VAMP, Version 1.0: Vegas AMPlified:
Anisotropy, Multi-channel sampling and
Parallelization

Thorsten Ohl!'2

Darmstadt University of Technology
Schloflgartenstr. 9

D-64289 Darmstadt
Germany

IKDA 98/77
hep-ph/yymmnnn
October 1999
DRAFT: March 27, 2022

le-mail: ohl@hep.tu-darmstadt.de

2Supported by Bundesministerium fiir Bildung, Wissenschaft, Forschung und
Technologie, Germany.

Abstract

We present an new implementation of the classic Vegas algorithm for adaptive
multi-dimensional Monte Carlo integration in Fortran95. This implementa-
tion improves the performance for a large class of integrands, supporting
stratified sampling in higher dimensions through automatic identification of
the directions of largest variation. This implementation also supports multi
channel sampling with individual adaptive grids. Sampling can be performed
in parallel on workstation clusters and other parallel hardware. Note that for

maintenance of the code, and especially its usage within the event generator
WHIZARD, some features of Fortran2003 have been added.

Revision Control

CONTENTS

1 INTRODUCTION

2 ALGORITHMS

2.1 Importance Sampling
2.2 Stratified Sampling
2.3 Vegas
2.3.1 Vegas’ Inflexibility
2.3.2 Vegas’ Dark Side
2.4 Multi Channel Sampling
2.5 Revolvingo
2.6 Parallelization
2.6.1 Multilinear Structure of the Sampling Algorithm . . .
2.0.2 State and Message Passing
2.6.3 Random Numbers
2.6.4 Practice
3 DESIGN TRADE OFFS
3.1 Programming Language
4 USAGE
4.1 Basic Usage
4.1.1 Basic Example
4.2 Advanced Usage
4.2.1 Types
4.2.2 Shared Arguments
4.2.8 Single Channel Procedures
4.2.4 Inout/Output and Marshling
4.2.5 Multi Channel Procedures
4.2.6 FEvent Generation
4.2.7 Parallelization
4.2.8 Diagnostics L.

i

—_

0 00~ ~J O O Ut =W

4.2.9 Other Procedures
4.2.10 (Currently) Undocumented Procedures

5 IMPLEMENTATION

5.1 The Abstract Datatype division
5.1.1 Creation, Manipulation & Injection . .
5.1.2 Grid Refinement
5.1.3 Probability Density
5.1.4 Quadrupole
5.1.5 Forking and Joining
5.1.6 Inquiry
5.1.7 Diagnostics
5.1.8 1/O
5.1.9 Marshaling
5.1.10 Boring Copying and Deleting of Objects

5.2 The Abstract Datatype vamp_grid
5.2.1 Container for application data
5.2.2 Initialization
5.2.8 Sampling
5.2.4 Forking and Joining
5.2.5 Parallel Fxecution
5.2.6 Diagnostics
5.2.7 Multi Channel
5.2.8 Mapping
5.2.9 Fvent Generation
5.2.10 Convenience Routines
5.2.11 1/Oo
5.2.12 Marshaling
5.2.18 Boring Copying and Deleting of Objects

5.8 Interface to MPI
5.3.1 Parallel Fxecution
5.3.2 Fvent Generation
588 I1/O
5.8.4 Communicating Grids

6 SELF TEST

6.1 No Mapping Mode
6.1.1 Serial Test
6.1.2 Parallel Test
6.1.3 QOutput

6.2 Mapped Mode

il

7

A

6.2.1 Serial Test 204

6.2.2 Parallel Test 219
6.2.3 QOulpul 221
APPLICATION 222
7.1 Cross Section v v v e e e e 222
CONSTANTS 245
Al Kinds e e e e 245
A.2 Mathematical and Physical Constants 245
ERRORS AND EXCEPTIONS 247
THE ART OF RANDOM NUMBERS 251
C.1 Application Program Interface 251
C.2 Low Level Routines 254
C.2.1 Generation of 30-bit Random Numbers 254
C.2.2 Initialization of 30-bit Random Numbers 255
C.2.3 Generation of 52-bit Random Numbers 259
C.2.4 Initialization of 52-bit Random Numbers 259
C.3 The State 261
C.3.1 Creation v 261
C.3.2 Destruction 263
C.3.3 Copying o i i 264
C.3.4 Flushing 265
C.3.5 Input and Output 265
C.3.6 Marshaling and Unmarshaling 270
C./ High Level Routines 273
C.4.1 Single Random Numbers 274
C.4.2 Arrays of Random Numbers 276
C.4.3 Procedures With Fxplicit tao_random_state 278
C.4.4 Static Procedures 279
C.4.5 Generic Procedures 280
C. 4.6 Luxury 281
C.H Testing 283
C.5.1 30-bit 283
C.5.2 52-bit 285
C.5.83 Test Program 286
SPECIAL FUNCTIONS 287
D.1 Test e 289

v

STATISTICS 291

HISTOGRAMMING 294
MISCELLANEOUS UTILITIES 304
G.1 Memory Management 304
G.2 Sorting 307
G.3 Mathematics e 310
G4 L/O . . . 312
LINEAR ALGEBRA 313
H.1 LU Decomposition 313
H.2 Determinant 315
H.3 Diagonalization 316
H Test e 321
ProbucTs 323
KINEMATICS 324
J.1 Lorentz Transformations 324
J.2 Massive Phase Space 326
J.8 Massive 3-Particle Phase Space Revisited 329
J.4 Massless n-Particle Phase Space: RAMBO 332
J.& Tests .. .o e 333
COORDINATES 336
K.1 Angular Spherical Coordinates 336
K.2 Trigonometric Spherical Coordinates 340
K.3 Surface of a Sphere 343
IDIOMATIC FORTRAN9O INTERFACE FOR MPI 344
L.1 Basics e e 344
L.2 Point to Point 347
L.3 Collective Communication 353
IDEAS 358
M.1 Toolbox for Interactive Optimization 358
M.2 Partially Non-Factorized Importance Sampling 358
M.3 Correlated Importance Sampling (¢) 358
M.4 Align Coordinate System (i.e. the grid) with Singularities (or

the hot region) 359
M.5 Automagic Multi Channel 359

N Cross REFERENCES
N.1 Identifiers
N.2 Refinements

vi

Program Summary:

Title of program: VAMP, Version 1.0 (October 1999)

Program obtainable by anonymous ftp from the host
crunch.ikp.physik.th-darmstadt.de in the directory pub/ohl/vamp.

Licensing provisions: Free software under the GNU General Public
License.

Programming language used: From version 2.2.0 of the program:
Fortran2003 [3] Until version 2.1.x of the program: Fortran95 [9] (For-
tran90 [7] and F [11] versions available as well)

Number of program lines in distributed program, including
test data, etc.: ~ 4300 (excluding comments)

Computer /Operating System: Any with a Fortran95 (or Fortran90
or F) programming environment.

Memory required to execute with typical data: Negligible on
the scale of typical applications calling the library.

Typical running time: A small fraction (typically a few percent) of
the running time of applications calling the library.

Purpose of program:
Nature of physical problem:
Method of solution:

Keywords: adaptive integration, event generation, parallel processing

vil

— 11—

INTRODUCTION
We present a reimplementation of the classic Vegas [1, 2] algorithm for adap-
tive multi-dimensional integration in Fortran95 [9, 13]' (Note that for the

maintenance of the program and especially its usage within the event gen-
erator WHIZARD parts of the program have been adapted to Fortran2003).
The purpose of this reimplementation is two-fold: for pedagogical reasons
it is useful to employ Fortran95 features (in particular the array language)
together with literate programming [1] for expressing the algorithm more
concisely and more transparently. On the other hand we use a Fortran95
abstract type to separate the state from the functions. This allows multiple
instances of Vegas with different adaptions to run in parallel and in paves
the road for a more parallelizable implementation.

The variable names are more in line with [1] than with [2] or with |

, 19], which is almost identical to [2].

)

Copyleft

Mention the GNU General Public License (maybe we can switch to the GNU
Library General Public License)

1 (Copyleft notice 1)= (37a70b 167a 192a 202a 204b 219e 222a 245 247a 273 287a 289b 291a 294a 304a 313a 32
Copyright (C) 1998 by Thorsten Ohl <ohl@hep.tu-darmstadt.de>

I
!
| VAMP is free software; you can redistribute it and/or modify it

! under the terms of the GNU General Public License as published by

! the Free Software Foundation; either version 2, or (at your option)
! any later version.

!

'Fully functional versions conforming to preceeding Fortran standard [7], High Perfor-
mance Fortran (HPF) [10, 11, 15], and to the Fortran90 subset F [14] are available as
well. A translation to the obsolete FORTRANT7 standard [6] is possible in principle, but
extremely tedious and error prone if the full functionality shall be preserved.

! VAMP is distributed in the hope that it will be useful, but

! WITHOUT ANY WARRANTY; without even the implied warranty of

! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
I GNU General Public License for more details.

! You should have received a copy of the GNU General Public License
! along with this program; if not, write to the Free Software

| Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
REEREERE R R RN R RN RN R R RN RN R RN R RN RN R RN R RERRERNERE

Mention that the tangled sources are not the preferred form of distribution:

2 (Copyleft notice 1)+= (37a70b 167a 192a 202a 204b 219e 222a 245 247a 273 287a 289b 291a 294a 304a 313a
! This version of the source code of vamp has no comments and
! can be hard to understand, modify, and improve. You should have
| received a copy of the literate ‘noweb’ sources of vamp that

! contain the documentation in full detail.
NERERERERRR RN R R R R R R R RR R R RN R R R R R R R R R RN R R R RRRRRERERERERRRRRER

9
ALGORITHMS

@ The notation has to be synchronized with [3]!

We establish some notation to allow a concise discussion. Notation:

expectation: E(f) = ﬁ /Dda: f(z) (2.1a)
variance: V(f) = E(f?) — f))2 (2.1b)
estimate of expectation (average): (X|f) = x| X\ Z f(x (2.1c)
zeX
estimate of variance: 0% (f) = m;_l (X]f%) = <X\f)2)
(2.1d)

Where | X| is the size of the point set and |D| = [dz the size of the integra-
tion region. If £((f)) denotes the ensemble average of (X|f) over random
point sets X with |X| = N, we have for expectation and variance

EWN) = E(f) (2.2a)
E(d*(f) =V(f) (2.2b)

and the ensemble variance of the expectation is also given by the variance

V() = =V() (2.2¢)

N
Therefore, it can be estimated from 0% (f). Below, we will also use the nota-
tion &, for the ensemble average over random point sets X, with probability
distribution g. We will write E,(f) = E(fg) as well.

2.1 Importance Sampling

If, instead of uniformly distributed points X, we use points X, distributed
according to a probability density g, we can easily keep the expectation
constant

et = (L) =z (23)

9

while the variance transformes non-trivially

- (D)4 (5(5)-(-2))) o

and the error is minimized when f/g is constant, i.e. g is a good approxi-
mation of f. The non-trivial problem is to find a g that can be generated
efficiently and is a good approximation at the same time.

One of the more popular approaches is to use a mapping ¢ of the inte-
gration domain

¢o:D—A
x> &= ¢(x)
In the new coordinates, the distribution is multiplied by the Jacobian of the
inverse map ¢!

(2.5)

[z ot = [ac g (2.6

A familiar example is given by the map

¢:[0,1] = R

I|—>§:x0+a.tan<(x_%)w) (2.7)

with the inverse ¢p~'(£) = atan((§ — xo)/a)/m + 1/2 and the corresponding
Jacobian reproducing a resonance
-1
Jo1(8) = d(bd € _a 12 - (2.8)
3 T (§—a°)’+a
Obviously, this works only for a few special distributions. Fortunately, we can
combine several of these mappings to build efficient integration algorithms,
as will be explained in section 2.4 below. Another approach is to construct
the approximation numerically, by appropriate binning of the integration
domain (cf. [1, 2, 20]. The most popular technique for this will be discussed
below in section 2.3.

2.2 Stratified Sampling

The technique of importance sampling concentrates the sampling points in
the region where the contribution to the integrand is largest. Alternatively we
can also concentrates the sampling points in the region where the contribution
to the variance is largest.

If we divide the sampling region D into n disjoint subregions D"

D=JD', D'nD =0 (i#)) (2.9)
i=1
a new estimator is

@ Bzzzt! Wrong. These multi-channel formulae are incorrect for partition-
ings and must be fixed.

- "N,
(X1f) = Z N (Xo, | f) (2.10)
where '
_ {1 for x € Df (2.11)
for v ¢ D’
and

En:Ni =N (2.12)
=1

since the expectation is linear

2}%; D=3 VB = Y B = B 213

J— "N,
=3) (2.14)
This is minimized for
N; < /V(f - 0pi) (2.15)

as a simple variation of V((f)) shows.

p1(x1) p1(z1)

Z)ZQ ZDZ2_J_L.LL.H uloal o]
oo locapolococ oz o]
PRI EFSEN 1 A
Eso-frrtamdrnfrs == F
pQ(xQ) FEx-o—frrfommofrr o=]h(xg)
Lo frrgn [I O
L fregn mpregp oo
i s i s
T2 T2 TTTT T T T TT
o Fro-trTOamment T T o T
Fr-mtrrtrmi et T - o
I RPN R 1 I PN R
Ihg 1)L2_4_u IV Y 1 iy K R
1 1 11 I 11T 11 1 1
IHJ I 1121 Z)Ll xr Ibl

)

Figure 2.1: vegas grid structure for non-stratified sampling (left) and for
genuinely stratified sampling (right), which is used in low dimensions. N.B.:
the grid and the weight functions p; » are only in qualitative agreement.

O :Ce}l j r t :d%ng
g,i: O——+—+—+——+—+—+——+—+—+—ubound (d’%x)
dx: 0 * 1

Figure 2.2: One-dimensional illustration of the vegas grid structure for
pseudo stratified sampling, which is used in high dimensions.

2.3 Vegas

{% Under construction!

2.3.1 Vegas’ Inflexibility

The classic implementation of the Vegas algorithm [1, 2] treats all dimensions
alike. This constraint allows a very concise FORTRAN77-style coding of the
algorithm, but there is no theoretical reason for having the same number of
divisions in each direction. On the contrary, under these circumstances, even
a dimension in which the integrand is rather smooth will contribute to the
exponential blow-up of cells for stratified sampling. It is obviously beneficial
to use a finer grid in those directions in which the fluctuations are stronger,
while a coarser grid will suffice in the other directions.

One small step along this line is implemented in Version 5.0 of the pack-
age BASES/SPRING [20], where one set of “wild” variables is separated from
“smooth” variables [21].

The present reimplementation of the Vegas algorithm allows the applica-
tion to choose the number of divisions in each direction freely. The routines
that reshape the grid accept an integer array with the number of divisions
as an optional argument num div. It is easy to construct examples in which
the careful use of this feature reduces the variance significantly.

Currently, no attempt is made for automatic optimization of the number
of divisions. One reasonable approach is to monitor Vegas’ grid adjustments
and to increase the number of division in those directions where Vegas’ keeps
adjusting because of fluctuations. For each direction, a numerical measure
of these fluctuations is given by the spread in the m;. The total number of
cells can be kept constant by reducing the number of divisions in the other
directions appropriately. Thus

andiv,j

(Hj QJ) v

where we have used the damped standard deviation

Ndiv,j — (216)

Q) = (vartmb)) (217)

instead of the spread.

2.3.2 Vegas’ Dark Side
@ Under construction!

A partial solution of this problem will be presented in section 2.5.

2.4 Multi Channel Sampling

Even if Vegas performs well for a large class of integrands, many important
applications do not lead to a factorizable distribution. The class of integrands
that can be integranted efficiently by Vegas can be enlarged substantially by
using multi channel methods. The new class will include almost all integrals
appearing in high energy physics simulations.

@ The first version of this section is now obsolete. Consult [3] instead.

2.5 Revolving

@ Under construction!

2.6 Parallelization

Traditionally, parallel processing has not played a large role in simulations
for high energy physics. A natural and trivial method of utilizing many
processors will run many instances of the same (serial) program with different
values of the input parameters in parallel. Typical matrix elements and phase
space integrals offer few opportunities for small scale parallelization.

On the other hand, parameter fitting has become possible recently for ob-
servables involving a phase space integration. In this case, fast evaluation of
the integral is essential and parallel execution becomes an interesting option.

A different approach to parallelizing Vegas has been presented recently [22].

2.6.1 Multilinear Structure of the Sampling Algorithm

In order to discuss the problems with parallelizing adaptive integration al-
gorithms and to present solutions, it helps to introduce some mathematical
notation. A sampling S is a map from the space 7 of point sets and the
space F' of functions to the real (or complex) numbers

S:mx F—R
(. f) = 1 =5/, f)
For our purposes, we have to be more specific about the nature of the point
set. In general, the point set will be characterized by a sequence of pseudo
random numbers p € R and by one or more grids G € I" used for importance
or stratified sampling. A simple sampling
So: RXI'xAxFxRxR—>RxI'xAxFxRxR

(07 G,CL, f7 M17ﬂ2> = (plvGaalafv :u/b/vL/Z) = S()(:O7 Gua’7 f7 :u’17,u2)
(2.18)

estimates the n-th moments), € R of the function f € F. The integral and
its standard deviation can be derived easily from the moments

I = (2.19a)

0? = —— (2 — 117 (2.19b)

while the latter are more convenient for the following discussion. In addition,
Sp collects auxiliary information to be used in the grid refinement, denoted
by a € A. The unchanged arguments G and f have been added to the
result of Sy in (2.18), so that Sy has identical domain and codomain and can
therefore be iterated. Previous estimates p,, may be used in the estimation
of u!,, but a particular Sy is free to ignore them as well. Using a little
notational freedom, we augment R and A with a special value -, which will
always be discarded by Sy.

In an adaptive integration algorithm, there is also a refinement opera-
tion 7 : I' x A — I" that can be extended naturally to the codomain of Sy

r RXITXAXFXRXR—=2SRBRxI'xAxXxFxRxR

(pa G7a’7 f7 M17/1’2) = (IO7 G/7(l, f7 Mlvﬂ?) = T(p7G7a7f7 :U’17,u’2)
(2.20)

so that S = rSj is well defined and we can specify n-step adaptive sampling
as

Sn = SQ(TSO)n (221)

Since, in a typical application, only the estimate of the integral and the
standard deviation are used, a projection can be applied to the result of S,,:

P :RxI'xAxFxRxR—=RxR

(0,G.a, f, 11, i) — (I, 0) (2.22)

Then
<[7U) = PSO(TSO)TL<:07 G07'7f7'7'> (223>

and a good refinement prescription r, such as Vegas, will minimize the o.

For parallelization, it is crucial to find a division of S,, or any part of
it into independent pieces that can be evaluated in parallel. In order to
be effective, r has to be applied to all of a and therefore a sychronization
of GG before and after r is appropriately. Forthermore, r usually uses only
a tiny fraction of the CPU time and it makes little sense to invest a lot of
effort into parallelizing it beyond what the Fortran compiler can infer from
array notation. On the other hand, Sy can be parallelized naturally, because
all operations are linear, including he computation of a. We only have to
make sure that the cost of communicating the results of Sy and r back and
forth during the computation of .S,, do not offset any performance gain from
parallel processing.

When we construct a decomposition of Sy and proof that it does not

change the results, i.e.
So = LS (2.24)

where ¢ is a forking operation and ¢ is a joining operation, we are faced with
the technical problem of a parallel random number source p. As made explicit
in (2.18, Sy changes the state of the random number general p, demanding
tdentical results therefore imposes a strict ordering on the operations and
defeats parallelization. It is possible to devise implementations of Sy and p
that circumvent this problem by distributing subsequences of p in such a
way among processes that results do not depend on the number of parallel
processes.

However, a reordering of the random number sequence will only change
the result by the statistical error, as long as the scale of the allowed reorder-
ings is bounded and much smaller than the period of the random number
generator ! Below, we will therefore use the notation z ~ y for “equal for an
appropriate finite reordering of the p used in calculating x and y”. For our
porposes, the relation z ~ y is strong enough and allows simple and efficient
implementations.

Since Sy is essentially a summation, it is natural to expect a linear struc-
ture

@ So(pis Gy @iy [, s p2:) = So(p, G, a, f, s a) (2.25a)
where Z
p= @ pi (2.25b)
G=a; (2.25¢)
a=EPa (2.25d)
[= @ [hni (2.25¢)

for appropriate definitions of “@®”. For the moments, we have standard ad-
dition

Hn1 D fn2 = HUn1 + Hn2 (2.26)
and since we only demand equality up to reordering, we only need that the p;

are statistically independent. This leaves us with G' and a and we have to
discuss importance sampling ans stratified sampling separately.

L Arbirtrary reorderings on the scale of the period of the random number generators
could select constant sequences and have to be forbidden.

10

Importance Sampling

In the case of naive Monte Carlo and importance sampling the natural de-
composition of G is to take j copies of the same grid G/j which is identical
to G, each with one j-th of the total sampling points. As long as the a are
linear themselves, we can add them up just like the moments

a1 P ag = ay + as (227)

and we have found a decomposition (2.25). In the case of Vegas, the a; are
sums of function values at the sampling points. Thus they are obviously
linear and this approach is applicable to Vegas in the importance sampling
mode.

Stratified Sampling

The situation is more complicated in the case of stratified sampling. The first
complication is that in pure stratified sampling there are only two sampling
points per cell. Splitting the grid in two pieces as above provide only a very
limited amount of parallelization. The second complication is that the a are
no longer linear, since they corrspond to a sampling of the variance per cell
and no longer of function values themselves.

However, as long as the samplings contribute to disjoint bins only, we
can still “add” the variances by combining bins. The solution is therefore to
divide the grid into disjoint bins along the divisions of the stratification grid
and to assign a set of bins to each processor.

Finer decompositions will incur higher communications costs and other
resource utilization. An implementation based on PVM is described in [22],
which miminizes the overhead by running identical copies of the grid G on
each processor. Since most of the time is usually spent in function evalua-
tions, it makes sense to run a full Sy on each processor, skipping function
evaluations everywhere but in the region assigned to the processor. This is
a neat trick, which is unfortunately tied to the computational model of mes-
sage passing systems such as PVM and MPI [12]. More general paradigms
can not be supported since the separation of the state for the processors is
not explicit (it is implicit in the separated address space of the PVM or MPI
processes).

However, it is possible to implement (2.25) directly in an efficient manner.
This is based on the observation that the grid GG used by Vegas is factorized
into divisions D7 for each dimension

Ndim

G =)D (2.28)

11

and decompositions of the D7 induce decompositions of G

Gi® Gy = <®D3®D’® T(l;f) D”) (@Dﬂ@@n@ 7(Ldgm) D9>

i=j+1 i=j+1
Ndim

= (X)Dj ® (DieDy) e Q) D' (229)
j=1 j=it+1

We can translate (2.29) directly to code that performs the decomposition D! =
Dt @ D discussed below and simply duplicates the other divisions D/7%. A
decomposition along multiple dimensions is implemented by a recursive ap-
plication of (2.29).
In Vegas, the auxiliary information a inherits a factorization similar to
the grid (2.28)
a=(d',... d"m) (2.30)

but not a multilinear structure. Instead, as long as the decomposition respects
the stratification grid, we find the in place of (2.29)

ay ®ag = (dy+dy,....ds Ddy,... A5+ dys) (2.31)

with “+” denoting the standard addition of the bin contents and “@” de-
noting the aggregation of disjoint bins. If the decomposition of the division
would break up cells of the stratification grid (2.31) would be incorrect, be-
cause, as discussed above, the variance is not linear.

Now it remains to find a decomposition

D' = D! ® D, (2.32)

for both the pure stratification mode and the pseudo stratification mode of
vegas (cf. figure 2.1). In the pure stratification mode, the stratification grid
is strictly finer than the adaptive grid and we can decompose along either of
them immediately. Technically, a decomposition along the coarser of the two
is straightforward. Since the adaptive grid already has more than 25 bins, a
decomposition along the stratification grid makes no practical sense and the
decomposition along the adaptive grid has been implemented. The sampling
algorithm Sy can be applied unchanged to the individual grids resulting from
the decomposition.

For pseudo stratified sampling (cf. figure 2.2), the situation is more com-
plicated, because the adaptive and the stratification grid do not share bin
boundaries. Since Vegas does not use the variance in this mode, it would be
theoretically possible to decompose along the adaptive grid and to mimic the

12

_cell - r |

0 1dJng
57 i: O } } } } } } } } } } } :ubound(d%x)
d%x: O . R i1
1—»»—4*
ds(1) ds(2) ds(3)

Figure 2.3: Forking one dimension d of a grid into three parts ds(1), ds(2),
and ds (3). The picture illustrates the most complex case of pseudo stratified
sampling (cf. fig. 2.2).

incomplete bins of the stratification grid in the sampling algorithm. How-
ever, this would be a technical complication, destroying the universality of Sj.
Therefore, the adaptive grid is subdivided in a first step in

lem (M n) (2.33)

ny

bins,? such that the adaptive grid is strictly finer than the stratification grid.
This procedure is shown in figure 2.3.

2.6.2 State and Message Passing

2.6.3 Random Numbers

In the parallel example sitting on top of MPI [12] takes advantage of the
ability of Knuth’s generator [16] to generate statistically independent subse-

2The coarsest grid covering the division of n, bins into ny forks has n,/ged(ns,n,) =
lem(ny,ng)/ny bins per fork.

13

14

quences. However, since the state of the random number generator is explicit
in all procedure calls, other means of obtaining subsequences can be imple-
mented in a trivial wrapper.

The results of the parallel example will depend on the number of pro-
cessors, because this effects the subsequences being used. Of course, the
variation will be compatible with the statistical error. It must be stressed
that the results are deterministic for a given number of processors and a
given set of random number generator seeds. Since parallel computing en-
vironments allow to fix the number of processors, debugging of exceptional
conditions is possible.

2.6.4 Practice

In this section we show three implementations of S,,: one serial, and two
parallel, based on HPF [10; 11, 15] and MPI [12], respectively. From these
examples, it should be obvious how to adapt VAMP to other parallel com-
puting paradigms.

Serial

Here is a bare bones serail version of S,,, for comparison with the paral-
lel versions below. The real implementation of vamp sample grid in the
module vamp includes some error handling, diagnostics and the projection P
(cf. (2.22)):
(Serial implementation of S, = So(rSp)™ 14)=
subroutine vamp_sample_grid (rng, g, iteratiomns, func)
type(tao_random_state), intent(inout) :: rng
type(vamp_grid), intent(inout) :: g
integer, intent(in) :: iterations
(Interface declaration for func 22)
integer :: iteration
iterate: do iteration = 1, iterations
call vamp_sample_grid0 (rng, g, func)
call vamp_refine_grid (g)
end do iterate
end subroutine vamp_sample_grid

HPF

The HPF version of S, is based on decomposing the grid g as described in
section 2.6.1 and lining up the components in an array gs. The elements of gs
can then be processed im parallel. This version can be compiled with any

14

15

Fortran compiler and a more complete version of this procedure (including
error handling, diagnostics and the projection P) is included with VAMP as
vamp_sample _grid parallel in the module vamp. This way, the algorithm
can be tested on a serial machine, but there will obviously be no performance
gain.

Instead of one random number generator state rng, it takes an array con-
sisting of one state per processor. These rng(:) are assumed to be initial-
ized, such that the resulting sequences are statistically independent. For this
purpose, Knuth’s random number generator [10] is most convenient and is
included with VAMP (see the example on page 16). Before each Sy, the pro-
cedure vamp_distribute work determines a good decomposition of the grid d
into size(rng) pieces. This decomposition is encoded in the array d where
d(1,:) holds the dimensions along which to split the grid and d(2, :) holds
the corrsponding number of divisions. Using this information, the grid is
decomposed by vamp fork grid. The HPF compiler will then distribute the
'hpf$ independent loop among the processors. Finally, vamp_join grid
gathers the results.

(Parallel implementation of S, = So(rSo)™ (HPF) 15)=

subroutine vamp_sample_grid_hpf (rng, g, iterations, func)

type(tao_random_state), dimension(:), intent(inout) :: rng
type(vamp_grid), intent(inout) :: g
integer, intent(in) :: iterations
(Interface declaration for func 22)
type(vamp_grid), dimension(:), allocatable :: gs, gx
'hpf$ processors p(number_of_processors())
'hpf$ distribute gs(cyclic(1)) onto p
integer, dimension(:,:), pointer :: d
integer :: iteration, num_workers
iterate: do iteration = 1, iterations

call vamp_distribute_work (size (rng), vamp_rigid_divisions (g), d)

num_workers = max (1, product (d(2,:)))
if (num_workers > 1) then
allocate (gs(num_workers), gx(vamp_fork_grid_joints (d)))
call vamp_create_empty_grid (gs)
call vamp_fork_grid (g, gs, gx, d)
'hpf$ independent
do i = 1, num_workers
call vamp_sample_grid0 (rng(i), gs(i), func)
end do
call vamp_join_grid (g, gs, gx, d)
call vamp_delete_grid (gs)
deallocate (gs, gx)

15

else
call vamp_sample_grid0 (rng(1l), g, func)
end if
call vamp_refine_grid (g)
end do iterate
end subroutine vamp_sample_grid_hpf

Since vamp_sample gridO performes the bulk of the computation, an almost
linear speedup with the number of processors can be achieved, if vamp_distribute_work
finds a good decomposition of the grid. The version of vamp_distribute_work
distributed with VAMP does a good job in most cases, but will not be able
to use all processors if their number is a prime number larger than the num-
ber of divisions in the stratification grid. Therefore it can be beneficial to
tune vamp_distribute_work to specific hardware. Furthermore, using a finer
stratification grid can improve performance.

For definiteness, here is an example of how to set up the array of random
number generators for HPF. Note that this simple seeding procedure only
guarantees statistically independent sequences with Knuth’s random number
generator [10] and will fail with other approaches.

16 (Parallel usage of Sy, = So(rSo)" (HPF) 16)=
type(tao_random_state), dimension(:), allocatable :: rngs
Ihpf$ processors p(number_of_processors())
thpf$ distribute gs(cyclic(1)) onto p
integer :: i, seed
|
allocate (rngs(number_of_processors()))
seed = 42 ! can be read from a file, of course ...
Ihpf$ independent
do i = 1, size (rngs)

call tao_random_create (rngs(i), seed + i)
end do
|

call vamp_sample_grid_hpf (rngs, g, 6, func)
!

MPI

The MPI version is more low level, because we have to keep track of message
passing ourselves. Note that we have made this synchronization points ex-
plicit with three if ... then ... else ... end if blocks: forking, sam-
pling, and joining. These blocks could be merged (without any performance
gain) at the expense of readability. We assume that rng has been initialized

16

in each process such that the sequences are again statistically independent.
17 (Parallel implementation of S, = So(rSo)" (MPI) 17)=
subroutine vamp_sample_grid_mpi (rng, g, iterations, func)
type(tao_random_state), dimension(:), intent(inout) :: rng
type(vamp_grid), intent(inout) :: g
integer, intent(in) :: iterations
(Interface declaration for func 22)
type(vamp_grid), dimension(:), allocatable :: gs, gx
integer, dimension(:,:), pointer :: d
integer :: num_proc, proc_id, iteration, num_workers
call mpi90_size (num_proc)
call mpi90_rank (proc_id)
iterate: do iteration = 1, iterations
if (proc_id == 0) then
call vamp_distribute_work (num_proc, vamp_rigid_divisions (g), d)
num_workers = max (1, product (d(2,:)))
end if
call mpi90_broadcast (num_workers, 0)
if (proc_id == 0) then
allocate (gs(num_workers), gx(vamp_fork_grid_joints (d)))
call vamp_create_empty_grid (gs)
call vamp_fork_grid (g, gs, gx, d)
do i = 2, num_workers
call vamp_send_grid (gs(i), i-1, 0)
end do
else if (proc_id < num_workers) then
call vamp_receive_grid (g, 0, 0)
end if
if (proc_id == 0) then
if (num_workers > 1) then
call vamp_sample_grid0 (rng, gs(1), func)
else
call vamp_sample_grid0 (rng, g, func)
end if
else if (proc_id < num_workers) then
call vamp_sample_grid0 (rng, g, func)
end if
if (proc_id == 0) then
do i = 2, num_workers
call vamp_receive_grid (gs(i), i-1, 0)
end do
call vamp_join_grid (g, gs, gx, d)
call vamp_delete_grid (gs)

17

deallocate (gs, gx)
call vamp_refine_grid (g)
else if (proc_id < num_workers) then
call vamp_send_grid (g, 0, 0)
end if
end do iterate
end subroutine vamp_sample_grid_mpi

A more complete version of this procedure is included with VAMP as well,
this time as vamp_sample grid in the MPI support module vampi.

18

—3—

DESIGN TRADE OFFS

There have been three competing design goals for vegas, that are not fully
compatible and had to be reconciled with compromises:

o Fase-Of-Use: few procedures, few arguments.
e Parallelizability: statelessness
e Performance and Flexibility: rich interface, functionality.

In fact, parallelizability and ease-of-use are complementary. A parallelizable
implementation has to expose all the internal state. In our case, this includes
the state of the random number generator and the adaptive grid. A simple
interface would hide such details from the user.

The modern language features introduced to Fortran in 1990 [7] allows to
reconcile these competing goals. Two abstract data types vamp_state and
tao_random state hide the details of the implementation from the user and
encapsulate the two states in just two variables.

Another problem with parallelizability arised from the lack of a general
exception mechanism in Fortran. The Fortran90 standard [9] forbids any
input/output (even to the terminal) as well as stop statements in paralleliz-
able (pure) procedures. This precludes simple approaches to monitoring and
error handling. In Vegas we use a simple hand crafted exception mecha-
nism (see chapter B) for communicating error conditions to the out layers of
the applications. Unfortunately this requires the explicit passing of state in
argument lists.

An unfortunate consequence of the similar approach to monitoring is that
monitoring is not possible during execution. Instead, intermediate results can
only be examined after a parallelized section of code has completed.

19

3.1 Programming Language

We have chosen to implement VAMP in Fortran90/95, which some might
consider a questionable choice today. Nevertheless, we are convinced that
Fortran90/95 (with all it’s weaknesses) is, by a wide margin, the right tool
for the job.

Let us consider the alternatives

e FORTRANTT7 is still the dominant language in high energy physics
and all running experiment’s software environments are based on it.
However, the standard [0] is obsolete now and the successors [7, 9]
have added many desirable features, while retaining almost all of FOR-
TRANTT a a subset.

e C/C++ appears to be the most popular programming language in indus-
try and among young high energy physicists. Large experiments have
taken a bold move and are basing their software environment on C++.

e Typed higher order functional programming languages (ML, Haskell,
etc.) are a very promising development. Unfortunately, there is not
yet enough industry support for high performance optimizing compil-
ers. While the performance penalty of these languages is not as high
as commonly believed (research compilers, which do not perform ex-
tensive processor specific optimizations, result in code that runs by a
factor of two or three slower than equivalent Fortran code), it is rele-
vant for long running, computing intensive applications. In addition,
these languages are syntactically and idiomatically very different from
Fortran and C. Another implementation of VAMP in ML will be un-
dertaken for research purposes to investigate new algorithms that can
only be expressed awkwardly in Fortran, but we do not expect it to
gain immediate popularity.

20

S —
USAGE

4.1 Basic Usage

type (vamp_grid)

subroutine vamp create grid (g, domain [, num_calls] [, exc|)

Create a fresh grid for the integration domain
D= [D1,17D2,1] X [DLZ?DQQ] X ... X [Dl,n>D2,n] (41)

dropping all accumulated results. This function must not be called
twice on the first argument, without an intervening

vamp_delete grid. Iff the variable num calls is given, it will be
the number of sampling points per iteration for the call to
vamp_sample_grid.

subroutine vamp delete grid (g [, exc])

subroutine vamp discard integral (g [, num_calls] [, exc])

Keep the current optimized grid, but drop the accumulated results
for the integral (value and errors). Iff the variable num calls is
given, it will be the new number of sampling points per iteration
for the calls to vamp_sample grid.

subroutine vamp reshape grid (g [, num_calls]| [, exc|)

Keep the current optimized grid and the accumulated results for
the integral (value and errors). The variable num calls is the new
number of sampling points per iteration for the calls to
vamp_sample_grid.

subroutine vamp sample grid (rng, g, func, iterations
[, integral] [, std_dev]| [, avg_chi?2| [, exc| [, history])

21

Sample the function func using the grid g for iterations
iterations and optimize the grid after each iteration. The results
are returned in integral, std dev and avg_chi2. The random
number generator uses and updates the state stored in rng. The
explicit random number state is inconvenient, but required for
parallelizability.

subroutine vamp_integrate (rng, g, func, calls [, integral]
[, std_dev] [, avg_chi2| [, exc] [, history])

This is a wrapper around the above routines, that is steered by a
integer, dimension(2,:) array calls. For each i, there will be
calls(1,1) iterations with calls(2,1) sampling points.

subroutine vamp_integrate (rng, domain, func, calls
[, integral] [, std_dev] [, avg_chi2] [, exc]| [, history])

A second specific form of vamp_integrate. This one keeps a
private grid and provides the shortest—and most
inflexible—calling sequence.

22 (Interface declaration for func 22)= (14 15 17 86a 94¢ 103b 113 115 120b 135¢ 136¢ 13942 169d 175¢ 182
interface
function func (xi, data, weights, channel, grids) result (f)
use kinds
use vamp_grid_type !NODEP!
import vamp_data_t

real (kind=default), dimension(:), intent(in) :: xi
class(vamp_data_t), intent(in) :: data

real (kind=default), dimension(:), intent(in), optional :: weights
integer, intent(in), optional :: channel

type(vamp_grid), dimension(:), intent(in), optional :: grids

real (kind=default) :: f
end function func
end interface

4.1.1 Basic Example

In Fortran95, the function to be sampled must be pure, i.e. have no side ef-
fects to allow parallelization. The optional arguments weights and channel
must be declared to allow the compiler to verify the interface, but they are
ignored during basic use. Their use for multi channel sampling will be ex-
plained below. Here’s a Gaussian

flz) = 722t (4.2)

22

23a (basic.f90 23a)= 23b>
module basic_fct
use kinds
implicit none

private
public :: fct
contains
function fct (x, weights, channel) result (f_x)
real (kind=default), dimension(:), intent(in) :: x
real (kind=default), dimension(:), intent(in), optional :: weights
integer, intent(in), optional :: channel

real (kind=default) :: f_x
f_x = exp (0.5 * sum (x*x))
end function fct
end module basic_fct

In the main program, we need to import five modules. The customary module
kinds defines double as the kind for double precision floating point numbers.
The model exceptions provides simple error handling support (parallelizable
routines are not allowed to issue error messages themselve, but must pass
them along). The module tao random numbers hosts the random number
generator used and vamp is the adaptive interation module proper. Finally,
the application module basic_fct has to be imported as well.
23b (basic.f90 23a)+= 423a 23cp
program basic

use kinds

use exceptions

use tao_random_numbers

use vamp

use basic_fct

implicit none
Then we define four variables for an error message, the random number
generator state and the adaptive integration grid. We also declare a variable
for holding the integration domain and variables for returning the result. In
this case we integrate the 7-dimensional hypercube.

23¢c (basic.f90 23a)+= a23b 24ap
type(exception) :: exc
type(tao_random_state) :: rng
type(vamp_grid) :: grid
real (kind=default), dimension(2,7) :: domain
real (kind=default) :: integral, error, chi2

domain(1l,:) = -1.0
domain(2,:) = 1.0

23

Initialize and seed the random number generator. Initialize the grid for 10 000
sampling points.
24a (basic.f90 23a)+= 423¢ 24b>
call tao_random_create (rng, seed=0)
call clear_exception (exc)
call vamp_create_grid (grid, domain, num_calls=10000, exc=exc)
call handle_exception (exc)

Warm up the grid in six low statistics iterations. Clear the error status before
and check it after the sampling.

24b (basic.f90 23a)+= <424a 24c>
call clear_exception (exc)
call vamp_sample_grid (rng, grid, fct, 6, exc=exc)
call handle_exception (exc)

Throw away the intermediate results and reshape the grid for 100000 sam-
pling points—keeping the adapted grid—and do four iterations of a higher
statistics integration

24c (basic.f90 23a)+= <24b
call clear_exception (exc)
call vamp_discard_integral (grid, num_calls=100000, exc=exc)
call handle_exception (exc)
call clear_exception (exc)
call vamp_sample_grid (rng, grid, fct, 4, integral, error, chi2, exc=exc)
call handle_exception (exc)
print *, "integral = ", integral, "+/-", error, " (chi"2 = ", chi2, ")"
end program basic

Since this is the most common use, there is a convenience routine available
and the following code snippet is equivalent:

24d (Alternative to basic.£90 24d)=
integer, dimension(2,2) :: calls
calls(:,1) (/ 6, 10000 /)
calls(:,2) (/ 4, 100000 /)
call clear_exception (exc)
call vamp_integrate (rng, domain, fct, calls, integral, error, chi2, exc=exc)
call handle_exception (exc)

4.2 Advanced Usage

Caveat emptor: no magic of literate programming can guarantee that
the following remains in sync with the implementation. This has to be
maintained manually.

24

All real variables are declared as real (kind=default) in the source and
the variable double is imported from the module kinds (see appendix A.1).
The representation of real numbers can therefore be changed by changing
double in kinds.

4.2.1 Types
type (vamp_grid)
type (vamp_grids)
type (vamp history)

type (exception)

(from module exceptions)

4.2.2 Shared Arguments

Arguments keep their name across procedures, in order to make the Fortran90
keyword interface consistent.
real, intent(in) :: accuracy

Terminate S,, after n’ < n iterations, if relative error is smaller
than accuracy. Specifically, the terminatio condition is

std_dev

o 43
Tntegral accuracy (4.3)

real, intent(out) :: avg chi?2

The average x? of the iterations.

integer, intent(in) :: channel

Call func with this optional argument. Multi channel sampling
uses this to emulate arrays of functions

logical, intent(in) :: covariance

Collect covariance data.

type(exception), intent(inout) :: exc

Exceptional conditions are reported in exc.

type(vamp grid), intent(inout) :: g

25

Unless otherwise noted, g denotes the active sampling grid in the
documentation below.

type(vamp histories), dimension(:), intent(inout)
histories
Diagnostic information for multi channel sampling.
type(vamp_history), dimension(:), intent(inout)
history

Diagnostic information for single channel sampling or summary of
multi channel sampling.

real, intent(out) :: integral

The current best estimate of the integral.

integer, intent(in) :: iterations
real, dimension(:,:), intent(in) :: map
integer, intent(in) :: num calls

The number of sampling points.

integer, dimension(:), intent(in) :: num div
Number of divisions of the adaptive grid in each dimension.
logical, intent(in) :: quadrupole

Allow “quadrupole oscillations” of the sampling
grid (cf. section 2.3.1).

type(tao_random state), intent(inout) :: rng

Unless otherwise noted, rng denotes the source of random
numbers used for sampling in the documentation below.

real, intent(out) :: std._dev

The current best estimate of the error on the integral.

logical, intent(in) :: stratified

Try to use stratified sampling.

real (kind=default), dimension(:), intent(in) :: weights

26

4.2.3 Single Channel Procedures

subroutine vamp_create_grid (g, domain, num calls
[, quadrupole]| [, stratified] [, covariance]| [, map] [, exc])

real, dimension(:,:), intent(in) :: domain

subroutine vamp create_empty_grid (g)

subroutine vamp discard integral (g [, num calls]
[, stratified] [, quadrupole] [, covariance] [, exc|)

subroutine vamp reshape grid (g [, num_calls| [, num div]
[, stratified| [, quadrupole| [, covariance] |, exc])

subroutine vamp sample grid (rng, g, func, iterations
[, integral] [, std_dev] [, avg_chi2] [, accuracy] [, channel]
[, weights] [, exc| [, history])

func
S, with n = iterations

subroutine vamp sample gridO (rng, g, func, [, channel]
[, weights] [, exc])

func

So

subroutine vamp refine grid (g, [, exc])

r

subroutine vamp average iterations (g, iteration, integral,
std_dev, avg _chi2)

integer, intent(in) :: iteration

Number of iterations so far (needed for x?).

subroutine vamp_integrate (g, func, calls [, integral]
[, std_dev] [, avg_chi2| [, accuracy] [, covariance])

type(vamp_grid), intent(inout) :: g

func

27

integer, dimension(:,:), intent(in) :: calls

subroutine vamp_integratex (region, func, calls [, integral]
[, std_dev] [, avg_chi2] [, stratified] [, accuracy]| |, pancake]

[, cigar])
real, dimension(:,:), intent(in) :: region
func
integer, dimension(:,:), intent(in) :: calls
integer, intent(in) :: pancake
integer, intent(in) :: cigar

subroutine vamp_copy_grid (lhs, rhs)

type(vamp_grid), intent(inout) :: lhs
type(vamp_grid), intent(in) :: rhs

subroutine vamp delete grid (g)

type(vamp_grid), intent(inout) :: g

4.2.4 Inout/Output and Marshling

subroutine vamp write grid (g, [, ...])
type(vamp grid), intent(inout) :: g
subroutine vamp.read_grid (g, [, ...])
type(vamp grid), intent(inout) :: g
subroutine vamp write grids (g, [, ...])
type(vamp_grids), intent(inout) :: g
subroutine vamp read grids (g, [, ...])
type(vamp_grids), intent(inout) :: g

pure subroutine vamp marshal grid (g, integer buffer,
double buffer)

28

type(vamp_grid), intent(in) :: g

integer, dimension(:), intent(inout)
integer_buffer

real (kind=default), dimension(:), intent(inout)
:: double_buffer

Marshal the grid g in the integer array integer_buffer and the
real array double buffer, which must have at least the sizes
obtained from call vamp marshal grid size (g,
integer_size, double_size).

Note that we can not use the transfer intrinsic function for
marshalling types that contain pointers that substitute for
allocatable array components. transfer would copy the
pointers in this case and not where they point to!

pure subroutine vamp marshal grid size (g, integer_size,
doub