x_log, graph_width_mm, graph_height_mm, x_min, x_max, y_min,
y_max, $gmlcode_bg, $gmlcode_fg, ?draw_base, ?draw_histogram, ?draw_piecewise,
?fill_curve, ?draw_curve, ?draw_errors, $symbol, ?draw_symbols, $fill_options,
$draw_options, $err_options)

• $obs_unit (default: "")
Settings for WHIZARD’s internal graphics output: this is a string variable $obs_unit =
"<LaTeX_Code>" that allows to attach a LATEX physical unit to a plotted or histogrammed
observable. (cf. also n_bins, ?normalize_bins, $obs_unit, $title, $description,
$x_label, $y_label, ?y_log, ?x_log, graph_width_mm, graph_height_mm, x_min, x_max,
y_min, y_max, $gmlcode_bg, $gmlcode_fg, ?draw_base, ?draw_histogram, ?fill_curve,
?draw_piecewise, ?draw_curve, ?draw_errors, $symbol, ?draw_symbols, $fill_options,
$draw_options, $err_options)

• $omega_flags (default: "")
String variable that allows to pass flags to the O’Mega matrix element generator. Normally,
WHIZARD takes care of all flags automatically. Note that for restrictions of intermediate
states, there is a special string variable: (cf. →) $restrictions.

• ?omega_openmp (default: false)
Flag to switch on or off OpenMP multi-threading for O’Mega matrix elements. (cf. also
$method, $omega_flag)

• ?omega_write_phs_output (default: false)
This flag decides whether a the phase-space output is produced by the O’Mega matrix
element generator. This output is written to file(s) and contains the Feynman diagrams



A.2. VARIABLES 339

which belong to the process(es) under consideration. The file is mandatory whenever the
variable $phs_method has the value fast_wood, i.e. if the phase-space file is provided by
cascades2.

• $openloops_allowed_libs (default: "")
String variable to restrict the allowed OpenLoopsprocess libraries for a process. (cf.
also $method, openloos_verbosity, ?openloops_use_cms, openloops_stability_log,
?openloops_switch_off_muon_yukawa)

• $openloops_extra_cmd (default: "")
String variable to transfer customized special commands to OpenLoops. The three sup-
ported examples $openloops_extra_command = "extra approx top/stop/not" are for
selection of subdiagrams in top production. (cf. also $method, openloos_verbosity,
?openloops_use_cms, openloops_stability_log, ?openloops_switch_off_muon_yukawa)

• openloops_phs_tolerance (default: 7)
This integer parameter gives via openloops_phs_tolerance = <n> the relative numerical
tolerance 10−n for the momentum conservation of the external particles within OpenLoops.
(cf. also openloos_verbosity, $method, ?openloops_switch_off_muon_yukawa,
openloops_stability_log, $openloops_extra_cmd)

• openloops_stability_log (default: 0)
Creates the directory stability_log containing information about the performance of
the OpenLoopsmatrix elements. Possible values are 0 (No output), 1 (On finish()-call),
2 (Adaptive) and 3 (Always).

• ?openloops_switch_off_muon_yukawa (default: false)
Sets the Yukawa coupling of muons for OpenLoops to zero. (cf. also openloos_verbosity,
$method, ?openloops_use_cms, openloops_stability_log, $openloops_extra_cmd)

• ?openloops_use_cms (default: true)
Activates the complex mass scheme in OpenLoops. (cf. also openloos_verbosity,
$method, ?openloops_switch_off_muon_yukawa, openloops_stability_log,
$openloops_extra_cmd)

• openloops_verbosity (default: 1)
Decides how much OpenLoops output is printed. Can have values 0, 1 and 2, where 2 is
the highest verbosity level.

• openloops_wf_v_select (default: 3)
Integer parameter that sets the convention for the Openloops vector boson wavefunctions.
The default, 3, is needed for NLO calculations, 1 is the Openloops default, which supports
external vector boson polarization.

• ?openmp_is_active (fixed value: false)
Flag to switch on or off OpenMP multi-threading for WHIZARD. (cf. also ?openmp_logging,
openmp_num_threads, openmp_num_threads_default, ?omega_openmp)



340 APPENDIX A. SINDARIN REFERENCE

• ?openmp_logging (default: true)
This logical – when set to false – suppresses writing out messages about OpenMP
parallelization (number of used threads etc.) on screen and into the logfile (default name
whizard.log) for the whole WHIZARD run. Mainly for debugging purposes. (cf. also
?logging, ?mpi_logging)

• openmp_num_threads (default: 1)
Integer parameter that sets the number of OpenMP threads for multi-threading. (cf. also
?openmp_logging, openmp_num_threads_default, ?omega_openmp)

• openmp_num_threads_default (fixed value: 1)
Integer parameter that shows the number of default OpenMP threads for multi-threading.
Note that this parameter can only be accessed, but not reset by the user. (cf. also
?openmp_logging, openmp_num_threads, ?omega_openmp)

• ?out_advance (default: true)
Flag that sets advancing in the printf output commands, i.e. continuous printing with
no line feed etc. (cf. also printf)

• $out_file (default: "")
This character variable allows to specify the name of the data file to which the histogram
and plot data are written (cf. also write_analysis, open_out, close_out)

• ?pacify (default: false)
Flag that allows to suppress numerical noise and give screen and log file output with a lower
number of significant digits. Mainly for debugging purposes. (cf. also ?sample_pacify)

• $pdf_builtin_set (default: "CTEQ6L")
For WHIZARD’s internal PDF structure functions for hadron colliders, this string variable
allows to set the particular PDF set. (cf. also pdf_builtin, pdf_builtin_photon)

• photon_iso_eps (default: 1.00000E+00)
Photon isolation parameter ϵγ (energy fraction) from hep-ph/9801442 (cf. also photon_iso_n,
photon_iso_r0)

• photon_iso_n (default: 1.00000E+00)
Photon isolation parameter n (cone function exponent) from hep-ph/9801442 (cf. also
photon_iso_eps, photon_iso_r0)

• photon_iso_r0 (default: 4.00000E-01)
Photon isolation parameter Rγ

0 (isolation cone radius) from hep-ph/9801442 (cf. also
photon_iso_eps, photon_iso_n)

• photon_rec_r0 (default: 1.00000E-01)
Photon recombination parameter Rγ

0 for photon recombination in NLO EW calculations



A.2. VARIABLES 341

• phs_e_scale (default: 1.00000E+01)
Real parameter that sets the energy scale that acts as a cutoff for parameterizing radiation-
like kinematics in the wood phase space method. WHIZARD takes the maximum of this
value and the width of the propagating particle as a cutoff. (cf. also phs_threshold_t,
phs_threshold_s, phs_t_channel, phs_off_shell, phs_m_scale, phs_q_scale,
?phs_keep_resonant, ?phs_step_mapping, ?phs_step_mapping_exp, ?phs_s_mapping)

• $phs_file (default: "")
This string variable allows the user to set an individual file name for the phase space
parameterization for a particular process: $phs_file = "<file_name>". If not set, the
default is <proc_name>_<proc_comp>.<run_id>.phs. (cf. also $phs_method)

• ?phs_keep_nonresonant (default: true)
Flag that decides whether the wood phase space method takes into account also non-
resonant contributions. (cf. also phs_threshold_t, phs_threshold_s, phs_t_channel,
phs_off_shell, phs_m_scale, phs_q_scale, phs_e_scale, ?phs_step_mapping,
?phs_step_mapping_exp, ?phs_s_mapping)

• phs_m_scale (default: 1.00000E+01)
Real parameter that sets the mass scale that acts as a cutoff for parameterizing collinear
and infrared kinematics in the wood phase space method. WHIZARD takes the maximum of
this value and the mass of the propagating particle as a cutoff. (cf. also phs_threshold_t,
phs_threshold_s, phs_t_channel, phs_off_shell, phs_e_scale, phs_q_scale,
?phs_keep_resonant, ?phs_step_mapping, ?phs_step_mapping_exp, ?phs_s_mapping)

• $phs_method (default: "default")
String variable that allows to choose the phase-space parameterization method. The
default is the "wood" method that takes into account electroweak/BSM resonances. Note
that this might not be the best choice for (pure) QCD amplitudes. (cf. also $phs_file)

• phs_off_shell (default: 2)
Integer parameter that sets the number of off-shell (not t-channel-like, non-resonant) lines
that are taken into account to find a valid phase-space setup in the wood phase-space
method. (cf. also phs_threshold_t, phs_threshold_s, phs_t_channel, phs_e_scale,
phs_m_scale, phs_q_scale, ?phs_keep_resonant, ?phs_step_mapping,
?phs_step_mapping_exp, ?phs_s_mapping)

• ?phs_only (default: false)
Flag (particularly as optional argument of the → integrate command) that allows to
only generate the phase space file, but not perform the integration. (cf. also $phs_method,
$phs_file)

• phs_q_scale (default: 1.00000E+01)
Real parameter that sets the momentum transfer scale that acts as a cutoff for parameter-
izing t- and u-channel like kinematics in the wood phase space method. WHIZARD takes



342 APPENDIX A. SINDARIN REFERENCE

the maximum of this value and the mass of the propagating particle as a cutoff. (cf. also
phs_threshold_t, phs_threshold_s, phs_t_channel, phs_off_shell, phs_e_scale,
phs_m_scale, ?phs_keep_resonant, ?phs_step_mapping, ?phs_step_mapping_exp,
?phs_s_mapping)

• ?phs_s_mapping (default: true)
Flag that allows special mapping for s-channel resonances. (cf. also phs_threshold_t,
phs_threshold_s, phs_t_channel, phs_off_shell, phs_e_scale, phs_m_scale,
?phs_keep_resonant, ?phs_q_scale, ?phs_step_mapping, ?phs_step_mapping_exp)

• ?phs_step_mapping (default: true)
Flag that switches on (or off) a particular phase space mapping for resonances, where
the mass and width of the resonance are explicitly set as channel cutoffs. (cf. also
phs_threshold_t, phs_threshold_s, phs_t_channel, phs_off_shell, phs_e_scale,
phs_m_scale, ?phs_keep_resonant, ?phs_q_scale, ?phs_step_mapping_exp,
?phs_s_mapping)

• ?phs_step_mapping_exp (default: true)
Flag that switches on (or off) a particular phase space mapping for resonances, where
the mass and width of the resonance are explicitly set as channel cutoffs. This is an
exponential mapping in contrast to (→) ?phs_step_mapping. (cf. also phs_threshold_t,
phs_threshold_s, phs_t_channel, phs_off_shell, phs_e_scale, phs_m_scale,
?phs_q_scale, ?phs_keep_resonant, ?phs_step_mapping, ?phs_s_mapping)

• phs_t_channel (default: 6)
Integer parameter that sets the number of t-channel propagators in multi-peripheral
diagrams that are taken into account to find a valid phase-space setup in the wood
phase-space method. (cf. also phs_threshold_t, phs_threshold_s, phs_off_shell,
phs_e_scale, phs_m_scale, phs_q_scale, ?phs_keep_resonant, ?phs_step_mapping,
?phs_step_mapping_exp, ?phs_s_mapping)

• phs_threshold_s (default: 5.00000E+01)
For the phase space method wood, this real parameter sets the threshold below which
particles are assumed to be massless in the s-channel like kinematic regions. (cf. also
phs_threshold_t, phs_off_shell, phs_t_channel, phs_e_scale, phs_m_scale,
phs_q_scale, ?phs_keep_resonant, ?phs_step_mapping, ?phs_step_mapping_exp,
?phs_s_mapping)

• phs_threshold_t (default: 1.00000E+02)
For the phase space method wood, this real parameter sets the threshold below which
particles are assumed to be massless in the t-channel like kinematic regions. (cf. also
phs_threshold_s, phs_off_shell, phs_t_channel, phs_e_scale, phs_m_scale,
phs_q_scale, ?phs_keep_resonant, ?phs_step_mapping, ?phs_step_mapping_exp,
?phs_s_mapping)



A.2. VARIABLES 343

• plugin_algorithm (fixed value: 99)
Specifies a jet algorithm for the (→) jet_algorithm command, used in the (→) cluster
subevent function. At the moment only available for the interfaced external FastJet
package. (cf. also kt_algorithm, cambridge_for_passive_algorithm,
genkt_[for_passive_]algorithm, ee_[gen]kt_algorithm, jet_r)

• $polarization_mode (default: "helicity")
String variable that specifies the mode in which the polarization of particles is handled
when polarized events are written out. Possible options are "ignore", "helicity",
"factorized", and "correlated". For more details cf. the detailed section.

• ?polarized_events (default: false)
Flag that allows to select certain helicity combinations in final state particles in the event
files, and perform analysis on polarized event samples. (cf. also simulate, polarized,
unpolarized)

• ?powheg_disable_sudakov (default: false)
This flag allows to set the Sudakov form factor to one. This effectively results in a version
of the matrix-element method (MEM) at NLO.

• powheg_grid_size_xi (default: 5)
Number of ξ points in the POWHEG grid.

• powheg_grid_size_y (default: 5)
Number of y points in the POWHEG grid.

• powheg_lambda (default: 0.00000E+00)
Reference scale of the αs evolution in the POWHEG matching algorithm. Per default we
use Λ

nf=5

MS
.

• ?powheg_matching (default: false)
Activates Powheg matching. Needs to be combined with the ?combined_nlo_integration-
method.

• powheg_pt_min (default: 1.00000E+00)
Lower pT -cut-off for the POWHEG hardest emission.

• ?powheg_test_sudakov (default: false)
Performs an internal consistency check on the POWHEG event generation.

• ?powheg_use_singular_jacobian (default: false)
This allows to give a different normalization of the Jacobian, resulting in an alternative
POWHEG damping in the singular regions.

• ?proc_as_run_id (default: true)
Normally, for LCIO the process ID (cf. process_num_id) is used as run ID, unless this
flag is set to false, cf. also process, lcio_run_id.



344 APPENDIX A. SINDARIN REFERENCE

• process_num_id
Using the integer process_num_id = <int_var> one can set a numerical identifier for
processes within a process library. This can be set either just before the corresponding
process definition or as an optional local argument of the latter. (cf. also process,
?proc_as_run_id, lcio_run_id)

• $ps_PYTHIA8_config (default: "")
String variable that allows to pass options for tunes etc. to the attached PYTHIA8 parton
shower or hadronization, e.g.: $ps_PYTHIA8_config = "PartonLevel:MPI = off". (cf.
also
?allow_shower, ?ps_ ..., $ps_ ..., ?mlm_ ..., ?hadronization_active)

• $ps_PYTHIA8_config_file (default: "")
String variable that allows to pass a filename to a PYTHIA8 configuration file.

• $ps_PYTHIA_PYGIVE (default: "")
String variable that allows to pass options for tunes etc. to the attached PYTHIA parton
shower or hadronization, e.g.: $ps_PYTHIA_PYGIVE = "MSTJ(41)=1". (cf. also
?allow_shower, ?ps_ ..., $ps_ ..., ?mlm_ ..., ?hadronization_active)

• ps_fixed_alphas (default: 0.00000E+00)
This real parameter sets the value of αs if it is (cf. → ?ps_isr_alphas_running,
?ps_fsr_alphas_running) not running in initial and/or final-state QCD showers. (cf.
also ?allow_shower, ?ps_ ..., $ps_ ..., ?mlm_ ..., ?hadronization_active)

• ?ps_fsr_active (default: false)
Flag that switches final-state QCD radiation (FSR) on. (cf. also ?allow_shower, ?ps_
..., $ps_ ..., ?mlm_ ..., ?hadronization_active)

• ?ps_fsr_alphas_running (default: true)
Flag that decides whether a running αs is taken in time-like QCD parton showers. (cf.
also ?allow_shower, ?ps_ ..., $ps_ ..., ?mlm_ ..., ?hadronization_active)

• ps_fsr_lambda (default: 2.90000E-01)
By this real parameter, the value of ΛQCD used in running αs for time-like showers is
set (except for showers in the decay of a resonance). (cf. also ?allow_shower, ?ps_ ...,
$ps_ ..., ?mlm_ ..., ?hadronization_active)

• ?ps_isr_active (default: false)
Flag that switches initial-state QCD radiation (ISR) on. (cf. also ?allow_shower, ?ps_
..., $ps_ ..., ?mlm_ ..., ?hadronization_active)

• ?ps_isr_alphas_running (default: true)
Flag that decides whether a running αs is taken in space-like QCD parton showers. (cf.
also ?allow_shower, ?ps_ ..., $ps_ ..., ?mlm_ ..., ?hadronization_active)



A.2. VARIABLES 345

• ?ps_isr_angular_ordered (default: true)
If switched one, this flag forces opening angles of emitted partons in the QCD ISR shower to
be strictly ordered, i.e. increasing towards the hard interaction. (cf. also ?allow_shower,
?ps_ ..., $ps_ ..., ?mlm_ ..., ?hadronization_active)

• ps_isr_lambda (default: 2.90000E-01)
By this real parameter, the value of ΛQCD used in running αs for space-like showers is set.
(cf. also ?allow_shower, ?ps_ ..., $ps_ ..., ?mlm_ ..., ?hadronization_active)

• ps_isr_minenergy (default: 1.00000E+00)
By this real parameter, the minimal effective energy (in the c.m. frame) of a time-like or
on-shell-emitted parton in a space-like QCD shower is set. For a hard subprocess that
is not in the rest frame, this number is roughly reduced by a boost factor 1/γ to the
rest frame of the hard scattering process. (cf. also ?allow_shower, ?ps_ ..., $ps_ ...,
?mlm_ ..., ?hadronization_active)

• ?ps_isr_only_onshell_emitted_partons (default: false)
This flag if set true sets all emitted partons off space-like showers on-shell, i.e. it would
not allow associated time-like showers. (cf. also ?allow_shower, ?ps_ ..., $ps_ ...,
?mlm_ ..., ?hadronization_active)

• ps_isr_primordial_kt_cutoff (default: 5.00000E+00)
Real parameter that sets the upper cutoff for the primordial kT distribution inside a
hadron. (cf. also ?allow_shower, ?ps_ ..., $ps_ ..., ?hadronization_active, ?mlm_
...)

• ps_isr_primordial_kt_width (default: 0.00000E+00)
This real parameter sets the width σ = ⟨k2

T ⟩ for the Gaussian primordial kT distribution
inside the hadron, given by: exp[−k2

T/σ
2]kTdkT . (cf. also ?allow_shower, ?ps_ ...,

$ps_ ..., ?mlm_ ..., ?hadronization_active)

• ?ps_isr_pt_ordered (default: false)
By this flag, it can be switched between the analytic QCD ISR shower (false, default)
and the pT ISR QCD shower (true). (cf. also ?allow_shower, ?ps_ ..., $ps_ ...,
?mlm_ ..., ?hadronization_active)

• ps_isr_tscalefactor (default: 1.00000E+00)
The Q2 scale of the hard scattering process is multiplied by this real factor to define the
maximum parton virtuality allowed in time-like QCD showers. This does only apply to t-
and u-channels, while for s-channel resonances the maximum virtuality is set by m2. (cf.
also ?allow_shower, ?ps_ ..., $ps_ ..., ?mlm_ ..., ?hadronization_active)

• ps_isr_z_cutoff (default: 9.99000E-01)
This real parameter allows to set the upper cutoff on the splitting variable z in space-
like QCD parton showers. (cf. also ?allow_shower, ?ps_ ..., $ps_ ..., ?mlm_ ...,
?hadronization_active)



346 APPENDIX A. SINDARIN REFERENCE

• ps_mass_cutoff (default: 1.00000E+00)
Real value that sets the QCD parton shower lower cutoff scale, where hadronization sets in.
(cf. also ?allow_shower, ?ps_ ..., $ps_ ..., ?mlm_ ..., ?hadronization_active)

• ps_max_n_flavors (default: 5)
This integer parameter sets the maxmimum number of flavors that can be produced in
a QCD shower g → qq̄. It is also used as the maximal number of active flavors for the
running of αs in the shower (with a minimum of 3). (cf. also ?allow_shower, ?ps_ ...,
$ps_ ..., ?mlm_ ..., ?hadronization_active)

• ?ps_taudec_active (default: false)
Flag to switch on τ decays, at the moment only via the included external package TAUOLA
and PHOTOS. (cf. also ?allow_shower, ?ps_ ..., $ps_ ..., ?mlm_ ..., ?hadronization_active)

• ps_tauola_dec_mode1 (default: 0)
Integer code to request a specific τ decay within TAUOLA for the decaying τ , and – in
correlated decays – for the second τ . For more information cf. the comments in the
code or the TAUOLA manual. (cf. also ?allow_shower, ?ps_ ..., $ps_ ..., ?mlm_ ...,
?ps_taudec_active)

• ps_tauola_dec_mode2 (default: 0)
Integer code to request a specific τ decay within TAUOLA for the decaying τ , and – in
correlated decays – for the second τ . For more information cf. the comments in the
code or the TAUOLA manual. (cf. also ?allow_shower, ?ps_ ..., $ps_ ..., ?mlm_ ...,
?ps_taudec_active)

• ?ps_tauola_dec_rad_cor (default: true)
Flag to switch radiative corrections for τ decays in TAUOLA on or off. (cf. also ?allow_shower,
?ps_ ..., $ps_ ..., ?mlm_ ..., ?ps_taudec_active)

• ps_tauola_mh (default: 1.25000E+02)
Real option to set the Higgs mass for Higgs decays into τ leptons in the interface to TAUOLA.
(cf. also ?allow_shower, ?ps_ ..., $ps_ ..., ?mlm_ ..., ?ps_taudec_active)

• ps_tauola_mix_angle (default: 9.00000E+01)
Option to set the mixing angle between scalar and pseudoscalar Higgs bosons for Higgs
decays into τ leptons in the interface to TAUOLA. (cf. also ?allow_shower, ?ps_ ..., $ps_
..., ?mlm_ ..., ?ps_taudec_active)

• ?ps_tauola_photos (default: false)
Flag to switch on PHOTOS for photon showering inside the TAUOLA package. (cf. also
?allow_shower, ?ps_ ..., $ps_ ..., ?mlm_ ..., ?ps_taudec_active)

• ?ps_tauola_pol_vector (default: false)
Flag to decide whether for transverse τ polarization, polarization information should
be taken from TAUOLA or not. The default is just based on random numbers. (cf. also
?allow_shower, ?ps_ ..., $ps_ ..., ?mlm_ ..., ?ps_taudec_active)



A.2. VARIABLES 347

• ?ps_tauola_transverse (default: false)
Flag to switch transverse τ polarization on or off for Higgs decays into τ leptons. (cf. also
?allow_shower, ?ps_ ..., $ps_ ..., ?mlm_ ..., ?ps_taudec_active)

• ?read_color_factors (default: true)
This flag decides whether to read QCD color factors from the matrix element provided by
each method, or to try and calculate the color factors in WHIZARD internally.

• ?read_raw (default: true)
This flag demands WHIZARD to (try to) read events (from the internal binary format) first
before generating new ones. (cf. simulate, ?write_raw, $sample, sample_format)

• real_epsilon (fixed value: 0.00000E+00)
This gives the smallest number E of the same kind as the float type for which 1 + E > 1.
It cannot be set by the user. (cf. also real_range, real_tiny, real_precision).

• $real_partition_mode (default: "default")
String variable to choose which parts of the real cross section are to be integrated. With
the default value ("default") or "off" the real cross section is integrated as usual without
partition. If set to "on" or "all", the real cross section is split into singular and finite part
using a partition function F , such that R = [1− F (p2T )]R+ F (p2T )R = Rfin +Rsing. The
emission generation is then performed using Rsing, whereas Rfin is treated separately. If
set to "singular" ("finite"), only the singular (finite) real component is integrated.(cf.
also real_partition_scale)

• real_partition_scale (default: 1.00000E+01)
This real variable sets the invariant mass of the FKS pair used as a separator between the
singular and the finite part of the real subtraction terms in an NLO calculation, e.g. in
e+e− → tt̄j. (cf. also $real_partition_mode)

• real_precision (fixed value: 15)
This integer gives the precision of the numeric model for the real float type in use. It
cannot be set by the user. (cf. also real_range, real_epsilon, real_tiny).

• real_range (fixed value: 307)
This integer gives the decimal exponent range of the numeric model for the real float
type in use. It cannot be set by the user. (cf. also real_precision, real_epsilon,
real_tiny).

• real_tiny (fixed value: 0.00000E+00)
This gives the smallest positive (non-zero) number in the numeric model for the real
float type in use. It cannot be set by the user. (cf. also real_range, real_epsilon,
real_precision).

• $real_tree_me_method (default: "")
This string variable specifies the method for the matrix elements to be used in the evalua-
tion of the real part of the NLO computation. The default is the same as the $method,



348 APPENDIX A. SINDARIN REFERENCE

i.e. the intrinsic O’Mega matrix element generator ("omega"), other options are: "ovm",
"unit_test", "template", "template_unity", "threshold", "gosam", "openloops".
(cf. also $born_me_method, $correlation_me_method, $dglap_me_method and $loop_me_method.)

• recola_gfermi_scheme (default: 1)
Integer variable that distinguishes the renormalization scheme in RecolaḞor the default,
1, GF is given by the absolute value of the complex parameters, for the value 0 by the
product of real parts of those parameters.

• ?recover_beams (default: true)
Flag that decides whether the beam particles should be reconstructed when reading
event/rescanning files into WHIZARD. (cf. rescan, ?update_event, ?update_sqme,
?update_weight)

• relative_error_goal (default: 0.00000E+00)
Real parameter that allows the user to set a minimal relative error that should be achieved
in the Monte-Carlo integration of a certain process. If that goal is reached, grid and weight
adaptation stop, and this result is used for simulation. (cf. also integrate, iterations,
accuracy_goal, error_goal, error_threshold)

• ?report_progress (default: true)
Flag for the O’Mega matrix element generator whether to print out status messages about
progress during matrix element generation. (cf. also $method, $omega_flags)

• ?rescan_force (default: false)
Flag that allows to bypass essential checks on the particle set when reading event/rescanning
files into WHIZARD. (cf. rescan, ?update_event, ?update_sqme,
?update_weight)

• $rescan_input_format (default: "raw")
String variable that allows to set the event format of the event file that is to be rescanned
by the (→) rescan command.

• resonance_background_factor (default: 1.00000E+00)
The real variable resonance_background_factor controls resonance insertion if a res-
onance history applies to a particular event. In determining whether event kinematics
qualifies as resonant or non-resonant, the non-resonant probability is multiplied by this
factor Setting the factor to zero removes the background configuration as long as the
kinematics qualifies as on-shell as qualified by resonance_on_shell_limit.

• ?resonance_history (default: false)
The logical variable ?resonance_history = true/false specifies whether during a sim-
ulation pass, the event generator should try to reconstruct intermediate resonances. If
activated, appropriate resonant subprocess matrix element code will be automatically
generated.



A.2. VARIABLES 349

• resonance_on_shell_limit (default: 4.00000E+00)
The real variable resonance_on_shell_limit = <num> specifies the maximum relative
distance from a resonance peak, such that the kinematical configuration can still be
considered on-shell. This is relevant only if ?resonance_history = true.

• resonance_on_shell_turnoff (default: 0.00000E+00)
The real variable resonance_on_shell_turnoff = <num>, if positive, controls the smooth
transition from resonance-like to background-like events. The relative strength of a reso-
nance is reduced by a Gaussian with width given by this variable. In any case, events are
treated as background-like when the off-shellness is greater than resonance_on_shell_limit.
All of this applies only if ?resonance_history = true.

• $resonances_exclude_particles (default: "default")
Accepts a string of particle names. These particles will be ignored when the resonance
histories are generated. If $fks_mapping_type is not "resonances", this option does
nothing.

• $restrictions (default: "")
This is an optional argument for process definitions for the matrix element method "omega".
Using the following construction, it defines a string variable, process
<process_name> = <particle1>, <particle2> => <particle3>, <particle4>, ... {
$restrictions = "<restriction_def>" }. The string argument <restriction_def>
is directly transferred during the code generation to the ME generator O’Mega. It has
to be of the form n1 + n2 + ... ~ <particle (list)>, where n1 and so on are the
numbers of the particles above in the process definition. The tilde specifies a certain inter-
mediate state to be equal to the particle(s) in particle (list). An example is process
eemm_z = e1, E1 => e2, E2 { $restrictions = "1+2 ~ Z" } restricts the code to
be generated for the process e−e+ → µ−µ+ to the s-channel Z-boson exchange. For more
details see Sec. 9.3 (cf. also process)

• $rng_method (default: "tao")
String variable that allows to set the method for the random number generation. Default
is Donald Knuth’ RNG method TAO.

• $run_id (default: "")
String variable $run_id = "<id>" that allows to set a special ID for a particular process
run, e.g. in a scan. The run ID is then attached to the process log file:
<proc_name>_<proc_comp>.<id>.log, the VAMP grid file:
<proc_name>_<proc_comp>.<id>.vg, and the phase space file:
<proc_name>_<proc_comp>.<id>.phs. The run ID string distinguishes among several
runs for the same process. It identifies process instances with respect to adapted integration
grids and similar run-specific data. The run ID is kept when copying processes for
creating instances, however, so it does not distinguish event samples. (cf. also $job_id,
$compile_workspace

~
~


350 APPENDIX A. SINDARIN REFERENCE

• safety_factor (default: 1.00000E+00)
This real variable safety_factor = <num> reduces the acceptance probability for un-
weighting. If greater than one, excess events become less likely, but the reweighting
efficiency also drops. (cf. simulate, ?unweighted)

• $sample (default: "")
String variable to set the (base) name of the event output format, e.g. $sample = "foo"
will result in an intrinsic binary format event file foo.evx. (cf. also sample_format,
simulate, hepevt, ascii, athena, debug, long, short, hepmc, lhef, lha, stdhep,
stdhep_up, $sample_normalization, ?sample_pacify, sample_max_tries)

• sample_max_tries (default: 10000)
Integer variable that sets the maximal number of tries for generating a single event. The
event might be vetoed because of a very low unweighting efficiency, errors in the event
transforms like decays, shower, matching, hadronization etc. (cf. also simulate, $sample,
sample_format, ?sample_pacify, $sample_normalization, sample_split_n_evt,
sample_split_n_kbytes)

• $sample_normalization (default: "auto")
String variable that allows to set the normalization of generated events. There are
four options: option "1" (events normalized to one), "1/n" (sum of all events in a
sample normalized to one), "sigma" (events normalized to the cross section of the pro-
cess), and "sigma/n" (sum of all events normalized to the cross section). The de-
fault is "auto" where unweighted events are normalized to one, and weighted ones
to the cross section. (cf. also simulate, $sample, sample_format, ?sample_pacify,
sample_max_tries, sample_split_n_evt, sample_split_n_kbytes)

• ?sample_pacify (default: false)
Flag, mainly for debugging purposes: suppresses numerical noise in the output of a
simulation. (cf. also simulate, $sample, sample_format, $sample_normalization,
sample_max_tries, sample_split_n_evt, sample_split_n_kbytes)

• ?sample_select (default: true)
Logical that determines whether a selection should be applied to the output event format
or not. If set to false a selection is only considered for the evaluation of observables. (cf.
select, selection, analysis)

• sample_split_index (default: 0)
Integer number that gives the starting index sample_split_index = <split_index> for
the numbering of event samples <proc_name>.<split_index>.<evt_extension> split
by the sample_split_n_evt = <num>. The index runs from <split_index> to
<split_index> + <num>. (cf. also simulate, $sample, sample_format,
$sample_normalization, sample_max_tries, ?sample_pacify)

• sample_split_n_evt (default: 0)
When generating events, this integer parameter sample_split_n_evt = <num> gives the



A.2. VARIABLES 351

number <num> of breakpoints in the event files, i.e. it splits the event files into <num> + 1
parts. The parts are denoted by <proc_name>.<split_index>.<evt_extension>. Here,
<split_index> is an integer running from 0 to <num>. The start can be reset by (→)
sample_split_index. (cf. also simulate, $sample, sample_format, sample_max_tries,
$sample_normalization, ?sample_pacify, sample_split_n_kbytes)

• sample_split_n_kbytes (default: 0)
When generating events, this integer parameter sample_split_n_kbytes = <num> limits
the file size of event files. Whenever an event file has exceeded this size, counted in
kilobytes, the following events will be written to a new file. The naming conventions
are the same as for sample_split_n_evt. (cf. also simulate, $sample, sample_format,
sample_max_tries, $sample_normalization, ?sample_pacify)

• seed (default: 0)
Integer variable seed = <num> that allows to set a specific random seed num. If not set,
WHIZARD takes the time from the system clock to determine the random seed.

• $select_alpha_regions (default: "")
Fixes the αr in the real subtraction as well as the DGLAP component. Allows for testing
in a list of selected singular regions.

• ?sf_allow_s_mapping (default: true)
Flag that determines whether special mappings for processes with structure functions and
s-channel resonances are applied, e.g. Drell-Yan at hadron colliders, or Z production at
linear colliders with beamstrahlung and ISR.

• ?sf_trace (default: false)
Debug flag that writes out detailed information about the structure function setup
into the file <proc_name>_sftrace.dat. This file name can be changed with (→)
$sf_trace_file.

• $sf_trace_file (default: "")
$sf_trace_file = "<file_name>" allows to change the detailed structure function in-
formation switched on by the debug flag (→) ?sf_trace into a different file <file_name>
than the default <proc_name>_sftrace.dat.

• $shower_method (default: "WHIZARD")
String variable that allows to specify which parton shower is being used, the default,
"WHIZARD", is one of the in-house showers of WHIZARD. Other possibilities at the moment
are only "PYTHIA6".

• ?shower_verbose (default: false)
Flag to switch on verbose messages when using shower and/or hadronization. (cf. also
?allow_shower, ?ps_ ..., $ps_ ..., ?mlm_ ...,



352 APPENDIX A. SINDARIN REFERENCE

• ?slha_read_decays (default: false)
Flag which decides whether WHIZARD reads in the widths and branching ratios from the
DCINFO common block of the SUSY Les Houches Accord files. (cf. also read_slha,
write_slha, ?slha_read_spectrum, ?slha_read_input)

• ?slha_read_input (default: true)
Flag which decides whether WHIZARD reads in the SM and parameter information from the
SMINPUTS and MINPAR common blocks of the SUSY Les Houches Accord files. (cf. also
read_slha, write_slha, ?slha_read_spectrum, ?slha_read_decays)

• ?slha_read_spectrum (default: true)
Flag which decides whether WHIZARD reads in the whole spectrum and mixing angle
information from the common blocks of the SUSY Les Houches Accord files. (cf. also
read_slha, write_slha, ?slha_read_decays, ?slha_read_input)

• sqrts
Real variable in order to set the center-of-mass energy for the collisions (collider energy√
s, not hard interaction energy

√
ŝ): sqrts = <num> [ <phys_unit> ]. The physical

unit can be one of the following eV, keV, MeV, GeV, and TeV. If absent, WHIZARD takes GeV
as its standard unit. Note that this variable is absolutely mandatory for integration and
simulation of scattering processes.

• ?stratified (default: true)
Flag that switches between stratified and importance sampling for the VAMP integration
method.

• $symbol
Settings for WHIZARD’s internal graphics output: $symbol = "<LaTeX_code>" is a string
variable for the symbols that should be used for plotting data points. (cf. also $obs_label,
?normalize_bins, $obs_unit, $title, $description, $x_label, $y_label,
graph_width_mm, graph_height_mm, ?y_log, ?x_log, x_min, x_max, y_min, y_max,
$gmlcode_fg, $gmlcode_bg, ?draw_base, ?draw_piecewise, ?fill_curve,
?draw_histogram, ?draw_curve, ?draw_errors, $fill_options, $draw_options,
$err_options, ?draw_symbols)

• ?test_anti_coll_limit (default: false)
Sets the fixed values ξ̃ = 0.5 and y = −0.9999999 as radiation variables. This way, only
anti-collinear, but non-soft phase space points are generated, which allows for testing
subtraction in this region. Can be combined with ?test_soft_limit to probe soft-collinear
regions.

• ?test_coll_limit (default: false)
Sets the fixed values ξ̃ = 0.5 and y = 0.9999999 as radiation variables. This way, only
collinear, but non-soft phase space points are generated, which allows for testing subtraction
in this region. Can be combined with ?test_soft_limit to probe soft-collinear regions.



A.2. VARIABLES 353

• ?test_soft_limit (default: false)
Sets the fixed values ξ̃ = 0.00001 and y = 0.5 as radiation variables. This way, only soft,
but non-collinear phase space points are generated, which allows for testing subtraction in
this region.

• threshold_calls (default: 10)
This integer variable gives a limit for the number of calls in a given channel which acts
as a lower threshold for the channel weight. If the number of calls in that channel falls
below this threshold, the weight is not lowered further but kept at this threshold. (cf. also
channel_weights_power)

• $title (default: "")
This string variable sets the title of a plot in a WHIZARD analysis setup, e.g. a histogram
or an observable. The syntax is $title = "<your title>". This title appears as a
section header in the analysis file, but not in the screen output of the analysis. (cf. also
n_bins, ?normalize_bins, $obs_unit, $description, $x_label, $y_label, ?y_log,
?x_log, graph_width_mm, graph_height_mm, x_min, x_max, y_min, y_max, $gmlcode_bg,
$gmlcode_fg, ?draw_base, ?draw_histogram, ?fill_curve, ?draw_piecewise,
?draw_curve, ?draw_errors, $symbol, ?draw_symbols, $fill_options, $draw_options,
$err_options)

• tolerance (default: 0.00000E+00)
Real variable that defines the absolute tolerance with which the (logical) function expect
accepts equality or inequality: tolerance = <num>. This can e.g. be used for cross-section
tests and backwards compatibility checks. (cf. also expect)

• undefined_jet_algorithm (fixed value: 999)
This is just a place holder for any kind of jet jet algorithm that is not further specified.
(cf. also kt_algorithm, cambridge_for_passive_algorithm,
genkt_[for_passive_]algorithm, ee_[gen]kt_algorithm, jet_r, plugin_algorithm)

• ?unweighted (default: true)
Flag that distinguishes between unweighted and weighted event generation. (cf. also
simulate, n_events, luminosity, event_index_offset)

• ?update_event (default: false)
Flag that decides whether the events in an event file should be rebuilt from the hard
process when reading event/rescanning files into WHIZARD. (cf. rescan, ?recover_beams,
?update_sqme, ?update_weight)

• ?update_sqme (default: false)
Flag that decides whether the squared matrix element in an event file should be up-
dated/recalculated when reading event/rescanning files into WHIZARD. (cf. rescan,
?recover_beams, ?update_event, ?update_weight)



354 APPENDIX A. SINDARIN REFERENCE

• ?update_weight (default: false)
Flag that decides whether the weights in an event file should be updated/recalculated
when reading event/rescanning files into WHIZARD. (cf. rescan, ?recover_beams,
?update_event, ?update_sqme)

• ?use_alphas_from_file (default: false)
Flag that decides whether the current αs definition should be used when recalculating
matrix elements for events read from file, or the value that is stored in the file for that
event. (cf. rescan, ?update_sqme, ?use_scale_from_file)

• ?use_scale_from_file (default: false)
Flag that decides whether the current energy-scale expression should be used when
recalculating matrix elements for events read from file, or the value that is stored in the
file for that event. (cf. rescan, ?update_sqme, ?use_alphas_from_file)

• ?use_vamp_equivalences (default: true)
Flag that decides whether equivalence relations (symmetries) between different integration
channels are used by the VAMP integrator.

• vamp_grid_checkpoint (default: 1)
Integer parameter for setting checkpoints to save the current state of the grids and the
results so far of the integration. Allowed are all positive integer. Zero values corresponds
to a checkpoint after each integration pass, a one value to a checkpoint after each iteration
(default) and an N value correspond to a checkpoint after N iterations or after each pass,
respectively.

• $vamp_grid_format (default: "ascii")
Character string that tells WHIZARD the file format for vamp2 to use for writing and reading
the configuration for the multi-channel integration setup and the VAMP2 (only) grid data.
The values can be ascii for a single human-readable grid file with ending .vg2 or binary
for two files, a human-readable header file with ending .vg2 and binary file with ending
.vgx2 storing the grid data.The main purpose of the binary format is to perform faster I/O,
e.g. for HPC runs.WHIZARD can convert between the different file formats automatically.

• ?vamp_history_channels (default: false)
Flag that decides whether the history of the grid adaptation of the VAMP integrator for
every single channel are written into the process logfiles. Only for debugging purposes.
(cf. also ?vamp_history_global_verbose, ?vamp_history_global, ?vamp_verbose,
?vamp_history_channels_verbose)

• ?vamp_history_channels_verbose (default: false)
Flag that decides whether the history of the grid adaptation of the VAMP integrator for
every single channel are written into the process logfiles in an extended version. Only
for debugging purposes. (cf. also ?vamp_history_global, ?vamp_history_channels,
?vamp_verbose, ?vamp_history_global_verbose)



A.2. VARIABLES 355

• ?vamp_history_global (default: true)
Flag that decides whether the global history of the grid adaptation of the VAMP inte-
grator are written into the process logfiles. (cf. also ?vamp_history_global_verbose,
?vamp_history_channels, ?vamp_history_channels_verbose, ?vamp_verbose)

• ?vamp_history_global_verbose (default: false)
Flag that decides whether the global history of the grid adaptation of the VAMP inte-
grator are written into the process logfiles in an extended version. Only for debugging
purposes. (cf. also ?vamp_history_global, ?vamp_history_channels, ?vamp_verbose,
?vamp_history_channels_verbose)

• $vamp_parallel_method (default: "simple")
Character string that tells WHIZARD the parallel method to use for parallel integration
within vamp2. (i) simple (default) is a local work sharing approach without the need of
communication between all workers except for the communication during result collection.
(ii) load is a global queue approach where the master worker acts as agovernor listening
and providing work for each worker. The queue is filled and assigned with workers a-priori
with respect to the assumed computational impact of each channel.Both approaches use
the same mechanism for result collection using non-blocking communication allowing for a
efficient usage of the computing resources.

• ?vamp_verbose (default: false)
Flag that sets the chattiness of the VAMP integrator. If set, not only errors, but also all
warnings and messages will be written out (not the default). (cf. also
?vamp_history_global, ?vamp_history_global_verbose, ?vamp_history_channels,
?vamp_history_channels_verbose)

• ?virtual_collinear_resonance_aware (default: true)
This flag allows to switch between two different implementations of the collinear subtraction
in the resonance-aware FKS setup.

• $virtual_selection (default: "Full")
String variable to select either the full or only parts of the virtual components of an
NLO calculation. Possible modes are "Full", "OLP" and "Subtraction.". Mainly for
debugging purposes.

• ?vis_channels (default: false)
Optional logical argument for the integrate command that demands WHIZARD to generate
a PDF or postscript output showing the classification of the found phase space channels
(if the phase space method wood has been used) according to their properties: integrate
(foo) { iterations=3:10000 ?vis_channels = true }. The default is false. (cf.
also integrate, ?vis_history)

• ?vis_diags (default: false)
Logical variable that allows to give out a Postscript or PDF file for the Feynman diagrams
for a O’Mega process. (cf. ?vis_diags_color).



356 APPENDIX A. SINDARIN REFERENCE

• ?vis_diags_color (default: false)
Same as ?vis_diags, but switches on color flow instead of Feynman diagram generation.
(cf. ?vis_diags).

• ?vis_fks_regions (default: false)
Logical variable that, if set to true, generates LATEX code and executes it into a PDF to
produce a table of all singular FKS regions and their flavor structures. The default is
false.

• ?vis_history (default: false)
Optional logical argument for the integrate command that demands WHIZARD to generate
a PDF or postscript output showing the adaptation history of the Monte-Carlo integration
of the process under consideration. (cf. also integrate, ?vis_channels)

• ?write_raw (default: true)
Flag to write out events in WHIZARD’s internal binary format. (cf. simulate, ?read_raw,
sample_format, $sample)

• $x_label (default: "")
String variable, $x_label = "<LaTeX code>", that sets the x axis label in a plot or his-
togram in a WHIZARD analysis. (cf. also analysis, n_bins, ?normalize_bins, $obs_unit,
$y_label, ?y_log, ?x_log, graph_width_mm, graph_height_mm, x_min, x_max, y_min,
y_max,
$gmlcode_bg, $gmlcode_fg, ?draw_base, ?draw_histogram, ?fill_curve,
?draw_piecewise, ?draw_curve, ?draw_errors, $symbol, ?draw_symbols, $fill_options,
$draw_options, $err_options)

• ?x_log (default: false)
Settings for WHIZARD’s internal graphics output: flag that makes the x axis logarithmic.
(cf. also ?normalize_bins, $obs_label, $obs_unit, $title, $description, $x_label,
$y_label, graph_height_mm, graph_width_mm, ?y_log, x_min, x_max, y_min, y_max,
$gmlcode_bg, $gmlcode_fg, ?draw_histogram, ?draw_base, ?draw_piecewise,
?fill_curve, ?draw_curve, ?draw_errors, ?draw_symbols, $fill_options,
$draw_options, $err_options, $symbol)

• x_max
Settings for WHIZARD’s internal graphics output: real parameter that sets the upper limit
of the x axis plotting or histogram interval. (cf. also ?normalize_bins, $obs_label,
$obs_unit, $title, $description, $x_label, $y_label, graph_height_mm, ?y_log,
?x_log, graph_width_mm, x_min, y_min, y_max, $gmlcode_bg, $gmlcode_fg, ?draw_base,
?draw_histogram, ?draw_piecewise, ?fill_curve, ?draw_curve, ?draw_errors,
?draw_symbols, $fill_options, $draw_options, $err_options, $symbol)

• x_min
Settings for WHIZARD’s internal graphics output: real parameter that sets the lower limit



A.2. VARIABLES 357

of the x axis plotting or histogram interval. (cf. also ?normalize_bins, $obs_label,
$obs_unit, $title, $description, $x_label, $y_label, graph_height_mm, ?y_log,
?x_log, graph_width_mm, x_max, y_min, y_max, $gmlcode_bg, $gmlcode_fg, ?draw_base,
?draw_histogram, ?draw_piecewise, ?fill_curve, ?draw_curve, ?draw_errors,
?draw_symbols, $fill_options, $draw_options, $err_options, $symbol)

• $y_label (default: "")
String variable, $y_label = "<LaTeX_code>", that sets the y axis label in a plot or his-
togram in a WHIZARD analysis. (cf. also analysis, n_bins, ?normalize_bins, $obs_unit,
?y_log, ?x_log, graph_width_mm, graph_height_mm, x_min, x_max, y_min, y_max,
$gmlcode_bg, $gmlcode_fg, ?draw_base, ?draw_histogram, ?fill_curve,
?draw_piecewise, ?draw_curve, ?draw_errors, $symbol, ?draw_symbols,
$fill_options, $draw_options, $err_options)

• ?y_log (default: false)
Settings for WHIZARD’s internal graphics output: flag that makes the y axis logarithmic.
(cf. also ?normalize_bins, $obs_label, $obs_unit, $title, $description, $x_label,
$y_label, graph_height_mm, graph_width_mm, ?y_log, x_min, x_max, y_min, y_max,
$gmlcode_bg, $gmlcode_fg, ?draw_histogram, ?draw_base, ?draw_piecewise,
?fill_curve, ?draw_curve, ?draw_errors, ?draw_symbols, $fill_options,
$draw_options, $err_options, $symbol)

• y_max
Settings for WHIZARD’s internal graphics output: real parameter that sets the upper limit
of the y axis plotting or histogram interval. (cf. also ?normalize_bins, $obs_label,
$obs_unit, $title, $description, $x_label, $y_label, graph_height_mm, ?y_log,
?x_log, graph_width_mm, x_max, x_min, y_max, $gmlcode_bg, $gmlcode_fg, ?draw_base,
?draw_histogram, ?draw_piecewise, ?fill_curve, ?draw_curve, ?draw_errors,
?draw_symbols, $fill_options, $draw_options, $err_options, $symbol)

• y_min
Settings for WHIZARD’s internal graphics output: real parameter that sets the lower limit
of the y axis plotting or histogram interval. (cf. also ?normalize_bins, $obs_label,
$obs_unit, $title, $description, $x_label, $y_label, graph_height_mm, ?y_log,
?x_log, graph_width_mm, x_max, y_max, x_min, $gmlcode_bg, $gmlcode_fg, ?draw_base,
?draw_histogram, ?draw_piecewise, ?fill_curve, ?draw_curve, ?draw_errors,
?draw_symbols, $fill_options, $draw_options, $err_options, $symbol)



358 APPENDIX A. SINDARIN REFERENCE

Acknowledgements
We would like to thank E. Boos, R. Chierici, K. Desch, M. Kobel, F. Krauss, P.M. Manakos,
N. Meyer, K. Mönig, H. Reuter, T. Robens, S. Rosati, J. Schumacher, M. Schumacher, and
C. Schwinn who contributed to WHIZARD by their suggestions, bits of codes and valuable remarks
and/or used several versions of the program for real-life applications and thus helped a lot
in debugging and improving the code. Special thanks go to A. Vaught and J. Weill for their
continuos efforts on improving the g95 and gfortran compilers, respectively.



Bibliography

[1] T. Sjöstrand, Comput. Phys. Commun. 82 (1994) 74.

[2] A. Pukhov, et al., Preprint INP MSU 98-41/542, hep-ph/9908288.

[3] T. Stelzer and W.F. Long, Comput. Phys. Commun. 81 (1994) 357.

[4] T. Ohl, Proceedings of the Seventh International Workshop on Advanced Computing and
Analysis Technics in Physics Research, ACAT 2000, Fermilab, October 2000, IKDA-2000-30,
hep-ph/0011243; M. Moretti, Th. Ohl, and J. Reuter, LC-TOOL-2001-040

[5] T. Ohl, Vegas revisited: Adaptive Monte Carlo integration beyond factorization, Comput.
Phys. Commun. 120, 13 (1999) [arXiv:hep-ph/9806432].

[6] T. Ohl, CIRCE version 1.0: Beam spectra for simulating linear collider physics, Comput.
Phys. Commun. 101, 269 (1997) [arXiv:hep-ph/9607454].

[7] V. N. Gribov and L. N. Lipatov, e+ e- pair annihilation and deep inelastic e p scattering
in perturbation theory, Sov. J. Nucl. Phys. 15, 675 (1972) [Yad. Fiz. 15, 1218 (1972)].

[8] E. A. Kuraev and V. S. Fadin, On Radiative Corrections to e+ e- Single Photon Annihilation
at High-Energy, Sov. J. Nucl. Phys. 41, 466 (1985) [Yad. Fiz. 41, 733 (1985)].

[9] M. Skrzypek and S. Jadach, Exact and approximate solutions for the electron nonsinglet
structure function in QED, Z. Phys. C 49, 577 (1991).

[10] D. Schulte, Beam-beam simulations with Guinea-Pig, eConf C 980914, 127 (1998).

[11] D. Schulte, Beam-beam simulations with GUINEA-PIG, CERN-PS-99-014-LP.

[12] D. Schulte, M. Alabau, P. Bambade, O. Dadoun, G. Le Meur, C. Rimbault and F. Touze,
GUINEA PIG++ : An Upgraded Version of the Linear Collider Beam Beam Interaction
Simulation Code GUINEA PIG, Conf. Proc. C 070625, 2728 (2007).

[13] T. Behnke, J. E. Brau, B. Foster, J. Fuster, M. Harrison, J. M. Paterson, M. Peskin and
M. Stanitzki et al., The International Linear Collider Technical Design Report - Volume 1:
Executive Summary, arXiv:1306.6327 [physics.acc-ph].

359



360 BIBLIOGRAPHY

[14] H. Baer, T. Barklow, K. Fujii, Y. Gao, A. Hoang, S. Kanemura, J. List and H. E. Logan
et al., The International Linear Collider Technical Design Report - Volume 2: Physics,
arXiv:1306.6352 [hep-ph].

[15] C. Adolphsen, M. Barone, B. Barish, K. Buesser, P. Burrows, J. Carwardine, J. Clark
and Hélèn. M. Durand et al., The International Linear Collider Technical Design Report -
Volume 3.I: Accelerator & in the Technical Design Phase, arXiv:1306.6353 [physics.acc-ph].

[16] C. Adolphsen, M. Barone, B. Barish, K. Buesser, P. Burrows, J. Carwardine, J. Clark
and Hélèn. M. Durand et al., The International Linear Collider Technical Design Report -
Volume 3.II: Accelerator Baseline Design, arXiv:1306.6328 [physics.acc-ph].

[17] T. Behnke, J. E. Brau, P. N. Burrows, J. Fuster, M. Peskin, M. Stanitzki, Y. Sugimoto and
S. Yamada et al., arXiv:1306.6329 [physics.ins-det].

[18] M. Aicheler, P. Burrows, M. Draper, T. Garvey, P. Lebrun, K. Peach and N. Phinney et
al., A Multi-TeV Linear Collider Based on CLIC Technology : CLIC Conceptual Design
Report, CERN-2012-007.

[19] P. Lebrun, L. Linssen, A. Lucaci-Timoce, D. Schulte, F. Simon, S. Stapnes, N. Toge and
H. Weerts et al., The CLIC Programme: Towards a Staged e+e- Linear Collider Exploring
the Terascale : CLIC Conceptual Design Report, arXiv:1209.2543 [physics.ins-det].

[20] L. Linssen, A. Miyamoto, M. Stanitzki and H. Weerts, Physics and Detectors at CLIC:
CLIC Conceptual Design Report, arXiv:1202.5940 [physics.ins-det].

[21] C. F. von Weizsäcker, Radiation emitted in collisions of very fast electrons, Z. Phys. 88,
612 (1934).

[22] E. J. Williams, Nature of the high-energy particles of penetrating radiation and status of
ionization and radiation formulae, Phys. Rev. 45, 729 (1934).

[23] V. M. Budnev, I. F. Ginzburg, G. V. Meledin and V. G. Serbo, The Two photon particle
production mechanism. Physical problems. Applications. Equivalent photon approximation,
Phys. Rept. 15 (1974) 181.

[24] I. F. Ginzburg, G. L. Kotkin, V. G. Serbo and V. I. Telnov, Colliding gamma e and gamma
gamma Beams Based on the Single Pass Accelerators (of Vlepp Type), Nucl. Instrum. Meth.
205, 47 (1983).

[25] V. I. Telnov, Problems of Obtaining γγ and γϵ Colliding Beams at Linear Colliders, Nucl.
Instrum. Meth. A 294, 72 (1990).

[26] V. I. Telnov, Principles of photon colliders, Nucl. Instrum. Meth. A 355, 3 (1995).



BIBLIOGRAPHY 361

[27] J. A. Aguilar-Saavedra et al. [ECFA/DESY LC Physics Working Group Collaboration],
TESLA: The Superconducting electron positron linear collider with an integrated x-ray
laser laboratory. Technical design report. Part 3. Physics at an e+ e- linear collider, hep-
ph/0106315.

[28] F. Richard, J. R. Schneider, D. Trines and A. Wagner, TESLA, The Superconducting
Electron Positron Linear Collider with an Integrated X-ray Laser Laboratory, Technical
Design Report Part 1 : Executive Summary, hep-ph/0106314.

[29] V. V. Sudakov, Sov. Phys. JETP 3, 65 (1956) [Zh. Eksp. Teor. Fiz. 30, 87 (1956)].

[30]

[30] T. Sjostrand, Phys. Lett. 157B, 321 (1985). doi:10.1016/0370-2693(85)90674-4

[31] T. Sjostrand, S. Mrenna and P. Z. Skands, JHEP 0605, 026 (2006) doi:10.1088/1126-
6708/2006/05/026 [hep-ph/0603175].

[32] T. Ohl, Vegas revisited: Adaptive Monte Carlo integration beyond factorization, Comput.
Phys. Commun. 120, 13 (1999) [hep-ph/9806432].

[33] G. P. Lepage, CLNS-80/447.

[34] A. Djouadi, J. Kalinowski, M. Spira, Comput. Phys. Commun. 108 (1998) 56-74.

[35] M. Beyer, W. Kilian, P. Krstonošic, K. Mönig, J. Reuter, E. Schmidt and H. Schröder,
Determination of New Electroweak Parameters at the ILC - Sensitivity to New Physics,
Eur. Phys. J. C 48, 353 (2006) [hep-ph/0604048].

[36] A. Alboteanu, W. Kilian and J. Reuter, Resonances and Unitarity in Weak Boson Scattering
at the LHC, JHEP 0811, 010 (2008) [arXiv:0806.4145 [hep-ph]].

[37] T. Binoth et al., Comput. Phys. Commun. 181, 1612 (2010) doi:10.1016/j.cpc.2010.05.016
[arXiv:1001.1307 [hep-ph]].

[38] S. Alioli et al., Comput. Phys. Commun. 185, 560 (2014) doi:10.1016/j.cpc.2013.10.020
[arXiv:1308.3462 [hep-ph]].

[39] C. Speckner, LHC Phenomenology of the Three-Site Higgsless Model, PhD thesis,
arXiv:1011.1851 [hep-ph].

[40] R. S. Chivukula, B. Coleppa, S. Di Chiara, E. H. Simmons, H. -J. He, M. Kurachi
and M. Tanabashi, A Three Site Higgsless Model, Phys. Rev. D 74, 075011 (2006) [hep-
ph/0607124].

[41] R. S. Chivukula, E. H. Simmons, H. -J. He, M. Kurachi and M. Tanabashi, Ideal fermion
delocalization in Higgsless models, Phys. Rev. D 72, 015008 (2005) [hep-ph/0504114].



362 BIBLIOGRAPHY

[42] T. Ohl and C. Speckner, Production of Almost Fermiophobic Gauge Bosons in the Minimal
Higgsless Model at the LHC, Phys. Rev. D 78, 095008 (2008) [arXiv:0809.0023 [hep-ph]].

[43] T. Ohl and J. Reuter, Clockwork SUSY: Supersymmetric Ward and Slavnov-Taylor identities
at work in Green’s functions and scattering amplitudes, Eur. Phys. J. C 30, 525 (2003)
[hep-th/0212224].

[44] J. Reuter and F. Braam, The NMSSM implementation in WHIZARD, AIP Conf. Proc.
1200, 470 (2010) [arXiv:0909.3059 [hep-ph]].

[45] J. Kalinowski, W. Kilian, J. Reuter, T. Robens and K. Rolbiecki, Pinning down the Invisible
Sneutrino, JHEP 0810, 090 (2008) [arXiv:0809.3997 [hep-ph]].

[46] T. Robens, J. Kalinowski, K. Rolbiecki, W. Kilian and J. Reuter, (N)LO Simulation of
Chargino Production and Decay, Acta Phys. Polon. B 39, 1705 (2008) [arXiv:0803.4161
[hep-ph]].

[47] W. Kilian, D. Rainwater and J. Reuter, Pseudo-axions in little Higgs models, Phys. Rev. D
71, 015008 (2005) [hep-ph/0411213].

[48] W. Kilian, D. Rainwater and J. Reuter, Distinguishing little-Higgs product and simple group
models at the LHC and ILC, Phys. Rev. D 74, 095003 (2006) [Erratum-ibid. D 74, 099905
(2006)] [hep-ph/0609119].

[49] T. Ohl and J. Reuter, Testing the noncommutative standard model at a future photon
collider, Phys. Rev. D 70, 076007 (2004) [hep-ph/0406098].

[50] T. Ohl and C. Speckner, The Noncommutative Standard Model and Polarization in Charged
Gauge Boson Production at the LHC, Phys. Rev. D 82, 116011 (2010) [arXiv:1008.4710
[hep-ph]].

[51] E. Boos et al., Generic user process interface for event generators, arXiv:hep-ph/0109068.

[52] P. Z. Skands et al., SUSY Les Houches Accord: Interfacing SUSY Spectrum Calculators,
Decay Packages, and Event Generators, JHEP 0407, 036 (2004) [arXiv:hep-ph/0311123].

[53] J. A. Aguilar-Saavedra, A. Ali, B. C. Allanach, R. L. Arnowitt, H. A. Baer, J. A. Bagger,
C. Balazs and V. D. Barger et al., Supersymmetry parameter analysis: SPA convention
and project, Eur. Phys. J. C 46, 43 (2006) [hep-ph/0511344].

[54] B. C. Allanach, C. Balazs, G. Belanger, M. Bernhardt, F. Boudjema, D. Choudhury,
K. Desch and U. Ellwanger et al., Comput. Phys. Commun. 180, 8 (2009) [arXiv:0801.0045
[hep-ph]].

[55] J. Alwall et al., A standard format for Les Houches event files, Comput. Phys. Commun.
176, 300 (2007) [arXiv:hep-ph/0609017].



BIBLIOGRAPHY 363

[56] K. Hagiwara et al., Supersymmetry simulations with off-shell effects for LHC and ILC,
Phys. Rev. D 73, 055005 (2006) [arXiv:hep-ph/0512260].

[57] B. C. Allanach et al., The Snowmass points and slopes: Benchmarks for SUSY searches, in
Proc. of the APS/DPF/DPB Summer Study on the Future of Particle Physics (Snowmass
2001) ed. N. Graf, Eur. Phys. J. C 25 (2002) 113 [eConf C010630 (2001) P125] [arXiv:hep-
ph/0202233].

[58] M.E. Peskin, D.V.Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley
Publishing Co., 1995.

[59] U. Klein, O. Fischer, private communications.

[60] L. Garren, StdHep, Monte Carlo Standardization at FNAL, Fermilab CS-doc-903, http:
//cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=903

[61] S. Frixione, Phys. Lett. B 429, 369 (1998) doi:10.1016/S0370-2693(98)00454-7 [hep-
ph/9801442].

[62] W. Giele et al., The QCD / SM working group: Summary report, arXiv:hep-ph/0204316;
M. R. Whalley, D. Bourilkov and R. C. Group, The Les Houches Accord PDFs (LHAPDF)
and Lhaglue, arXiv:hep-ph/0508110; D. Bourilkov, R. C. Group and M. R. Whalley,
LHAPDF: PDF use from the Tevatron to the LHC, arXiv:hep-ph/0605240.

[63] M. Dobbs and J. B. Hansen, The HepMC C++ Monte Carlo event record for High Energy
Physics, Comput. Phys. Commun. 134, 41 (2001).

[64] E. Boos et al. [CompHEP Collaboration], Nucl. Instrum. Meth. A 534, 250 (2004) [hep-
ph/0403113].

[65] J. Pumplin, D. R. Stump, J. Huston et al., New generation of parton distributions with
uncertainties from global QCD analysis, JHEP 0207, 012 (2002). [hep-ph/0201195].

[66] A. D. Martin, R. G. Roberts, W. J. Stirling et al., Parton distributions incorporating QED
contributions, Eur. Phys. J. C39, 155-161 (2005). [hep-ph/0411040].

[67] A. D. Martin, W. J. Stirling, R. S. Thorne et al., Parton distributions for the LHC, Eur.
Phys. J. C63, 189-285 (2009). [arXiv:0901.0002 [hep-ph]].

[68] H. L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin and C. P. Yuan, New
parton distributions for collider physics, Phys. Rev. D 82, 074024 (2010) [arXiv:1007.2241
[hep-ph]].

[69] J. F. Owens, A. Accardi and W. Melnitchouk, Global parton distributions with nuclear and
finite-Q2 corrections, Phys. Rev. D 87, no. 9, 094012 (2013) [arXiv:1212.1702 [hep-ph]].

[70] A. Accardi, L. T. Brady, W. Melnitchouk, J. F. Owens and N. Sato, arXiv:1602.03154
[hep-ph].

http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=903
http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=903


364 BIBLIOGRAPHY

[71] L. A. Harland-Lang, A. D. Martin, P. Motylinski and R. S. Thorne, arXiv:1412.3989
[hep-ph].

[72] S. Dulat et al., arXiv:1506.07443 [hep-ph].

[73] G. P. Salam and J. Rojo, A Higher Order Perturbative Parton Evolution Toolkit (HOPPET),
Comput. Phys. Commun. 180, 120 (2009) [arXiv:0804.3755 [hep-ph]].

[74] W. Kilian, J. Reuter, S. Schmidt and D. Wiesler, An Analytic Initial-State Parton Shower,
JHEP 1204 (2012) 013 [arXiv:1112.1039 [hep-ph]].

[75] F. Staub, Sarah, arXiv:0806.0538 [hep-ph].

[76] F. Staub, From Superpotential to Model Files for FeynArts and CalcHep/CompHep, Comput.
Phys. Commun. 181, 1077 (2010) [arXiv:0909.2863 [hep-ph]].

[77] F. Staub, Automatic Calculation of supersymmetric Renormalization Group Equations and
Self Energies, Comput. Phys. Commun. 182, 808 (2011) [arXiv:1002.0840 [hep-ph]].

[78] F. Staub, SARAH 3.2: Dirac Gauginos, UFO output, and more, Computer Physics Commu-
nications 184, pp. 1792 (2013) [Comput. Phys. Commun. 184, 1792 (2013)] [arXiv:1207.0906
[hep-ph]].

[79] F. Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun.
185, 1773 (2014) [arXiv:1309.7223 [hep-ph]].

[80] Mathematica is a registered trademark of Wolfram Research, Inc., Champain, IL, USA.

[81] W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays
and SUSY particle production at e+ e- colliders, Comput. Phys. Commun. 153, 275 (2003)
[hep-ph/0301101].

[82] W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models
beyond the MSSM, Comput. Phys. Commun. 183, 2458 (2012) [arXiv:1104.1573 [hep-ph]].

[83] F. Staub, T. Ohl, W. Porod and C. Speckner, Comput. Phys. Commun. 183, 2165 (2012)
[arXiv:1109.5147 [hep-ph]].

[84] N. D. Christensen and C. Duhr, FeynRules - Feynman rules made easy, Comput. Phys.
Commun. 180, 1614 (2009) [arXiv:0806.4194 [hep-ph]].

[85] N. D. Christensen, P. de Aquino, C. Degrande, C. Duhr, B. Fuks, M. Herquet, F. Maltoni
and S. Schumann, A Comprehensive approach to new physics simulations, Eur. Phys. J. C
71, 1541 (2011) [arXiv:0906.2474 [hep-ph]].

[86] C. Duhr and B. Fuks, Comput. Phys. Commun. 182, 2404 (2011) [arXiv:1102.4191 [hep-ph]].



BIBLIOGRAPHY 365

[87] N. D. Christensen, C. Duhr, B. Fuks, J. Reuter and C. Speckner, Introducing an interface
between WHIZARD and FeynRules, Eur. Phys. J. C 72, 1990 (2012) [arXiv:1010.3251
[hep-ph]].

[88] C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, Comput. Phys.
Commun. 183, 1201 (2012) doi:10.1016/j.cpc.2012.01.022 [arXiv:1108.2040 [hep-ph]].

[89] T. Han, J. D. Lykken and R. -J. Zhang, On Kaluza-Klein states from large extra dimensions,
Phys. Rev. D 59, 105006 (1999) [hep-ph/9811350].

[90] B. Fuks, Beyond the Minimal Supersymmetric Standard Model: from theory to phenomenol-
ogy, Int. J. Mod. Phys. A 27, 1230007 (2012) [arXiv:1202.4769 [hep-ph]].

[91] H. -J. He, Y. -P. Kuang, Y. -H. Qi, B. Zhang, A. Belyaev, R. S. Chivukula, N. D. Christensen
and A. Pukhov et al., CERN LHC Signatures of New Gauge Bosons in Minimal Higgsless
Model, Phys. Rev. D 78, 031701 (2008) [arXiv:0708.2588 [hep-ph]].

[92] W. Kilian, J. Reuter and T. Robens, NLO Event Generation for Chargino Production at
the ILC, Eur. Phys. J. C 48, 389 (2006) [hep-ph/0607127].

[93] J. R. Andersen et al. [SM and NLO Multileg Working Group Collaboration], Les Houches
2009: The SM and NLO Multileg Working Group: Summary report, arXiv:1003.1241
[hep-ph].

[94] J. M. Butterworth, A. Arbey, L. Basso, S. Belov, A. Bharucha, F. Braam, A. Buckley
and M. Campanelli et al., Les Houches 2009: The Tools and Monte Carlo working group
Summary Report, arXiv:1003.1643 [hep-ph], arXiv:1003.1643 [hep-ph].

[95] T. Binoth, N. Greiner, A. Guffanti, J. Reuter, J.-P. .Guillet and T. Reiter, Next-to-leading
order QCD corrections to pp –> b anti-b b anti-b + X at the LHC: the quark induced case,
Phys. Lett. B 685, 293 (2010) [arXiv:0910.4379 [hep-ph]].

[96] N. Greiner, A. Guffanti, T. Reiter and J. Reuter, NLO QCD corrections to the produc-
tion of two bottom-antibottom pairs at the LHC Phys. Rev. Lett. 107, 102002 (2011)
[arXiv:1105.3624 [hep-ph]].

[97] P. LéEcuyer, R. Simard, E. J. Chen, and W. D. Kelton, An Object-Oriented Random-
Number Package with Many Long Streams and Substreams, Operations Research, vol. 50,
no. 6, pp. 1073-1075, Dec. 2002.

[98] S. Plätzer, RAMBO on diet, [arXiv:1308.2922 [hep-ph]].

[99] R. Kleiss and W. J. Stirling, Massive multiplicities and Monte Carlo, Nucl. Phys. B 385,
413 (1992). doi:10.1016/0550-3213(92)90107-M

[100] R. Kleiss, W. J. Stirling and S. D. Ellis, A New Monte Carlo Treatment of Multiparticle
Phase Space at High-energies, Comput. Phys. Commun. 40 (1986) 359. doi:10.1016/0010-
4655(86)90119-0



366 BIBLIOGRAPHY

[101] R. Brun and F. Rademakers, ROOT: An object oriented data analysis framework, Nucl.
Instrum. Meth. A 389, 81-86 (1997) doi:10.1016/S0168-9002(97)00048-X

[102] A. Buckley, J. Butterworth, L. Lönnblad, D. Grellscheid, H. Hoeth, J. Monk, H. Schulz
and F. Siegert, Rivet user manual, Comput. Phys. Commun. 184, 2803-2819 (2013)
doi:10.1016/j.cpc.2013.05.021 [arXiv:1003.0694 [hep-ph]].

[103] C. Bierlich, A. Buckley, J. Butterworth, C. H. Christensen, L. Corpe, D. Grellscheid,
J. F. Grosse-Oetringhaus, C. Gutschow, P. Karczmarczyk, J. Klein, L. Lönnblad, C. S. Pol-
lard, P. Richardson, H. Schulz and F. Siegert, Robust Independent Validation of Experiment
and Theory: Rivet version 3, SciPost Phys. 8, 026 (2020) doi:10.21468/SciPostPhys.8.2.026
[arXiv:1912.05451 [hep-ph]].

[104] J. de Favereau et al. [DELPHES 3], DELPHES 3, A modular framework for fast simulation
of a generic collider experiment, JHEP 02, 057 (2014) doi:10.1007/JHEP02(2014)057
[arXiv:1307.6346 [hep-ex]]


	1 Introduction
	1.1 Disclaimer
	1.2 Overview
	1.3 Historical remarks
	1.4 About examples in this manual

	2 Installation
	2.1 Package Structure
	2.2 Prerequisites
	2.2.1 No Binary Distribution
	2.2.2 Tarball Distribution
	2.2.3 SVN Repository Version
	2.2.4 Public Git Repository Version
	2.2.5 Nightly development snapshots
	2.2.6 Fortran Compilers
	2.2.7 LHAPDF
	2.2.8 HOPPET
	2.2.9 HepMC
	2.2.10 PYTHIA6
	2.2.11 PYTHIA8
	2.2.12 FastJet
	2.2.13 STDHEP
	2.2.14 LCIO

	2.3 Installation
	2.3.1 Central Installation
	2.3.2 Installation in User Space
	2.3.3 Configure Options
	2.3.4 Details on the Configure Process
	2.3.5 Building on Darwin/macOS
	2.3.6 Building on Windows
	2.3.7 WHIZARD self tests/checks


	3 Working with WHIZARD
	3.1 Hello World
	3.2 A Simple Calculation
	3.3 WHIZARD in a Computing Environment
	3.3.1 Working on a Single Computer
	3.3.2 Working Parallel on Several Computers
	3.3.3 Stopping and Resuming WHIZARD Jobs
	3.3.4 Files and Directories: default and customization
	3.3.5 Batch jobs on a different machine
	3.3.6 Static Linkage

	3.4 Troubleshooting
	3.4.1 Possible (uncommon) build problems
	3.4.2 What happens if WHIZARD throws an error?
	3.4.3 Debugging, testing, and validation


	4 Steering WHIZARD: SINDARIN Overview
	4.1 The command language for WHIZARD
	4.2 SINDARIN scripts
	4.3 Errors
	4.4 Statements
	4.4.1 Process Configuration
	4.4.2 Parameters
	4.4.3 Integration
	4.4.4 Events

	4.5 Control Structures
	4.5.1 Conditionals
	4.5.2 Loops
	4.5.3 Including Files

	4.6 Expressions
	4.6.1 Numeric
	4.6.2 Logical and String
	4.6.3 Special

	4.7 Variables

	5 SINDARIN in Details
	5.1 Data and expressions
	5.1.1 Real-valued objects
	5.1.2 Integer-valued objects
	5.1.3 Complex-valued objects
	5.1.4 Logical-valued objects
	5.1.5 String-valued objects and string operations

	5.2 Particles and (sub)events
	5.2.1 Particle aliases
	5.2.2 Subevents
	5.2.3 Subevent functions
	5.2.4 Calculating observables
	5.2.5 Cuts and event selection
	5.2.6 More particle functions

	5.3 Physics Models
	5.4 Processes
	5.4.1 Process definition
	5.4.2 Particle names
	5.4.3 Options for processes
	5.4.4 Process components
	5.4.5 Compilation
	5.4.6 Process libraries
	5.4.7 Stand-alone WHIZARD with precompiled processes

	5.5 Beams
	5.5.1 Beam setup
	5.5.2 Asymmetric beams and Crossing angles
	5.5.3 LHAPDF
	5.5.4 Built-in PDFs
	5.5.5 HOPPET b parton matching
	5.5.6 Lepton Collider ISR structure functions
	5.5.7 Lepton Collider Beamstrahlung
	5.5.8 Beam events
	5.5.9 Gaussian beam-energy spread
	5.5.10 Equivalent photon approximation
	5.5.11 Effective W approximation
	5.5.12 Energy scans using structure functions
	5.5.13 Photon collider spectra
	5.5.14 Concatenation of several structure functions

	5.6 Polarization
	5.6.1 Initial state polarization
	5.6.2 Final state polarization

	5.7 Cross sections
	5.7.1 Integration
	5.7.2 Integration run IDs
	5.7.3 Controlling iterations
	5.7.4 Phase space
	5.7.5 Cuts
	5.7.6 QCD scale and coupling
	5.7.7 Reweighting factor

	5.8 Events
	5.8.1 Simulation
	5.8.2 Decays
	5.8.3 Event formats

	5.9 Analysis and Visualization
	5.9.1 Observables
	5.9.2 The analysis expression
	5.9.3 Histograms
	5.9.4 Plots
	5.9.5 Analysis Output

	5.10 Custom Input/Output
	5.10.1 Output Files
	5.10.2 Printing Data

	5.11 WHIZARD at next-to-leading order
	5.11.1 Prerequisites
	5.11.2 NLO cross sections
	5.11.3 Fixed-order NLO events
	5.11.4 POWHEG matching
	5.11.5 Separation of finite and singular contributions


	6 Random number generators
	6.1 General remarks
	6.2 The TAO Random Number Generator
	6.3 The RNGStream Generator

	7 Integration Methods
	7.1 The Monte-Carlo integration routine: VAMP
	7.2 The next generation integrator: VAMP2
	7.2.1 Multichannel integration
	7.2.2 VEGAS
	7.2.3 Channel equivalences


	8 Phase space parameterizations
	8.1 General remarks
	8.2 The flat method: rambo
	8.3 The default method: wood
	8.4 A new method: fast_wood
	8.5 Phase space respecting restrictions on subdiagrams
	8.6 Phase space for processes forbidden at tree level

	9 Methods for Hard Interactions
	9.1 Internal test matrix elements
	9.2 Template matrix elements
	9.3 The O'Mega matrix elements
	9.4 Interface to GoSam
	9.5 Interface to Openloops
	9.6 Interface to Recola
	9.7 Special applications

	10 Implemented physics
	10.1 The hard interaction models
	10.1.1 The Standard Model and friends
	10.1.2 Beyond the Standard Model

	10.2 The SUSY Les Houches Accord (SLHA) interface
	10.3 Lepton Collider Beam Spectra
	10.3.1 CIRCE1
	10.3.2 CIRCE2
	10.3.3 Photon Collider Spectra

	10.4 Transverse momentum for ISR photons
	10.5 Transverse momentum for the EPA approximation
	10.6 Resonances and continuum
	10.6.1 Complete matrix elements
	10.6.2 Processes restricted to resonances
	10.6.3 Factorized processes
	10.6.4 Resonance insertion in the event record

	10.7 Parton showers and Hadronization
	10.7.1 The kT-ordered parton shower
	10.7.2 The analytic parton shower
	10.7.3 Parton shower and hadronization from PYTHIA6
	10.7.4 Parton shower and hadronization from PYTHIA8
	10.7.5 Other tools for parton shower and hadronization

	10.8 Simulation of low-pT hadrons at lepton colliders
	10.9 Loop-induced processes

	11 More on Event Generation
	11.1 Event generation
	11.2 Unweighted and weighted events
	11.3 Choice on event normalizations
	11.4 Event selection
	11.5 Supported event formats
	11.6 Interfaces to Parton Showers, Matching and Hadronization
	11.6.1 Parton Showers and Hadronization
	11.6.2 Parton shower – Matrix Element Matching

	11.7 Rescanning and recalculating events
	11.8 Negative weight events

	12 Internal Data Visualization
	12.1 GAMELAN
	12.1.1 User-specific changes

	12.2 Histogram Display
	12.3 Plot Display
	12.4 Graphs
	12.5 Drawing options

	13 Fast Detector Simulation and External Analysis
	13.1 Interfacing ROOT
	13.2 Interfacing RIVET
	13.3 Fast Detector Simulation with DELPHES

	14 User Interfaces for WHIZARD
	14.1 Command Line and SINDARIN Input Files
	14.2 WHISH – The WHIZARD Shell/Interactive mode
	14.3 Graphical user interface
	14.4 WHIZARD as a library
	14.4.1 Fortran main program
	14.4.2 C main program
	14.4.3 C++ main program
	14.4.4 Python main program


	15 Examples
	15.1 Z lineshape at LEP I
	15.2 W pairs at LEP II
	15.3 Higgs search at LEP II
	15.4 Deep Inelastic Scattering at HERA
	15.5 W endpoint at LHC
	15.6 SUSY Cascades at LHC
	15.7 Polarized WW at ILC

	16 Technical details – Advanced Spells
	16.1 Efficiency and tuning

	17 New External Physics Models
	17.1 New physics models via SARAH
	17.1.1 WHIZARD/O'Mega model files from SARAH
	17.1.2 Linking SPheno and WHIZARD
	17.1.3 BSM Toolbox

	17.2 New physics models via FeynRules
	17.2.1 Installation and Usage of the WHIZARD-FeynRules interface
	17.2.2 Options of the WHIZARD-FeynRules interface
	17.2.3 Validation of the interface
	17.2.4 Examples for the WHIZARD-/FeynRules interface

	17.3 New physics models via the UFO file format

	A SINDARIN Reference
	A.1 Commands and Operators
	A.2 Variables
	A.2.1 Rebuild Variables
	A.2.2 Standard Variables



