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ABSTRACT

WHIZARD is a program system designed for the efficient calculation of multi-
particle scattering cross sections and simulated event samples. The generated
events can be written to file in various formats (including HepMC, LHEF,
STDHEP, and ASCII) or analyzed directly on the parton level using a built-
in LATEX-compatible graphics package.

Complete tree-level matrix elements are generated automatically for arbi-
trary partonic multi-particle processes by calling the built-in matrix-element
generator O’Mega. Beyond hard matrix elements, WHIZARD can generate
(cascade) decays with complete spin correlations. Various models beyond the
SM are implemented, in particular, the MSSM is supported with an interface
to the SUSY Les Houches Accord input format. Matrix elements obtained
by alternative methods (e.g., including loop corrections) may be interfaced
as well.

The program uses an adaptive multi-channel method for phase space inte-
gration, which allows to calculate numerically stable signal and background
cross sections and generate unweighted event samples with reasonable effi-
ciency for processes with up to eight and more final-state particles. Polariza-
tion is treated exactly for both the initial and final states. Quark or lepton
flavors can be summed over automatically where needed.

For hadron collider physics, we ship the package with the most recent PDF
sets from the MWST and CTEQ/CT10 collaborations. Furthermore, an in-
terface to the LHAPDF library is provided.

For Linear Collider physics, beamstrahlung (CIRCE), Compton and ISR spec-
tra are included for electrons and photons. Alternatively, beam-crossing
events can be read directly from file.

For showering, fragmenting and hadronizing the final state, a PYTHIA and
HERWIG interface are provided which follow the Les Houches Accord. A first
version of two different parton shower algorithms are included in the WHIZARD
package. For the purpose of MLM matching of parton showers and hard ma-
trix elements, the most recent version of (Fortran) PYTHIA is included in the
package.

The WHIZARD distribution is available at

http://whizard.event-generator.org

or at

http://projects.hepforge.org/whizard

where also the svn repository is located.
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Chapter 1

Introduction

1.1 Disclaimer

This is a preliminary version of the WHIZARD manual. Many parts are still missing or
incomplete, and some parts will be rewritten and improved soon. To find updated versions of
the manual, visit the WHIZARD website

http://whizard.event-generator.org

or consult the current version in the svn repository on http: // projects. hepforge. org/

whizard directly. Note, that the most recent version of the manual might contain information
about features of the current svn version, which are not contained in the last official release
version!

For information that is not (yet) written in the manual, please consult the examples in the
WHIZARD distribution. You will find these in the subdirectory share/examples of the main
directory where WHIZARD is installed. More information about the examples can be found on the
WHIZARD Wiki page

http://projects.hepforge.org/whizard/trac/wiki.
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1.2 Overview

What did we intend to put here???

1.3 About examples in this manual

Although WHIZARD has been designed as a Monte Carlo event generator for LHC physics, several
elementary steps and aspects of its usage throughout the manual will be demonstrated with
the famous textbook example of e+e− → µ+µ−. This is the same process, the textbook by
Peskin/Schroeder [14] uses as a prime example to teach the basics of quantum field theory.
We use this example not because it is very special for WHIZARD or at the time being a relevant
physics case, but simply because it is the easiest fundamental field theoretic process without
the complications of structured beams (which can nevertheless be switched on like for ISR and
beamstrahlung!), the need for jet definitions/algorithms and flavor sums; furthermore, it easily
accomplishes a demonstration of polarized beams. After the basics of WHIZARD usage have been
explained, we move on to actual physics cases from Tevatron or LHC.



Chapter 2

Installation

2.1 Package Structure

WHIZARD is a software package that consists of a main executable program (which is called
whizard), libraries, auxiliary executable programs, and machine-independent data files. The
whole package can be installed by the system administrator, by default, on a central location
in the file system (/usr/local with its proper subdirectories). Alternatively, it is possible to
install it in a user’s home directory, without administrator privileges, or at any other location.

A WHIZARD run requires a workspace, i.e., a writable directory where it can put generated
code and data. There are no constraints on the location of this directory, but we recommend
to use a separate directory for each WHIZARD project, or even for each WHIZARD run.

Since WHIZARD generates the matrix elements for scattering and decay processes in form of
Fortran code that is automatically compiled and dynamically linked into the running program,
it requires a working Fortran compiler not just for the installation, but also at runtime.

The previous major version WHIZARD1 did put more constraints on the setup. In a nutshell,
not just the matrix element code was compiled at runtime, but other parts of the program as
well, so the whole package was interleaved and had to be installed in user space. The workflow
was controlled by make and PERL scripts. These constraints are gone in the present version in
favor of a clean separation of installation and runtime workspace.

2.2 Prerequisites

2.2.1 No Binary Distribution

WHIZARD is currently not distributed as a binary package, nor is it available as a debian or RPM
package. This might change in the future. However, compiling from source is very simple (see
below). Since the package needs a compiler also at runtime, it would not work without some
development tools installed on the machine, anyway.

9
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2.2.2 Tarball Distribution

This is the recommended way of obtaining WHIZARD. You may download the current stable
distribution either from the WHIZARD webpage,

http://whizard.event-generator.org

or from the HepForge webpage

http://projects.hepforge.org/whizard

The distribution is a single file, say whizard-2.2.0 β.tgz for version 2.2.0 β.
You need the additional prerequisites:

• GNU tar (or gunzip and tar) for unpacking the tarball.

• The make utility. Other standard Unix utilities (sed, grep, etc.) are usually installed by
default.

• A modern Fortran compiler (see Sec. 2.2.4 for details).

• The O’Caml system. O’Caml is a functional and object-oriented language. The package
is freely available either as a debian/RPM package on your system (it might be necessary
to install it from the usual repositories), or you can obtain it directly from

http://caml.inria.fr

and install it yourself. If desired, the package can be installed in user space without
administrator privileges.

The following optional external packages are not required, but used for certain purposes. Make
sure to check whether you will need any of them, before you install WHIZARD.

• LATEX and MetaPost for data visualization. Both are part of the TEX program fam-
ily. These programs are not absolutely necessary, but WHIZARD will lack the tools for
visualization without them.

• The LHAPDF structure-function library. See Sec. 2.2.5.

• The HepMC event-format package. See Sec. 2.2.6.

• The STDHEP event-format package. See Sec. 2.2.7.

Once these prerequisites are met, you may unpack the package in a directory of your choice

some-directory> tar xzf whizard-2.2.0 β.tgz

and proceed.1

The directory will then contain a subdirectory whizard-2.2.0 β where the complete source
tree is located. To update later to a new version, repeat these steps. Each new version will
unpack in a separate directory with the appropriate name.

1Without GNU tar, this would read gunzip -c whizard-2.2.0 β.tgz | tar xz -

http://whizard.event-generator.org
http://projects.hepforge.org/whizard
http://caml.inria.fr
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2.2.3 SVN Repository Version

If you want to install the latest development version, you have to check it out from the WHIZARD
SVN repository.

In addition to the prerequisites listed in the previous section, you need:

• The subversion package (svn), the tool for dealing with SVN repositories.

• The autoconf package, part of the autotools development system.

• The noweb package, a light-weight tool for literate programming. This package is not
usually part of Linux distributions. You can obtain it from

http://www.cs.tufts.edu/~nr/noweb/

To start, go to a directory of your choice and execute

your-src-directory> svn checkout http://whizard.hepforge.org/svn/trunk/ .

The SVN source tree will appear in the current directory. To update later, you just have to
execute

your-src-directory> svn update

within that directory.
After checking out the sources, run

your-src-directory> autoreconf

This will generate a configure script.

2.2.4 Fortran Compilers

WHIZARD is written in modern Fortran. To be precise, it uses a subset of the Fortran2003

standard. At the time of this writing, this subset is supported by, at least, the following
compilers:

• gfortran (GNU, Open Source). You will need version 4.5.0 or higher.

• nagfor (NAG). You will need version 5.2 or higher.

• ifort (Intel). You will need version 12.0 or higher.2

• pgfortran (PGI). You will need version 11.2 or higher.3

2At the time of this writing, ifort contains compiler bugs that prevent successful compilation of WHIZARD.
Consult the WHIZARD website for updates on this situation.

3At the time of this writing, pgfortran contains compiler bugs that prevent successful compilation of
WHIZARD. Consult the WHIZARD website for updates on this situation.

http://www.cs.tufts.edu/~nr/noweb/


12 CHAPTER 2. INSTALLATION

2.2.5 LHAPDF

For computing scattering processes at hadron colliders such as the LHC, WHIZARD has a small set
of standard structure-function parameterizations built in, cf. Sec. 5.5.3. For many applications,
this will be sufficient, and you can skip this section.

However, if you need structure-function parameterizations that are not in the default set,
you can use the LHAPDF structure-function library, which is an external package. It has to be
linked during WHIZARD installation. For use with WHIZARD, version 5.3.0 or higher of the library
is required4.

If LHAPDF is not yet installed on your system, you can download it from

http://projects.hepforge.org/lhapdf

and install it. The website contains comprehensive documentation on the configuring and
installation procedure. Make sure that you have downloaded and installed not just the package,
but also the data sets.

Note that LHAPDF needs both a Fortran and a C++ compiler.
When configuring WHIZARD, WHIZARD looks for the binary lhapdf-config (which is present

since LHAPDF version 4.1.0): if this file is in an executable path, the environment variables
for LHAPDF are automatically recognized by WHIZARD, as well as the version number. This
should look like this in the configure output:

configure: --------------------------------------------------------------

configure: --- LHAPDF ---

configure:

checking for lhapdf-config... /usr/local/bin/lhapdf-config

checking the LHAPDF version... 5.8.2

checking the LHAPDF pdfsets path... /usr/local/share/lhapdf/PDFsets

checking for initpdfsetm in -lLHAPDF... yes

configure: --------------------------------------------------------------

If you want to use a different LHAPDF (e.g. because the one installed on your system by
default is an older one), the preferred way to do so is to put the lhapf-config in an executable
path that is checked before the system paths, e.g. <home>/bin.

A possible error could arise if LHAPDF had been compiled with a different Fortran compiler
than WHIZARD, and if the run-time library of that Fortran compiler had not been included in
the WHIZARD configure process. The output then looks like this:

configure: --------------------------------------------------------------

configure: --- LHAPDF ---

configure:

checking for lhapdf-config... /usr/local/bin/lhapdf-config

checking the LHAPDF version... 5.8.2

checking the LHAPDF pdfsets path... /usr/local/share/lhapdf/PDFsets

checking for initpdfsetm in -lLHAPDF... no

configure: --------------------------------------------------------------

4 Note that PDF sets which contain photons as partons are only supported with WHIZARD for 5.7.1 or higher

http://projects.hepforge.org/lhapdf
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So, the WHIZARD configure found the LHAPDF distribution, but could not link because it
could not resolve the symbols inside the library. In case of failure, for more details confer the
config.log.

If LHAPDF is installed in a non-default directory where WHIZARD would not find it, set the
environment variable LHAPDF DIR to the correct installation path when configuring WHIZARD.

2.2.6 HepMC

HepMC is a C++ class library for handling collider scattering events. In particular, it provides a
portable format for event files. If you want to use this format, you should link WHIZARD with
HepMC, otherwise you can skip this section.

If it is not already installed on your system, you may obtain HepMC from

https://savannah.cern.ch/projects/hepmc

If the HepMC library is linked with the installation, WHIZARD is able to read and write files in
the HepMC format.

Detailed information on the installation and usage can be found on the HepMC homepage.
We give here only some brief details relevant for the usage with WHIZARD: For the compilation of
HepMC one needs a C++ compiler. Then the procedure is the same as for the WHIZARD package,
namely configure HepMC: configure --with-momentum=GEV --with-length=MM --prefix=<install

dir>. Note that the particle momentum and decay length flags are mandatory, and we highly
recommend to set them to the values GEV and MM, respectively. After configuration, do make, an
optional make check (which might sometimes fail for non-standard values of momentum and
length), and finally make install.

A WHIZARD configuration for HepMC is a bit lengthier as the C++ details have to be checked
first:

configure: --------------------------------------------------------------

configure: --- HepMC ---

configure:

checking for g++... g++

checking whether we are using the GNU C++ compiler... yes

checking whether g++ accepts -g... yes

checking dependency style of g++... gcc3

checking whether we are using the GNU C++ compiler... (cached) yes

checking whether g++ accepts -g... (cached) yes

checking dependency style of g++... (cached) gcc3

checking how to run the C++ preprocessor... g++ -E

checking for ld used by g++... /usr/bin/ld

checking if the linker (/usr/bin/ld) is GNU ld... yes

checking whether the g++ linker (/usr/bin/ld) supports shared libraries... yes

checking for g++ option to produce PIC... -fPIC -DPIC

checking if g++ PIC flag -fPIC -DPIC works... yes

checking if g++ static flag -static works... yes

checking if g++ supports -c -o file.o... yes

checking if g++ supports -c -o file.o... (cached) yes

checking whether the g++ linker (/usr/bin/ld) supports shared libraries... yes

https://savannah.cern.ch/projects/hepmc
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checking dynamic linker characteristics... GNU/Linux ld.so

checking how to hardcode library paths into programs... immediate

checking the HepMC version... 2.05.01

checking for LDFLAGS_STATIC: host system is linux-gnu: static flag...

checking for GenEvent class in -lHepMC... yes

checking whether we are using the GNU Fortran compiler... (cached) yes

checking whether /usr/bin/gfortran accepts -g... (cached) yes

configure: --------------------------------------------------------------

If HepMC is installed in a non-default directory where WHIZARD would not find it, set the
environment variable HEPMC DIR to the correct installation path when configuring WHIZARD.
Furthermore, the environment variable CXXFLAGS allows you to set specific C/C++ preprocessor
flags, e.g. non-standard include paths for header files.

2.2.7 STDHEP

STDHEP is a library for handling collider scattering events. In particular, it provides a portable
format for event files. If you do not need this format, you may skip this section.

If STDHEP is not already installed on your system, you may obtain STDHEP from

http://cepa.fnal.gov/psm/stdhep

You will need only the libraries for file I/O, not the various translation tools for PYTHIA, HERWIG,
etc. Note that STDHEP has largely been replaced by the HepMC format, and conversion tools
exist.

If the STDHEP library is linked with the installation, WHIZARD is able to write files in the
STDHEP format,

STDHEP is written in Fortran77. Although not really necessary, we strongly advice to com-
pile STDHEP with the same compiler as WHIZARD. Otherwise, one has to add the corresponding
Fortran77 run-time libraries to the configure command for WHIZARD. In order to compile STDHEP
with a modern Fortran compiler, add the line F77 = <your Fortran compiler> below the
MAKE=make statement in the GNUmakefile of the STDHEP distribution after you extracted the
tarball (Note that there might be some difficulties that some modern compilers do not under-
stand the D debugging precompiler statements in some of the files. In that case just replace
them by comment characters, C. Also, some of the hard-coded compiler flags are tailor-made
for old-fashioned g77). After that just do make. Copy the libraries created in the lib directory
of your STDHEP distribution to a directory which is in the LD LIBRARY PATH of your computer.

The WHIZARD configure script will search for the two libraries libFmcfio.a and libstdhep.a.
When WHIZARD does not find the STDHEP library, you have to set the location of the two libraries
explicitly:

./configure ... ... ... STDHEP=<stdhep path>/libstdhep.a

FMCFIO=<fmcfio path>/libFmcfio.a

The corresponding configure output will look like this:

http://cepa.fnal.gov/psm/stdhep
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configure: --------------------------------------------------------------

configure: --- STDHEP ---

configure:

checking for libFmcfio.a... /usr/local/lib/libFmcfio.a

checking for libstdhep.a... /usr/local/lib/libstdhep.a

checking for stdxwinit in -lstdhep -lFmcfio... yes

configure: --------------------------------------------------------------

In the last line, WHIZARD checks whether it can correctly access functions from the library. If
some symbols could not be resolved, it will put a “no” in the last entry. Then the config.log

will tell you more about what went wrong in detail.
If STDHEP is installed in a non-default directory where WHIZARD would not find it, set the

environment variable STDHEP DIR to the correct installation path when configuring WHIZARD.

2.3 Installation

Once you have unpacked the source (either the tarball or the SVN version), you are ready to
compile it. There are several options.

2.3.1 Central Installation

This is the default and recommended way, but it requires adminstrator privileges. Make sure
that all prerequisites are met (Sec. 2.2).

1. Create a fresh directory for the WHIZARD build. It is recommended to keep this separate
from the source directory.

2. Go to that directory and execute

your-build-directory> your-src-directory/configure

This will analyze your system and prepare the compilation of WHIZARD in the build di-
rectory. Make sure to set the proper options to configure, see Sec. 2.3.3 below.

3. Call make to compile and link WHIZARD:

your-build-directory> make

4. If you want to make sure that everything works, run

your-build-directory> make check
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This will take some more time.

5. Become superuser and say

your-build-directory> make install

WHIZARD should now installed in the default locations, and the executable should be available
in the standard path. Try to call whizard --help in order to check this.

2.3.2 Installation in User Space

You may lack administrator privileges on your system. In that case, you can still install and
run WHIZARD. Make sure that all prerequisites are met (Sec. 2.2).

1. Create a fresh directory for the WHIZARD build. It is recommended to keep this separate
from the source directory.

2. Reserve a directory in user space for the WHIZARD installation. It should be empty, or yet
non-existent.

3. Go to that directory and execute

your-build-directory> your-src-directory/configure --prefix=your-install-directory

This will analyze your system and prepare the compilation of WHIZARD in the build di-
rectory. Make sure to set the proper additional options to configure, see Sec. 2.3.3
below.

4. Call make to compile and link WHIZARD:

your-build-directory> make

5. If you want to make sure that everything works, run

your-build-directory> make check

This will take some more time.

6. Install:

your-build-directory> make install

WHIZARD should now be installed in the installation directory of your choice. If the installation
is not in your standard search paths, you have to account for this by extending the paths
appropriately, see Sec. 2.4.1.
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2.3.3 Configure Options

The configure script accepts environment variables and flags. They can be given as arguments
to the configure program in arbitrary order. You may run configure --help for a listing;
only the last part of this long listing is specific for the WHIZARD system. Here is an example:

configure FC=gfortran-4.5 FCFLAGS="-g -O3" --enable-fc-openmp

The most important options are

• FC (variable): The Fortran compiler. This is necessary if you need a compiler different
from the standard compiler on the system, e.g., if the latter is too old.

• FCFLAGS (variable): The flags to be given to the Fortran compiler. The main use is to
control the level of optimization.

• --prefix=〈directory-name 〉: Specify a non-default directory for installation.

• --enable-fc-openmp: Enable parallel executing via OpenMP on a multi-processor/multi-
core machine. This works only if OpenMP is supported by the compiler (e.g., gfortran).
When running WHIZARD, the number of processors that are actually requested can be
controlled by the user. Without this option, WHIZARD will run in serial mode on a single
core. See Sec. 5.4.3 for further details.

• LHADPF DIR (variable): The location of the optional LHAPDF package, if non-default.

• HEPMC DIR (variable): The location of the optional HepMC package, if non-default.

• STDHEP DIR (variable): The location of the optional STDHEP package, if non-default.

2.3.4 Details on the Configure Process

The configure process checks for the build and host system type; only if this is not detected
automatically, the user would have to specify this by himself. After that system-dependent files
are searched for, LaTeX and Acroread for documentation and plots, the Fortran compiler is
checked, and finally the O’Caml compiler. The next step is the checks for external programs
like LHAPDF and HepMC. Finally, all the Makefiles are being built.

The compilation is done by invoking make and finally make install. You could also do a
make check in order to test whether the compilation has produced sane files on your system.
This is highly recommended.

Be aware that there be problems for the installation if the install path or a user’s home
directory is part of an AFS file system. Several times problems were encountered connected
with conflicts with permissions inside the OS permission environment variables and the AFS
permission flags which triggered errors during the make install procedure. Also please avoid
using make -j options of parallel execution of Makefile directives as AFS filesystems might
not be fast enough to cope with this.
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For specific problems that might have been encountered in rare circumstances for some FOR-
TRAN compilers confer the webpage http://projects.hepforge.org/whizard/compilers.

html.
Note that parts of the program do contain good old Fortran77 code, e.g. the PYTHIA

bundle for showering and hadronization. These parts should better be compiled with the very
same Fortran2003 compiler as the WHIZARD core. There is, however, one subtlety: when the
configure flag FC gets a full system path as argument, libtool is not able to recognize this
as a valid (GNU) Fortran77 compiler. It then searches automatically for binaries like f77,
g77 etc. or a standard system compiler. This might result in a compilation failure of the
Fortran77. A viable solution is to define an executable link and use this (not the full path!)
as FC flag.

It is possible to compile WHIZARD without the O’Caml parts of O’Mega, namely by using
the --disable-omega option of the configure. This will result in a built of WHIZARD with
the O’Mega Fortran library, but without the binaries for the matrix element generation. All
selftests (cf. 2.3.5) requiring O’Mega matrix elements are thereby switched off. Note that you
can install such a built (e.g. on a batch system without O’Caml installation), but the try to
build a distribution (all make distxxx targets) will fail.

2.3.5 WHIZARD self tests/checks

WHIZARD has a number of self-consistency checks and test which assure that most of its features
are running in the intended way. The standard procedure to invoke these self tests is to perform
a make check from the build directory. If src and build directories are the same, all relevant
files for these self-tests reside in the test subdirectory of the main WHIZARD directory. In that
case, one could in principle just call the scripts individually from the command line. Note, that
if src and build directory are different as recommended, then the input files will have been
installed in prefix/share/whizard/test, while the corresponding test shell scripts remain in
the srcdir/test directory. As the main shell script run_whizard_sh has been built in the
build directory, one now has to copy the files over by and set the correct paths by hand, if
one wishes to run the test scripts individually. make check still correctly performs all WHIZARD
self-consistency tests.

There are additional, quite extensiv numerical tests for validation and backwards compatibil-
ity checks for SM and MSSM processes. As a standard, these extended self tests are not invoked.
However, they can be enabled by setting the configure option --enable-extnum-checks. On
the other hand, the standard self-consistency checks can be completely disabled with the option
--disable-default-checks.

2.4 Working With WHIZARD

2.4.1 Working on a Single Computer

After installation, WHIZARD is ready for use. There is a slight complication if WHIZARD has been
installed in a location that is not in your standard search paths.

http://projects.hepforge.org/whizard/compilers.html
http://projects.hepforge.org/whizard/compilers.html
prefix/share/whizard/test
run_whizard_sh
--enable-extnum-checks
--disable-default-checks


2.4. WORKING WITH WHIZARD 19

In that case, to successfully run WHIZARD, you may either

• manually add your-install-directory/bin to your execution PATH
and your-install-directory/lib to your library search path (LD LIBRARY PATH),
or

• whenever you start a project, execute

your-workspace> . your-install-directory/bin/whizard-setup.sh

which will enable the paths in your current environment, or

• source whizard-setup.sh script in your shell startup file.

In either case, try to call whizard --help in order to check whether this is done correctly.
For a new WHIZARD project, you should set up a new (empty) directory. Depending on the

complexity of your task, you may want to set up separate directories for each subproblem that
you want to tackle, or even for each separate run. The location of the directories is arbitrary.

To run, WHIZARD needs only a single input file, a SINDARIN command script with extension
.sin (by convention). Running WHIZARD is as simple as

your-workspace> whizard your-input.sin

No other configuration files are needed. The total number of auxiliary and output files generated
in a single run may get quite large, however, and they may clutter your workspace. This is the
reason behind keeping subdirectories on a per-run basis.

Basic usage of WHIZARD is explained in Chapter 3, for more details, consult the following
chapters. In Sec. 9.1 we give an account of the command-line options that WHIZARD accepts.

2.4.2 Stopping And Resuming WHIZARD Jobs

On a Unix-like system, it is possible to prematurely stop running jobs by a kill(1) command,
or by entering Ctrl-C on the terminal.

If the system supports this, WHIZARD traps these signals. It also traps some signals that
a batch operating system might issue, e.g., for exceeding a predefined execution time limit.
WHIZARD tries to complete the calculation of the current event and gracefully close open files.
Then, the program terminates with a message and a nonzero return code. Usually, this should
not take more than a fraction of a second.

If, for any reason, the program does not respond to an interrupt, it is always possible to kill
it by kill -9. A convenient method, on a terminal, would be to suspend it first by Ctrl-Z

and then to kill the suspended process.
The program is usually able to recover after being stopped. Simply run the job again

from start, with the same input, all output files generated so far left untouched. The results
obtained so far will be quickly recovered or gathered from files written in the previous run,
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and the actual time-consuming calculation is resumed near the point where it was interrupted.5

If the interruption happened during an integration step, it is resumed after the last complete
iteration. If it was during event generation, the previous events are taken from file and event
generation is continued.

The same mechanism allows for efficiently redoing a calculation with similar, somewhat
modified input. For instance, you might want to add a further observable to event analysis, or
write the events in a different format. The time for rerunning the program is determined just
by the time it takes to read the existing integration or event files, and the additional calculation
is done on the recovered information.

By managing various checksums on its input and output files, WHIZARD detects changes
that affect further calculations, so it does a real recalculation only where it is actually needed.
This applies to all steps that are potentially time-consuming: matrix-element code generation,
compilation, phase-space setup, integration, and event generation. If desired, you can set
command-line options or SINDARIN parameters that explicitly discard previously generated
information.

2.4.3 Submitting Batch Jobs With WHIZARD I

For long-running calculations, you may want to submit a WHIZARD job to a remote machine.
The challenge lies in the fact that WHIZARD needs a complete installation with all auxiliary
programs and data files to run, including a Fortran compiler.

If the submitting machine where WHIZARD has been compiled is binary- or OS-incompatible
with the batch machine, there is no way around doing the complete WHIZARD installation and
compilation on the batch machine, possibly as part of the batch job.

In this section, we describe batch-job preparation in the case that the batch machine has
a compatible operating system, and the necessary system tools are available, albeit possibly
in different locations. In that case, an existing WHIZARD installation can be transferred to the
remote machine without recompilation.

We assume that it is possible to transfer files from and to the batch machine, and that the
batch job is controlled by some script. You (interactively) or the script should perform the
following steps, as far as necessary.

1. Pack the complete WHIZARD installation including all subdirectories and unpack it on the
batch machine in an arbitrary location, say inst-dir.

2. Copy the SINDARIN script file (say, run.sin) to the batch machine in the projected
working directory.

3. Check whether the correct (compatible!) Fortran compiler is available in the standard
path. If not, create a symbolic link or extend PATH accordingly.

5This holds for simple workflow. In case of scans and repeated integrations of the same process, there may be
name clashes on the written files which prevent resuming. A future WHIZARD version will address this problem.
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4. Check whether the correct (compatible!) Fortran runtime library is available in the
standard load path, and has priority over any conflicting libraries. If not, create symbolic
links or extend LD LIBRARY PATH accordingly.

5. Do the same for any external libraries as far as they have been linked with the original
installation (e.g., LHAPDF, HepMC). You should verify that the stdc++ library can be loaded.

6. Check whether the batch machine has a working LATEX and MetaPost installation. If it
doesn’t, this is not a severe problem, you just may get some extra error messages, and
there won’t be graphical output from analysis requests.

7. Run

inst-dir/bin/whizard-setup.sh

where inst-dir is the direction where you unpacked the WHIZARD installation, to add
WHIZARD’s bin and lib directories to the run and load path, respectively.

8. The next obstacle might be WHIZARD’s libtool script. Libtool is a standard tool, but
contains machine-specific configurations. If there is – or might be – a problem, run

libtool-config.sh --prefix inst-dir

This will create a tailored libtool in the current working directory.

9. The WHIZARD installation is self-contained, but the steering files for the dynamically loaded
libraries contain paths that will likely be wrong on the batch system. Fix this with

libtool-relocate.sh --prefix inst-dir

If you need LHAPDF, and the library is not in the same location as on your host, run
instead

libtool-relocate.sh --prefix inst-dir --lhapdf directory-of-liblhapdf

10. Now, the WHIZARD binary can be successfully launched. If WHIZARD doesn’t even start,
there is something wrong with the preceding steps.

Still, WHIZARD has to be told where to find its files. Run it with the --prefix option

whizard --prefix=inst-dir run.sin
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You may want to catch standard output and standard error. This depends on your batch
system.

If you had to rebuild libtool (see above), you need the additional option

--libtool=my-libtool

where my-libtool is the tailored libtool that you created, e.g., $pwd/libtool.

If you need LHAPDF, and its location is different, you need the additional option

--lhapdf-dir=directory-where-lhapdf-is-installed

If these switches are not set correctly, WHIZARD will fail while running.

11. If all works well, WHIZARD will run as requested. Copy back all files of interest in the
working directory, and you are done.

As a rule, the more similar the batch machine is to the local machine, the more steps can be
omitted or are trivial. However, with some trial and error it should be able to run batch jobs
even if there are substantial differences.

2.4.4 Submitting Batch Jobs With WHIZARD II

There is another possibility that avoids some of the difficulties discussed above. You can suggest
WHIZARD to make a statically linked copy of itself, which includes all processes that you want
to study, hard-coded. The external libraries (Fortran, and possibly HepMC and stdc++) must
be available on the target system, and it must be binary-compatible, but there is no need
for transferring the complete WHIZARD installation or relocating paths. The drawback is that
generating, compiling and linking matrix element code is done on the submitting host.

Since this procedure is accomplished by SINDARIN commands, it is explained below in
Sec. 5.4.6.



Chapter 3

Getting Started

WHIZARD can run as a stand-alone program. You (the user) can steer WHIZARD either interactively
or by a script file. We will first describe the latter method, since it will be the most common
way to interact with the WHIZARD system.

3.1 Hello World

The script is written in SINDARIN. This is a DSL – a domain-specific scripting language that
is designed for the single purpose of steering and talking to WHIZARD1. Now since SINDARIN is
a programming language, we honor the old tradition of starting with the famous Hello World
program. In SINDARIN this reads simply

printf "Hello World!"

Open your favorite editor, type this text, and save it into a file named hello.sin.
Now we assume that you – or your kind system administrator – has installed WHIZARD in

your executable path. Then you should open a command shell and execute

/home/user$ whizard -r hello.sin

and if everything works well, you get the output

| Writing log to ’whizard.log’

[... here a banner is displayed]

|=============================================================================|

| WHIZARD 2.2.0 beta

|=============================================================================|

| Initializing process library ’processes’

| Reading model file ’/home/kilian/whizard/install/share/whizard/models/SM.mdl’

| Using model: SM

1As it is well known, W(h)izards communicate in SINDARIN, Scripting INtegration, Data Analysis, Results
display and INterfaces.

23
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| Reading commands from file ’hello.sin’

Hello World!

| WHIZARD run finished.

|=============================================================================|

If this has just worked for you, you can be confident that you have a working WHIZARD instal-
lation, and you have been able to successfully run the program.

3.2 A Simple Calculation

You may object that WHIZARD is not exactly designed for printing out plain text. So let us
demonstrate a more useful example.

Looking at the Hello World output, we first observe that the program writes a log file named
(by default) whizard.log. This file receives all screen output, except for the output of external
programs that are called by WHIZARD. You don’t have to cache WHIZARD’s screen output yourself.

After the welcome banner, WHIZARD tells you that it initializes a process library, and it reads
a physics model. The process library is initially empty. It is ready for receiving definitions of
elementary high-energy physics processes (scattering or decay) that you provide. The processes
are set in the context of a definite model of high-energy physics. By default this is the Standard
Model, dubbed SM.

Here is the SINDARIN code for defining a SM physics process, computing its cross section,
and generating a simulated event sample in Les Houches event format:

process ee = e1, E1 => e2, E2

sqrts = 360 GeV

n_events = 10

sample_format = lhef

simulate (ee)

As before, you save this text in a file (named, e.g., ee.sin) which is run by

/home/user$ whizard -r ee.sin

(We will come to the meaning of the -r option later.) This produces a lot of output which
looks similar to this:

| Writing log to ’whizard.log’

|=============================================================================|

| WHIZARD 2.2.0 beta

|=============================================================================|

| Initializing process library ’processes’

| Reading model file ’SM.mdl’

| Using model: SM

| Reading commands from file ’ee.sin’

| Added process to library ’processes’:

| [O] ee = e-, e+ => mu-, mu+
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| Generating code for process library ’processes’

| Calling O’Mega for process ’ee’

| command:

| /home/kilian/whizard/build/nagfor/src/omega/bin/omega_SM.opt -o

| ee.f90 -target:whizard -target:parameter_module parameters_SM

| -target:module ee -target:md5sum 6ABA33BC2927925D0F073B1C1170780A

! -fusion:progress -scatter ’e- e+ => mu- mu+’

[1/1] e- e+ => mu- mu+ ... done. [time: 0.03 secs, total: 0.03 secs, remaining: 0.00 secs]

all processes done. [total time: 0.03 secs]

SUMMARY: 6 fusions, 2 propagators, 2 diagrams

| Writing interface code for process library ’processes’

| Compiling process library ’processes’

| Loading process library ’processes’

| Process ’ee’: updating previous configuration

sqrts = 3.6000000000000000E+02

| Integrating process ’ee’

| Generating phase space, writing file ’ee.phs’ (this may take a while)

| Found 2 phase space channels.

Warning: No cuts have been defined.

| Using partonic energy as event scale.

| iterations = 3:1000, 3:10000

| Creating VAMP integration grids:

| Using phase-space channel equivalences.

| 1000 calls, 2 channels, 2 dimensions, 20 bins, stratified = T

|=============================================================================|

| It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] |

|=============================================================================|

1 1000 8.3366006E+02 1.47E+00 0.18 0.06* 40.12

2 1000 8.3357740E+02 8.16E-01 0.10 0.03* 40.11

3 1000 8.3214263E+02 1.01E+00 0.12 0.04 57.40

|-----------------------------------------------------------------------------|

3 3000 8.3311382E+02 5.83E-01 0.07 0.04 57.40 0.69 3

|-----------------------------------------------------------------------------|

4 10000 8.3325834E+02 1.10E-01 0.01 0.01* 57.02

5 10000 8.3333796E+02 1.11E-01 0.01 0.01 57.03

6 10000 8.3323772E+02 1.11E-01 0.01 0.01 57.03

|=============================================================================|

6 30000 8.3327798E+02 6.41E-02 0.01 0.01 57.03 0.23 3

|=============================================================================|

n_events = 10

$sample => "ee"

| Initializating simulation for processes ee:

| Simulation mode = unweighted, event_normalization = ’1’

| No analysis setup has been provided.

| Writing events in LHEF format to file ’ee.lhef’

| Generating 10 events ...
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| Writing events in internal format to file ’ee.evx’

| Event sample corresponds to luminosity [fb-1] = 0.1200E-01

| ... done

| Simulation finished.

| There were no errors and 1 warning(s).

| WHIZARD run finished.

|=============================================================================|

The final result is the desired event file, ee.lhef.



Chapter 4

SINDARIN: Overview

4.1 The command language for WHIZARD

A conventional physics application program gets its data from a set of input files. Alternatively,
it is called as a library, so the user has to write his own code to interface ist, or it combines
these two approaches. WHIZARD 1 was built in this way: there were some input files which were
written by the user, and it could be called both stand-alone or as an external library.

WHIZARD 2 is also a stand-alone program. It comes with its own full-fledged script language,
called SINDARIN. All interaction between the user and the program is done in SINDARIN
expressions, commands, and scripts. Two main reasons led us to this choice:

• In any nontrivial physics study, cuts and (parton- or hadron-level) analysis are of central
importance. The task of specifying appropriate kinematics and particle selection for a
given process is well defined, but it is impossible to cover all possiblities in a simple format
like the cut files of WHIZARD 1.

The usual way of dealing with this problem is to write analysis driver code (often in
C++), using external libraries for Lorentz algebra etc. However, the overhead of writing
correct C++ or Fortran greatly blows up problems that could be formulated in a few
lines of text.

• While many problems lead to a repetitive workflow (process definition, integration, simu-
lation), there are more involved tasks that involve parameter scans, comparisons of differ-
ent processes, conditional execution, or writing output in widely different formats. This
is easily done by a steering script, which should be formulated in a complete language.

The SINDARIN language is built specifically around event analysis, suitably extended to sup-
port steering, including data types, loops, conditionals, and I/O.

It would have been possible to use an established general-purpose language for these tasks.
For instance, O’Caml which is a functional language would be a suitable candidate, and the
matrix-element generator is written in that language. Another candidate would be a popular
scripting language such as PYTHON.

27
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We do plan to support interfaces for commonly used languages in the future. However,
introducing a speal-purpose language has the three distinct advantages: First, it is compiled
and executed by the very Fortran code that handles data and thus accesses it without interfaces.
Second, it can be designed with a syntax especially suited to the task of event handling and
Monte-Carlo steering, and third, the user is not forced to learn all those features of a generic
language that are of no relevance to the application he is interested in.

4.2 SINDARIN scripts

A SINDARIN script tells the WHIZARD program what it has to do. Typically, the script is
contained in a file which you (the user) create. The file name is arbitrary; by convention, it has
the extension ‘.sin’. WHIZARD takes the file name as its argument on the command line and
executes the contained script:

/home/user> whizard script.sin

Alternatively, you can call WHIZARD interactively and execute statements line by line; we de-
scribe this below in Sec.9.2.

A SINDARIN script is a sequence of statements, similar to the statements in any imperative
language such as Fortran or C. Examples of statements are commands like integrate, variable
declarations like logical ?flag or assigments like mH = 130 GeV.

The script is free-form, i.e., indentation, extra whitespace and newlines are syntactically
insignificant. In contrast to most languages, there is no statement separator. Statements
simply follow each other, just separated by whitespace.

statement1 statement2

statement3

statement4

Nevertheless, for clarity we recommend to write one statement per line where possible, and to
use proper indentation for longer statements, nested and bracketed expressions.

A command may consist of a keyword, a list of arguments in parantheses (. . . ), and an
option script which itself is a sequence of statements.

command

command_with_args (arg1, arg2)

command_with_option { option }

command_with_options (arg) {

option_statement1

option_statement2

}

As a rule, parentheses () enclose arguments and expressions, as you would expect. Arguments
enclosed in square brackets [] also exist. They have a special meaning, they denote subevents
(collections of momenta) in event analysis. Braces {} enclose blocks of SINDARIN code. In
particular, the option script associated with a command is a block of code that may contain
local parameter settings, for instance. Braces always indicate a scoping unit, so parameters will
be restored their previous values when the execution of that command is completed.

The script can contain comments. Comments are initiated by either a # or a ! character
and extend to the end of the current line.
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statement

# This is a comment

statement ! This is also a comment

4.3 Errors

Before turning to proper SINDARIN syntax, let us consider error messages. SINDARIN distin-
guishes syntax errors and runtime errors.

Syntax errors are recognized when the script is read and compiled, before any part is exe-
cuted. Look at this example:

process foo = u, ubar => d, dbar

mu = 10

integrade (foo)

WHIZARD will fail with the an error message

sqrts = 1 TeV

integrade (foo)

^^

| Expected syntax: SEQUENCE <cmd_num> = <var_name> ’=’ <expr>

| Found token: KEYWORD: ’(’

******************************************************************************

******************************************************************************

*** FATAL ERROR: Syntax error (at or before the location indicated above)

******************************************************************************

******************************************************************************

WHIZARD run aborted.

which tells you that you have misspelled the command integrate, so the compiler tried to
interpret it as a variable.

Runtime errors are categorized by their severity. A warning is simply printed:

Warning: No cuts have been defined.

This indicates a condition that is suspicious, but may actually be intended by the user.
When an error is encountered, it is printed with more emphasis

******************************************************************************

*** ERROR: Variable ’md’ set without declaration

******************************************************************************

and the program tries to continue. However, this usually indicates that there is something
wrong. (The d quark is defined massless, so md is not a model parameter.) WHIZARD counts
errors and warnings and tells you at the end

| There were 1 error(s) and no warnings.



30 CHAPTER 4. SINDARIN: OVERVIEW

just in case you missed the message.
Other errors are considered fatal, and execution stops at this point.

******************************************************************************

******************************************************************************

*** FATAL ERROR: Process setup: neither beams nor sqrts are known

******************************************************************************

******************************************************************************

Here, WHIZARD was unable to do anything sensible.

4.4 Statements

SINDARIN statements are executed one by one. For an overview, we list the most common
statements in the order in which they typically appear in a SINDARIN script, and quote the basic
syntax and simple examples. This should give an impression on the WHIZARD’s capabilities and
on the user interface. The list is not complete. Note that there are no mandatory commands
(although an empty SINDARIN script is not really useful). The details and options are explained
in later sections.

4.4.1 Process Configuration

model

model = 〈model-name 〉

This assignment sets or resets the current physics model. The Standard Model is already
preloaded, so the model assignment applies to non-default models. Obviously, the model must
be known to WHIZARD. Example:

model = MSSM

See Sec. 5.3.

alias

alias 〈alias-name 〉 = 〈alias-definition 〉

Particles are specified by their names. For most particles, there are various equivalent names.
Names containing special characters such as a + sign have to be quoted. The alias assignment
defines an alias for a list of particles. This is useful for setting up processes with sums over
flavors, cut expressions, and more. The alias name is then used like a simple particle name.
Example:

alias jet = u:d:s:U:D:S:g

See Sec. 5.2.1.
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process

process 〈tag 〉 = 〈incoming 〉 => 〈outgoing 〉

Define a process. You give the process a name 〈tag〉 by which it is identified later, and specify
the incoming and outgoing particles, and possibly options. You can define an arbitrary number
of processes as long as they are distinguished by their names. Example:

process w_plus_jets = g, g => "W+", jet, jet

See Sec. 5.4.

sqrts

sqrts = 〈energy-value 〉

Define the center-of-mass energy for collision processes. The default setup will assume head-on
central collisions of two beams. Example:

sqrts = 500 GeV

See Sec. 5.5.1.

beams

beams = 〈beam-particles 〉
beams = 〈beam-particles 〉 => 〈structure-function-setup 〉

Declare beam particles and properties. The current value of sqrts is used, unless specified
otherwise. Example:

beams = u:d:s, U:D:S => lhapdf

With options, the assignment allows for defining beam structure in some detail. This includes
beamstrahlung and ISR for lepton colliders, precise structure function definition for hadron
colliders, asymmetric beams, beam polarization, and more. See Sec. 5.5.

4.4.2 Parameters

Parameter settings

〈parameter 〉 = 〈value 〉
〈type 〉 〈user-parameter 〉
〈type 〉 〈user-parameter 〉 = 〈value 〉

Specify a value for a parameter. There are predefined parameters that affect the behavior of
a command, model-specific parameters (masses, couplings), and user-defined parameters. The
latter have to be declared with a type, which may be int (integer), real, complex, logical,
string, or alias. Logical parameter names begin with a question mark, string parameter
names with a dollar sign. Examples:
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mb = 4.2 GeV

?rebuild_grids = true

real mass_sum = mZ + mW

string $message = "This is a string"

The value need not be a literal, it can be an arbitrary expression of the correct type. See
Sec. 4.7.

read slha

read slha (〈filename 〉)

This is useful only for supersymmetric models: read a parameter file in the SUSY Les Houches
Accord format. The file defines parameter values and, optionally, decay widths, so this com-
mand removes the need for writing assignments for each of them.

read_slha ("sps1a.slha")

See Sec. ??.

show

show (〈data-objects 〉)

Print the current value of some data object. This includes not just variables, but also models,
libraries, cuts, etc. This is rather a debugging aid, so don’t expect the output to be concise in
the latter cases. Example:

show (mH, wH)

See Sec. 5.10.

printf

printf 〈format-string 〉 (〈data-objects 〉)

Pretty-print the data objects according to the given format string. If there are no data objects,
just print the format string. This command is borrowed from the C programming language;
it is actually an interface to the system’s printf(3) function. The conversion specifiers are
restricted to d,i,e,f,g,s, corresponding to the output of integer, real, and string variables.
Example:

printf "The Higgs mass is %f GeV" (mH)

See Sec. 5.10.

4.4.3 Integration

cuts

cuts = 〈logical-cut-expression 〉
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The cut expression is a logical macro expression that is evaluated for each phase space point
during integration and event generation. You may construct expressions out of various ob-
servables that are computed for the (partonic) particle content of the current event. If the
expression evaluates to true, the matrix element is calculated and the event is used. If it
evaluates to false, the matrix element is set zero and the event is discarded. Note that for
collisions the expression is evaluated in the lab frame, while for decays it is evaluated in the
rest frame of the decaying particle. In case you want to impose cuts on a factorized process,
i.e. a combination of a production process and one or more decay processes, you have to use
the selection keyword instead.

Example for the keyword cuts:

cuts = all Pt > 20 GeV [jet]

and all mZ - 10 GeV < M < mZ + 10 GeV [lepton, lepton]

and no abs (Eta) < 2 [jet]

See Sec. 5.2.5.

integrate

integrate (〈process-tags 〉)

Compute the total cross section for a process. The command takes into account the definition
of the process, the beam setup, cuts, and parameters as defined in the script. Parameters may
also be specified as options to the command.

Integration is necessary for each process for which you want to know total or differential cross
sections, or event samples. Apart from computing a value, it sets up and adapts phase space
and integration grids that are used in event generation. If you just need an event sample, you
can omit an explicit integrate command; the simulate command will call it automatically.
Example:

integrate (w_plus_jets, z_plus_jets)

See Sec. 5.7.1.
Compute the total cross section for a process. The command takes into account the defini-

tion of the process, the beam setup, cuts, and parameters as defined in the script. Parameters
may also be specified as options to the command.

Integration is necessary for each process for which you want to know total or differential cross
sections, or event samples. Apart from computing a value, it sets up and adapts phase space
and integration grids that are used in event generation. If you just need an event sample, you
can omit an explicit integrate command; the simulate command will call it automatically.
Example:

integrate (w_plus_jets, z_plus_jets)

See Sec. 5.7.1.

matrix element test

matrix element test (〈process-tag 〉)



34 CHAPTER 4. SINDARIN: OVERVIEW

Prepare a process for integration, but instead of performing the integration, just evaluate the
sampling function for random integration channels and random momenta. VAMP integration
grids are neither generated nor used, so the channel selection corresponds to the first integration
pass, before any grids or channel weights are adapted. The number of sampling points is given by
n_events. The output contains information about the timing, number of sampling points that
passed the kinematics selection, and the number of matrix-element values that were actually
evaluated.

This command is useful mainly for debugging and diagnostics. Example:

matrix_element_test (some_large_process) { n_events = 100000 }

4.4.4 Events

histogram

histogram 〈tag 〉 (〈lower-bound 〉, 〈upper-bound 〉)
histogram 〈tag 〉 (〈lower-bound 〉, 〈upper-bound 〉, 〈step 〉)

Declare a histogram for event analysis. The histogram is filled by an analysis expression, which
is evaluated once for each event during a subsequent simulation step. Example:

histogram pt_distribution (0, 150 GeV, 10 GeV)

See Sec. 5.9.3.

plot

plot 〈tag 〉
Declare a plot for displaying data points. The plot may be filled by an analysis expression that
is evaluated for each event; this would result in a scatter plot. More likely, you will use this
feature for displaying data such as the energy dependence of a cross section. Example:

plot total_cross_section

See Sec. 5.9.4.

selection

selection = 〈selection-expression 〉
The selection expression is a logical macro expression that is evaluated once for each event. It is
applied to the event record, after all decays have been executed (if any). It is therefore intended
e.g. for modelling detector acceptance cuts etc. For unfactorized processes the usage of cuts or
selection leads to the same results. Events for which the selection expression evaluates to false
are dropped; they are neither analyzed nor written to any user-defined output file. However,
the dropped events are written to WHIZARD’s native event file. For unfactorized processes it is
therefore preferable to implement all cuts using the cuts keyword for the integration, see cuts
above. Example:

selection = all Pt > 50 GeV [lepton]

The syntax is generically the same as for the cuts expression, see Sec. 5.2.5. For more
information see also Sec. 5.9.
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analysis

analysis = 〈analysis-expression 〉

The analysis expression is a logical macro expression that is evaluated once for each event that
passes the integration and selection cuts in a subsequent simulation step. The expression has
type logical in analogy with the cut expression; however, its main use will be in side effects
caused by embedded record expressions. The record expression books a value, calculated
from observables evaluated for the current event, in one of the predefined histograms or plots.
Example:

analysis = record pt_distribution (eval Pt [photon])

and record mval (eval M [lepton, lepton])

See Sec. 5.9.

unstable

unstable 〈particle 〉 (〈decay-channels 〉)

Specify that a particle can decay, if it occurs in the final state of a subsequent simulation step.
(In the integration step, all final-state particles are considered stable.) The decay channels
are processes which should have been declared before by a process command. They may be
integrated explicitly, otherwise the unstable command will take care of the integration before
particle decays are generated. Example:

unstable Z (z_ee, z_jj)

Note that the decay is an on-shell approximation. Alternatively, WHIZARD is capable of gener-
ating the final state(s) directly, automatically including the particle as an internal resonance
together with irreducible background. Depending on the physical problem and on the complex-
ity of the matrix-element calculation, either option may be more appropriate.

See Sec. ??.

n events

n events = 〈integer 〉

Specify the number of events that a subsequent simulation step should produce. By default,
simulated events are unweighted. (Unweighting is done by a rejection operation on weighted
events, so the usual caveats on event unweighting by a numerical Monte-Carlo generator do
apply.) Example:

n_events = 20000

See Sec. 5.8.1.

simulate

simulate (〈process-tags 〉)
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Generate an event sample. The command allows for analyzing the generated events by the
analysis expression. Furthermore, events can be written to file in various formats. Optionally,
the partonic events can be showered and hadronized, partly using external programs (PYTHIA)
called by WHIZARD. Example:

simulate (w_plus_jets) { sample_format = lhef }

See Sec. 5.8.1 and Chapter 6.

graph

graph (〈tag 〉) = 〈histograms-and-plots 〉

Combine existing histograms and plots into a common graph. Also useful for pretty-printing
single histograms or plots. Example:

graph comparison {

$title = "$p_T$ distribution for two different values of $m_h$"

} = hist1 & hist2

See Sec. 8.4.

write analysis

write analysis (〈analysis-objects 〉)

Writes out data tables for the specified analysis objects (plots, graphs, histograms). If the
argument is empty or absent, write all analysis objects currently available. The tables are
available for feeding external programs. Example:

write_analysis

See Sec. 8.

compile analysis

compile analysis (〈analysis-objects 〉)

Analogous to write analysis, but the generated data tables are processed by LATEX and
gamelan, which produces Postscript and PDF versions of the displayed data. Example:

compile_analysis

See Sec. 8.

4.5 Control Structures

Like any complete programming language, SINDARIN provides means for branching and looping
the program flow.
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4.5.1 Conditionals

if

if 〈logical-expression 〉 then 〈statements 〉
elsif 〈logical-expression 〉 then 〈statements 〉
else 〈statements 〉
endif

Execute statements conditionally, depending on the value of a logical expression. There may
be none or multiple elsif branches, and the else branch is also optional. Example:

if (sqrts > 2 * mtop) then

integrate (top_pair_production)

else

printf "Top pair production is not possible"

endif

The current SINDARIN implementation puts some restriction on the statements that can appear
in a conditional. For instance, process definition must be done unconditionally.

4.5.2 Loops

scan

scan 〈variable 〉 = (〈value-list 〉) { 〈statements 〉 }

Execute the statements repeatedly, once for each value of the scan variable. The statements
are executed in a local context, analogous to the option statement list for commands. The
value list is a comma-separated list of expressions, where each item evaluates to the value that
is assigned to 〈variable 〉 for this iteration.

The type of the variable is not restricted to numeric, scans can be done for various object
types. For instance, here is a scan over strings:

scan string $str = ("%.3g", "%.4g", "%.5g") { printf $str (mW) }

The output:

[user variable] $str = "%.3g"

80.4

[user variable] $str = "%.4g"

80.42

[user variable] $str = "%.5g"

80.419

For a numeric scan variable in particular, there are iterators that implement the usual func-
tionality of for loops. If the scan variable is of type integer, an iterator may take one of the
forms
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〈start-value 〉 => 〈end-value 〉
〈start-value 〉 => 〈end-value 〉 /+ 〈add-step 〉
〈start-value 〉 => 〈end-value 〉 /- 〈subtract-step 〉

The iterator can be put in place of an expression in the 〈value-list 〉. Here is an example:

scan int i = (1, (3 => 5), (10 => 20 /+ 4))

which results in the output

[user variable] i = 1

[user variable] i = 3

[user variable] i = 4

[user variable] i = 5

[user variable] i = 10

[user variable] i = 14

[user variable] i = 18

[Note that the 〈statements 〉 part of the scan construct may be empty or absent.]
For real scan variables, there are even more possibilities for iterators:

〈start-value 〉 => 〈end-value 〉
〈start-value 〉 => 〈end-value 〉 /+ 〈add-step 〉
〈start-value 〉 => 〈end-value 〉 /- 〈subtract-step 〉
〈start-value 〉 => 〈end-value 〉 /* 〈multiplicator 〉
〈start-value 〉 => 〈end-value 〉 // 〈divisor 〉
〈start-value 〉 => 〈end-value 〉 +/+ 〈n-points-linear 〉
〈start-value 〉 => 〈end-value 〉 */* 〈n-points-logarithmic 〉

The first variant is equivalent to /+ 1. The /+ and /- operators are intended to add or subtract
the given step once for each iteration. Since in floating-point arithmetic this would be plagued
by rounding ambiguities, the actual implementation first determines the (integer) number of
iterations from the provided step value, then recomputes the step so that the iterations are
evenly spaced with the first and last value included.

The /* and // operators are analogous. Here, the initial value is intended to be multiplied
by the step value once for each iteration. After determining the integer number of iterations,
the actual scan values will be evenly spaced on a logarithmic scale.

Finally, the +/+ and */* operators allow to specify the number of iterations (not counting
the initial value) directly. The 〈start-value 〉 and 〈end-value 〉 are always included, and the
intermediate values will be evenly spaced on a linear (+/+) or logarithmic (*/*) scale.

Example:

scan mH = (130 GeV,

(140 GeV => 160 GeV /+ 5 GeV),

180 GeV,

(200 GeV => 1 TeV */* 10))

{ integrate (higgs_decay) }
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4.5.3 Including Files

include

include (〈file-name 〉)

Include a SINDARIN script from the specified file. The contents must be complete commands;
they are compiled and executed as if they were part of the current script. Example:

include ("default_cuts.sin")

4.6 Expressions

SINDARIN expressions are classified by their types. The type of an expression is verified when
the script is compiled, before it is executed. This provides some safety against simple coding
errors.

Within expressions, grouping is done using ordinary brackets (). For subevent expressions,
use square brackets [].

4.6.1 Numeric

The language supports the classical numeric types

• int for integer: machine-default, usually 32 bit;

• real, usually double precision or 64 bit;

• complex, consisting of real and imaginary part equivalent to a real each.

SINDARIN supports arithmetic expressions similar to conventional languages. In arithmetic
expressions, the three numeric types can be mixed as appropriate. The computation essentially
follows the rules for mixed arithmetic in Fortran. The arithmetic operators are +, -, *, /, ^.
Standard functions such as sin, sqrt, etc. are available. See Sec. 5.1.1 to Sec. 5.1.3.

Numeric values can be associated with units. Units evaluate to numerical factors, and their
use is optional, but they can be useful in the physics context for which WHIZARD is designed.
Note that the default energy/mass unit is GeV, and the default unit for cross sections is fbarn.

4.6.2 Logical and String

The language also has the following standard types:

• logical (a.k.a. boolean).

• string (arbitrary length). String variable names have a $ (dollar) sign as prefix.

There are comparisons, logical operations, string concatenation, and a mechanism for format-
ting objects as strings for output.
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4.6.3 Special

Furthermore, SINDARIN deals with a bunch of data types tailored specifically for Monte Carlo:

• alias objects denote a set of particle species.

• subevt objects denote a collection of particle momenta within an event. They have their
uses in cut and analysis expressions.

• process object are generated by a process statement. There are no expressions involving
processes, but they are referred to by integrate and simulate commands.

• model: There is always a current object of type and name model. Several models can
be used concurrently by appropriately defining processes, but this happens behind the
scenes.

• beams: Similarly, the current implementation allows only for a single object of this type
at a given time, which is assigned by a beams = statement and used by integrate.

In the current implementation, SINDARIN has no container data types derived from basic
types, such as lists, arrays, or hashes, and there are no user-defined data types. (The subevt

type is a container for particles in the context of events, but there is no type for an individual
particle: this is represented as a one-particle subevt).

4.7 Variables

SINDARIN supports global variables, variables local to a scoping unit (the option body of a
command, the body of a scan loop), and variables local to an expression.

Some variables are predefined by the system (intrinsic variables). They are further sepa-
rated into independent variables that can be reset by the user, and derived or locked variables
that are automatically computed by the program, but not directly user-modifiable. On top of
that, the user is free to introduce his own variables (user variables).

The names of numerical variables consist of alphanumeric characters and underscores. The
first character must not be a digit. Logical variable names are furthermore prefixed by a ?

(question mark) sign, while string variable names begin with a $ (dollar) sign.
Character case does matter. In this manual we follow the convention that variable names

consist of lower-case letters, digits, and underscores only, but you may also use upper-case
letters if you wish.

Physics models contain their own, specific set of numeric variables (masses, couplings).
They are attached to the model where they are defined, so they appear and disappear with the
model that is currently loaded. In particular, if two different models contain a variable with the
same name, these two variables are nevertheless distinct: setting one doesn’t affect the other.
This feature might be called, in computer-science jargon, a mixin.

User variables – global or local – are declared by their type when they are introduced, and
acquire an initial value upon declaration. Examples:
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int i = 3

real my_cut_value = 10 GeV

complex c = 3 - 4 * I

logical ?top_decay_allowed = mH > 2 * mtop

string $hello = "Hello world!"

alias q = d:u:s:c

An existing user variable can be assigned a new value without a declaration:

i = i + 1

and it may also be redeclared if the new declaration specifies the same type, this is equivalent
to assigning a new value.

Variables local to an expression are introduced by the let ... in contruct. Example:

real a = let int n = 2 in

x^n + y^n

The explicit int declaration is necessary only if the variable n has not been declared before.
An intrinsic variable must not be declared: let mtop = 175.3 GeV in ...

let constructs can be concatenated if several local variables need to be assigned: let a =

3 in let b = 4 in expression .
Variables of type subevt can only be defined in let constructs.
Exclusively in the context of particle selections (event analysis), there are observables as

special numeric objects. They are used like numeric variables, but they are never declared
or assigned. They get their value assigned dynamically, computed from the particle momen-
tum configuration. Hence, they may be understood as (intrinsic and predefined) macros. By
convention, observable names begin with a capital letter.

Further macros are

• cuts and analysis. They are of type logical, and can be assigned an expression by the
user. They are evaluated once for each event.

• scale, factorization scale and renormalization scale are real numeric macros which
define the energy scale(s) of an event. The latter two override the former. If no scale is
defined, the partonic energy is used as the process scale.

• weight is a real numeric macro. If it is assigned an expression, the expression is evaluated
for each valid phase-space point, and the result multiplies the matrix element.
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Chapter 5

SINDARIN: Details

5.1 Data and expressions

5.1.1 Real-valued objects

Real literals have their usual form, mantissa and, optionally, exponent:

0. 3.14 -.5 2.345e-3 .890E-023

Internally, real values are treated as double precision. The values are read by the Fortran
library, so details depend on its implementation.

A special feature of SINDARIN is that numerics (real and integer) can be immediately
followed by a physical unit. The supported units are presently hard-coded, they are

meV eV keV MeV GeV TeV

nbar pbarn fbarn abarn

rad mrad degree

%

If a number is followed by a unit, it is automatically normalized to the corresponding default
unit: 14.TeV is transformed into the real number 14000. Default units are GeV, fbarn, and
rad. The % sign after a number has the effect that the number is multiplied by 0.01. Note that
no checks for consistency of units are done, so you can add 1 meV + 3 abarn if you absolutely
wish to. Omitting units is always allowed, in that case, the default unit is assumed.

Units are not treated as variables. In particular, you can’t write theta / degree, the
correct form is theta / 1 degree.

There is a single predefined real constant, namely π which is referred to by the keyword pi.
The arithmetic operators are

+ - * / ^

with their obvious meaning and the usual precedence rules.
SINDARIN supports a bunch of standard numerical functions, mostly equivalent to their

Fortran counterparts:

43
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abs sgn mod modulo

sqrt exp log log10

sin cos tan asin acos atan

sinh cosh tanh

(Unlike Fortran, the sgn function takes only one argument and returns 1., 0., or −1.) The
function argument is enclosed in brackets: sqrt (2.), tan (11.5 degree).

There are two functions with two real arguments:

max min

Example: real lighter_mass = min (mZ, mH)

The following functions of a real convert to integer:

int nint floor ceiling

and this converts to complex type:

complex

Real values can be compared by the following operators, the result is a logical value:

== <>

> < >= <=

In SINDARIN, it is possible to have more than two operands in a logical expressions. The
comparisons are done from left to right. Hence,

115 GeV < mH < 180 GeV

is valid SINDARIN code and evaluates to true if the Higgs mass is in the given range.

Tests for equality and inequality with machine-precision real numbers are notoriously unre-
liable and should be avoided altogether. To deal with this problem, SINDARIN has the “fuzzy”
comparison operators

==~ <>~

which should be read as “equal (unequal) up to a tolerance”, where the tolerance is given by the
real-valued intrinsic variable tolerance. This variable is initially zero, but can be set to any
value (for instance, tolerance = 1.e-13 by the user. Note that these operators, in contrast
to == vs. <>, are not mutually exclusive.
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5.1.2 Integer-valued objects

Integer literals are obvious:

1 -98765 0123

Integers are always signed. Their range is the default-integer range as determined by the Fortran
compiler.

Like real values, integer values can be followed by a physical unit: 1 TeV, 30 degree. This
actually transforms the integer into a real.

Standard arithmetics is supported:

+ - * / ^

It is important to note that there is no fraction datatype, and pure integer arithmetics does
not convert to real. Hence 3/4 evaluates to 0, but 3 GeV / 4 GeV evaluates to 0.75.

Since all arithmetics is handled by the underlying Fortran library, integer overflow is not
detected. If in doubt, do real arithmetics.

Integer functions are more restricted than real functions. We support the following:

abs sgn mod modulo

max min

and the conversion functions

real complex

Comparisons of integers among themselves and with reals are possible using the same set of
comparison operators as real values. This includes the operators ==~ and <>~.

5.1.3 Complex-valued objects

Complex variables and values are currently not yet used by the physics models implemented in
WHIZARD. They are an experimental feature.

There is no form for complex literals. Complex values must be created via an arithmetic
expression,

complex c = 1 + 2 * I

where the imaginary unit I is predefined as a constant.

The standard arithmetic operations are supported (also mixed with real and integer). Sup-
port for functions is currently still incomplete, among the supported functions there are sqrt,
log, exp.
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5.1.4 Logical-valued objects

There are two predefined logical constants, true and false. Logicals are not equivalent to
integers (like in C) or to strings (like in PERL), but they make up a type of their own. Only
in printf output, they are treated as strings, that is, they require the %s conversion specifier.

The names of logical variables begin with a question mark ?. Here is the declaration of a
logical user variable:

logical ?higgs_decays_into_tt = mH > 2 * mtop

Logical expressions use the standard boolean operations

or and not

The results of comparisons (see above) are logicals.
There is also a special logical operator with lower priority, concatenation by a semicolon:

lexpr1 ; lexpr2

This evaluates lexpr1 and throws its result away, then evaluates lexpr2 and returns that result.
This feature is to used with logical expressions that have a side effect, namely the record

function within analysis expressions.
The primary use for intrinsic logicals are flags that change the behavior of commands.

For instance, ?unweighted = true and ?unweighted = false switch the unweighting of a
simulated event samples on and off.

5.1.5 String-valued objects and string operations

String literals are enclosed in double quotes: "This is a string." The empty string is "".
String variables begin with $. There is only one string operation, concatenation

$string = "abc" & "def"

However, it is possible to transform variables and values to a string using the sprintf

function. This function is an interface to the system’s C function sprintf with some restrictions
and modifications. The allowed conversion specifiers are

%d %i (integer)
%e %f %g %E %F %G (real)

%s (string and logical)

The conversions can use flag parameter, field width, and precision, but length modifiers are not
supported since they have no meaning for the application. (See also Sec. 5.10.)

The sprintf function has the syntax

sprintf format-string (arg-list)



5.2. PARTICLES AND (SUB)EVENTS 47

This is an expression that evaluates to a string. The format string contains the mentioned
conversion specifiers. The argument list is optional. The arguments are separated by commas.
Allowed arguments are integer, real, logical, and string variables, and numeric expressions.
Logical and string expressions can also be printed, but they have to be dressed as anonymous
variables. A logical anonymous variable has the form ?(logical-expr) (example: ?(mH > 115

GeV)). A string anonymous variable has the form $(string-expr).
Example:

string $unit = "GeV"

string $str = sprintf "mW = %f %s" (mW, $unit)

The related printf command with the same syntax prints the formatted string to standard
output. There is also a sprintd function and a printd command; they have no format string
but typeset their arguments in a default format.

5.2 Particles and (sub)events

5.2.1 Particle aliases

A particle species is denoted by its name as a string: "W+". Alternatively, it can be addressed
by an alias. For instance, the W+ boson has the alias Wp. Aliases are used like variables in a
context where a particle species is expected, and the user can specify his own aliases.

An alias may either denote a single particle species or a class of particles species. A colon
: concatenates particle names and aliases to yield multi-species aliases:

alias quark = u:d:s

alias wboson = "W+":"W-"

Such aliases are used for defining processes with summation over flavors, and for defining classes
of particles for analysis.

Each model files define both names and (single-particle) aliases for all particles it contains.
Furthermore, it defines the class aliases colored and charged which are particularly useful for
event analysis.

5.2.2 Subevents

Subevents are sets of particles, extracted from an event. The sets are unordered by default,
but may be ordered by appropriate functions. Obviously, subevents are meaningful only in a
context where an event is available. The possible context may be the specification of a cut,
weight, scale, or analysis expression.

To construct a simple subevent, we put a particle alias or an expression of type particle
alias into square brackets:

["W+"] [u:d:s] [colored]
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These subevents evaluate to the set of all W+ bosons (to be precise, their four-momenta), all
u, d, or s quarks, and all colored particles, respectively.

A subevent can contain pseudoparticles, i.e., particle combinations. That is, the four-
momenta of distinct particles are combined (added conmponent-wise), and the results become
subevent elements just like ordinary particles.

The (pseudo)particles in a subevent are non-overlapping. That is, for any of the particles in
the original event, there is at most one (pseudo)particle in the subevent in which it is contained.

Sometimes, variables (actually, named constants) of type subevent are useful. Subevent
variables are declared by the subevt keyword, and their names carry the prefix @. Subevent
variables exist only within the scope of a cuts (or scale, analysis, etc.) macro, which is
evaluated in the presence of an actual event. In the macro body, they are assigned via the let

construct:

cuts =

let subevt @jets = select if Pt > 10 GeV [colored]

in

all Theta > 10 degree [@jets, @jets]

In this expression, we first define @jets to stand for the set of all colored partons with pT >
10 GeV. This abbreviation is then used in a logical expression, which evaluates to true if all
relative angles between distinct jets are greater than 10 degree.

We note that the example also introduces pairs of subevents: the square bracket with two
entries evaluates to the list of all possible pairs which do not overlap. The objects within square
brackets can be either subevents or alias expressions. The latter are transformed into subevents
before they are used.

As a special case, the original event is always available as the predefined subevent @evt.

5.2.3 Subevent functions

There are several functions that take a subevent (or an alias) as an argument and return a new
subevent. Here we describe them:

collect

collect [particles ]

collect if condition [particles ]

collect if condition [particles, ref-particles ]

First version: collect all particle momenta in the argument and combine them to a single four-
momentum. The particles argument may either be a subevt expression or an alias expression.
The result is a one-entry subevt. In the second form, only those particle are collected which
satisfy the condition, a logical expression. Example: collect if Pt > 10 GeV [colored]

The third version is usefule if you want to put binary observables (i.e., observables con-
structed from two different particles) in the condition. The ref-particles provide the second ar-
gument for binary observables in the condition. A particle is taken into account if the condition
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is true with respect to all reference particles that do not overlap with this particle. Example:
collect if Theta > 5 degree [photon, charged]: combine all photons that are separated
by 5 degrees from all charged particles.

combine

combine [particles-1, particles-2 ]

combine if condition [particles-1, particles-2 ]

Make a new subevent of composite particles. The composites are generated by combining all
particles from subevent particles-1 with all particles from subevent particles-2 in all possible
combinations. Overlapping combinations are excluded, however: if a (composite) particle in the
first argument has a constituent in common with a composite particle in the second argument,
the combination is dropped. In particular, this applies if the particles are identical.

If a condition is provided, the combination is done only when the logical expression, applied
to the particle pair in question, returns true. For instance, here we reconstruct intermediate
W− bosons:

let @W_candidates = combine if 70 GeV < M < 80 GeV ["mu-", "numubar"]

in ...

Note that the combination may fail, so the resulting subevent could be empty.

operator +

If there is no condition, the + operator provides a convenient shorthand for the combine

command. In particular, it can be used if there are several particles to combine. Example:

cuts = any 170 GeV < M < 180 GeV [b + lepton + invisible]

select

select if condition [particles ]

select if condition [particles, ref-particles ]

One argument: select all particles in the argument that satisfy the condition and drop the rest.
Two arguments: the ref-particles provide a second argument for binary observables. Select
particles if the condition is satisfied for all reference particles.

extract

extract [particles ]

extract index index-value [particles ]
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Return a single-particle subevent. In the first version, it contains the first particle in the
subevent particles. In the second version, the particle with index index-value is returned,
where index-value is an integer expression. If its value is negative, the index is counted from
the end of the subevent.

The order of particles in a event or subevent is not always well-defined, so you may wish to
sort the subevent before applying the extract function to it.

sort

sort [particles ]

sort by observable [particles ]

sort by observable [particles, ref-particle ]

Sort the subevent according to some criterion. If no criterion is supplied (first version), the
subevent is sorted by increasing PDG code (first particles, then antiparticles). In the second
version, the observable is a real expression which is evaluated for each particle of the subevent
in turn. The subevent is sorted by increasing value of this expression, for instance:

let @sorted_evt = sort by Pt [@evt]

in ...

In the third version, a reference particle is provided as second argument, so the sorting can be
done for binary observables. It doesn’t make much sense to have several reference particles at
once, so the sort function uses only the first entry in the subevent ref-particle, if it has more
than one.

join

join [particles, new-particles ]

join if condition [particles, new-particles]

This commands appends the particles in subevent new-particles to the subevent particles, i.e.,
it joins the two particle sets. To be precise, a (pseudo)particle from new-particles is only
appended if it does not overlap with any of the (pseudo)particles present in particles, so the
function will not produce overlapping entries.

In the second version, each particle from new-particles is also checked with all particles
in the first set whether condition is fulfilled. If yes, and there is no overlap, it is appended,
otherwise it is dropped.

operator &

Subevents can also be concatenated by the operator &. This effectively applies join to all
operands in turn. Example:

let @visible =

select if Pt > 10 GeV and E > 5 GeV [photon]

& select if Pt > 20 GeV and E > 10 GeV [colored]

& select if Pt > 10 GeV [lepton]

in ...
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5.2.4 Calculating observables

Observables (invariant mass M, energy E, . . . ) are used in expressions just like ordinary numeric
variables. By convention, their names start with a capital letter. They are computed using
a particle momentum (or two particle momenta) which are taken from a subsequent subevent
argument.

We can extract the value of an observable for an event and make it available for computing
the scale value, or for histogramming etc.:

eval

eval expr [particles ]

eval expr [particles-1, particles-2 ]

The function eval takes an expression involving observables and evaluates it for the first
momentum (or momentum pair) of the subevent (or subevent pair) in square brackets that
follows the expression. For example,

eval Pt [colored]

evaluates to the transverse momentum of the first colored particle,

eval M [@jets, @jets]

evaluates to the invariant mass of the first distinct pair of jets (assuming that @jets has been
defined in let construct), and

eval E - M [combine [e1, N1]]

evaluates to the difference of energy and mass of the combination of the first electron-neutrino
pair in the event.

The last example illustrates why observables are treated like variables, even though they are
functions of particles: the eval construct with the particle reference in square brackets after
the expression allows to compute derived observables – observables which are functions of new
observables – without the need for hard-coding them as new functions.

5.2.5 Cuts and event selection

Instead of a numeric value, we can use observables to compute a logical value.

all

all logical-expr [particles ]

all logical-expr [particles-1, particles-2 ]

The all construct expects a logical expression and one or two subevent arguments in square
brackets.
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all Pt > 10 GeV [charged]

all 80 GeV < M < 100 GeV [lepton, antilepton]

In the second example, lepton and antilepton should be aliases defined in a let construct.
(Recall that aliases are promoted to subevents if they occur within square brackets.)

This construction defines a cut. The result value is true if the logical expression evaluates
to true for all particles in the subevent in square brackets. In the two-argument case it must
be true for all non-overlapping combinations of particles in the two subevents. If one of the
arguments is the empty subevent, the result is also true.

any

any logical-expr [particles ]

any logical-expr [particles-1, particles-2 ]

The any construct is true if the logical expression is true for at least one particle or non-
overlapping particle combination:

any E > 100 GeV [photon]

This defines a trigger or selection condition. If a subevent argument is empty, it evaluates to
false

no

no logical-expr [particles ]

no logical-expr [particles-1, particles-2 ]

The no construct is true if the logical expression is true for no single one particle or non-
overlapping particle combination:

no 5 degree < Theta < 175 degree ["e-":"e+"]

This defines a veto condition. If a subevent argument is empty, it evaluates to true. It is
equivalent to not any..., but included for notational convenience.

5.2.6 More particle functions

count

count [particles ]

count [particles-1, particles-2 ]

count if logical-expr [particles] count if logical-expr [particles-1, ref-particles-2 ]

This counts the number of events in a subevent, the result is of type int. If there is a conditional
expression, it counts the number of particle in the subevent that pass the test. If there are
two arguments, it counts the number of non-overlapping particle pairs (that pass the test, if
any).
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Predefined observables

The following real-valued observables are available in SINDARIN for use in eval, all, any,
no, and count constructs. The argument is always the subevent or alias enclosed in square
brackets.

• M2

– One argument: Invariant mass squared of the (composite) particle in the argument.

– Two arguments: Invariant mass squared of the sum of the two momenta.

• M

– Signed square root of M2: positive if M2 > 0, negative if M2 < 0.

• E

– One argument: Energy of the (composite) particle in the argument.

– Two arguments: Sum of the energies of the two momenta.

• Px, Py, Pz

– Like E, but returning the spatial momentum components.

• P

– Like E, returning the absolute value of the spatial momentum.

• Pt, Pl

– Like E, returning the transversal and longitudinal momentum, respectively.

• Theta

– One argument: Absolute polar angle in the lab frame

– Two arguments: Angular distance of two particles in the lab frame.

• Phi

– One argument: Absolute azimuthal angle in the lab frame

– Two arguments: Azimuthal distance of two particles in the lab frame

• Rap, Eta

– One argument: rapidity / pseudorapidity

– Two arguments: rapidity / pseudorapidity difference

• Dist
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– Two arguments: Distance on the η-φ cylinder, i.e.,
√

∆η2 + ∆φ2

There is also an integer-valued observable:

• PDG

– One argument: PDG code of the particle. For a composite particle, the code is
undefined (value 0).

5.3 Physics Models

A physics model is a combination of particles, numerical parameters (masses, couplings, widths),
and Feynman rules. Many physics analyses are done in the context of the Standard Model (SM).
The SM is also the default model for WHIZARD. Alternatively, you can choose a subset of the SM
(QED or QCD), variants of the SM (e.g., with or without nontrivial CKM matrix), or various
extensions of the SM. The complete list is displayed in Table 11.1.

The model definitions are contained in text files with filename extension .mdl, e.g., SM.mdl,
which are located in the share/models subdirectory of the WHIZARD installation. These files
are easily readable, so if you need details of a model implementation, inspect their contents.
The model file contains the complete particle and parameter definitions as well as their default
values. It also contains a list of vertices. This is used only for phase-space setup; the vertices
used for generating amplitudes and the corresponding Feynman rules are stored in different
files within the O’Mega source tree.

In a SINDARIN script, a model is a special object of type model. There is always a current
model. Initially, this is the SM, so on startup WHIZARD reads the SM.mdl model file and assigns
its content to the current model object. (You can change the default model by the --model

option on the command line.) Once the model has been loaded, you can define processes for
the model, and you have all independent model parameters at your disposal. As noted before,
these are intrinsic parameters which need not be declared when you assign them a value, for
instance:

mW = 80.33 GeV

wH = 243.1 MeV

Other parameters are derived. They can be used in expressions like any other parameter, they
are also intrinsic, but they cannot be modified directly at all. For instance, the electromagnetic
coupling ee is a derived parameter. If you change either GF (the Fermi constant), mW (the W
mass), or mZ (the Z mass), this parameter will reflect the change, but setting it directly is an
error. In other words, the SM is defined within WHIZARD in the GF -mW -mZ scheme. (While
this scheme is unusual for loop calculations, it is natural for a tree-level event generator where
the Z and W poles have to be at their experimentally determined location.)

The model also defines the particle names and aliases that you can use for defining processes,
cuts, or analysis.

If you would like to generate a SUSY process instead, for instance, you can assign a different
model (cf. Table 11.1) to the current model object:
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model = MSSM

This assignment has the consequence that the list of SM parameters and particles is replaced
by the corresponding MSSM list (which is much longer). The MSSM contains essentially all
SM parameters by the same name, but in fact they are different parameters. This is revealed
when you say

model = SM

mb = 5.0 GeV

model = MSSM

printd (mb)

After the model is reassigned, you will see the MSSM value of mb which still has its default
value, not the one you have given. However, if you revert to the SM later,

model = SM

printd (mb)

you will see that your modification of the SM’s mb value has been remembered. If you want
both mass values to agree, you have to set them separately in the context of their respective
model. Although this might seem cumbersome at first, it is nevertheless a sensible procedure
since the parameters defined by the user might anyhow not be defined or available for all chosen
models.

When using two different models which need an SLHA input file, these have to be provided
for both models.

Within a given scope, there is only one current model. The current model can be reset
permanently as above. It can also be temporarily be reset in a local scope, i.e., the option body
of a command or the body of a scan loop. It is thus possible to use several models within the
same script. For instance, you may define a SUSY signal process and a pure-SM background
process. Each process depends only on the respective model’s parameter set, and a change to
a parameter in one of the models affects only the corresponding process.

5.4 Processes

The purpose of WHIZARD is the integration and simulation of high-energy physics processes:
scatterings and decays. Hence, process objects play the central role in SINDARIN scripts.

A SINDARIN script may contain an arbitrary number of process definitions. The initial
states need not agree, and the processes may belong to different physics models.

5.4.1 Process definition

A process object is defined in a straightforward notation. The definition syntax is straightfor-
ward:

process process-id = incoming-particles => outgoing-particles
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Here are typical examples:

process w_pair_production = e1, E1 => "W+", "W-"

process zdecay = Z => u, ubar

Throughout the program, the process will be identified by its process-id, so this is the name
of the process object. This identifier is arbitrary, chosen by the user. It follows the rules
for variable names, so it consists of alphanumeric characters and underscores, where the first
character is not numeric. As a special rule, it must not contain upper-case characters. The
reason is that this name is used for identifying the process not just within the script, but also
within the Fortran code that the matrix-element generator produces for this process.

After the equals sign, there follow the lists of incoming and outgoing particles. The number
of incoming particles is either one or two: scattering processes and decay processes. The number
of outgoing particles must be two or larger1. There is no hard upper limit; the complexity of
processes that WHIZARD can handle depends only on the practical computing limitations (CPU
time and memory). Roughly speaking, one can assume that processes up to 2→ 6 particles are
safe, 2 → 8 processes are feasible given sufficient time for reaching a stable integration, while
more complicated processes are largely unexplored.

We emphasize that in the default setup, the matrix element of a physics process is computed
exactly in leading-order perturbation theory, i.e., at tree level. There is no restriction of in-
termediate states, the result always contains the complete set of Feynman graphs that connect
the initial with the final state. If the result would actually be expanded in Feynman graphs
(which is not done by the O’Mega matrix element generator that WHIZARD uses), the number of
graphs can easily reach several thousands, depending on the complexity of the process and on
the physics model.

5.4.2 Particle names

The particle names are taken from the particle definition in the current model file. Looking at
the SM, for instance, the electron entry in share/models/SM.mdl reads

particle E_LEPTON 11

spin 1/2 charge -1 isospin -1/2

name "e-" e1 electron e

anti "e+" E1 positron

tex_name "e^-"

tex_anti "e^+"

mass me

This tells that you can identify an electron either as "e-", e1, electron, or simply e. The
first version is used for output, but needs to be quoted, because otherwise SINDARIN would
interpret the minus sign as an operator. (Technically, unquoted particle identifiers are aliases,
while the quoted versions – you can say either e1 or "e1" – are names. On input, this makes
no difference.) The alternative version e1 follows a convention, inherited from CompHEP, that
particles are indicated by lower case, antiparticles by upper case, and for leptons, the generation

12→ 1 processes are currently unsupported, they will be enabled in a later version.
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index is appended: e2 is the muon, e3 the tau. These alternative names need not be quoted
because they contain no special characters.

In Table 5.1, we list the recommended names as well as mass and width parameters for all
SM particles. For other models, you may look up the names in the corresponding model file.

Where no mass or width parameters are listed in the table, the particle is assumed to be
massless or stable, respectively. This is obvious for particles such as the photon. For neutrinos,
the mass is meaningless to particle physics experiments, so it is zero. For quarks, the u or d
quark mass is unobservable directly, so we also set it zero. For the heavier quarks, the mass
may play a role, so it is kept. (The s quark is borderline; one may argue that its mass is
also unobservable directly.) On the other hand, the electron mass is relevant, e.g., in photon
radiation without cuts, so it is not zero by default.

It pays off to set particle masses to zero, if the approximation is justified, since fewer
helicity states will contribute to the matrix element. Switching off one of the helicity states of
an external fermion speeds up the calculation by a factor of two. Therefore, script files will
usually contain the assignments

me = 0 mmu = 0 ms = 0 mc = 0

unless they deal with processes where this simplification is phenomenologically unacceptable.
Often mτ and mb can also be neglected, but this excludes processes where the Higgs couplings
of τ or b are relevant.

Setting fermion masses to zero enables, furthermore, the possibility to define multi-flavor
aliases

alias q = d:u:s:c

alias Q = D:U:S:C

and handle processes such as

process two_jets_at_ilc = e1, E1 => q, Q

process w_pairs_at_lhc = q, Q => Wp, Wm

where a sum over all allowed flavor combination is automatically included. For technical reasons,
such flavor sums are possible only for massless particles.

Assignments of masses, widths and other parameters are actually in effect when a process is
integrated, not when it is defined. So, these assignments may come before or after the process
definition, with no significant difference. However, since flavor summation requires masses to
be zero, the assignments may be put before the alias definition which is used in the process.

The muon, tau, and the heavier quarks are actually unstable. However, the width is set
zero because their decay is a macroscopic effect and, except for the muon, affected by hadron
physics, so it is not described by WHIZARD. (In the current WHIZARD setup, all decays occur at
the production vertex. A future version may describe hadronic physics and/or macroscopic
particle propagation, and this restriction may be eventually removed.)
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Particle Output name Alternative names Mass Width

Leptons e− e- e1 electron me

e+ e+ E1 positron me

µ− mu- e2 muon mmu

µ+ mu+ E2 mmu

τ− tau- e3 tauon mtau

τ+ tau+ E3 mtau

Neutrinos νe nue n1

ν̄e nuebar N1

νµ numu n2

ν̄µ numubar N2

ντ nutau n3

ν̄τ nutaubar N3

Quarks d d down

d̄ dbar D

u u up

ū ubar U

s s strange ms

s̄ sbar S ms

c c charm mc

c̄ cbar C mc

b b bottom mb

b̄ bbar B mb

t t top mtop wtop

t̄ tbar T mtop wtop

Vector bosons g gl g G gluon

γ A gamma photon

Z Z mZ wZ

W+ W+ Wp mW wW

W− W- Wm mW wW

Scalar bosons H H h Higgs mH wH

Table 5.1: Names that can be used for SM particles. Also shown are the intrinsic variables
that can be used to set mass and width, if applicable.
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5.4.3 Options for processes

The process definition may contain an optional argument:

process process-id = incoming-particles => outgoing-particles {options...}

The options are a SINDARIN script that is executed in a context local to the process command.
The assignments it contains apply only to the process that is defined. In the following, we
describe the set of potentially useful options (which all can be also set globally):

Model reassignment

It is possible to locally reassign the model via a model = statment, permitting the definition
of process using a model other than the globally selected model. The process will retain this
association during integration and event generation.

Restriction on intermediate states

Another useful option is the setting

$restrictions = string

This option allows to select particular classes of Feynman graphs for the process. The $restrictions
string specifies propagators that the graph must contain. Here is an example:

process zh_invis = e1, E1 => n1:n2:n3, N1:N2:N3, H { $restrictions = "1+2 ~ Z" }

The complete process e−e+ → νν̄H, summed over all neutrino generations, contains both ZH
pair production (Higgs-strahlung) and W+W− → H fusion. The restrictions string selects the
Higgs-strahlung graph where the initial electrons combine to a Z boson. Here, the particles
in the process are consecutively numbered, starting with the initial particles. An alternative
for the same selection would be $restrictions = "3+4 ~ Z". Restrictions can be combined
using &&, for instance

$restrictions = "1+2 ~ Z && 3 + 4 ~ Z"

which is redundant here, however.
The restriction keeps the full energy dependence in the intermediate propagator, so the

Breit-Wigner shape can be observed in distributions. This breaks gauge invariance, in partic-
ular if the intermediate state is off shell, so you should use the feature only if you know the
implications.

Other options

There are some further options that the O’Mega matrix-element generator can take. If desired,
any string of options that is contained in this variable

$omega_flags = string
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will be copied verbatim to the O’Mega call, after all other options.
One important application is the scheme of treating the width of unstable particles in the

t-channel. This is modified by the model: class of O’Mega options.
It is well known that for some processes, e.g., single W production from photon-W fusion,

gauge invariance puts constraints on the treatment of the unstable-particle width. By default,
O’Mega puts a nonzero width in the s channel only. This correctly represents the resummed
Dyson series for the propagator, but it violates QED gauge invariance, although the effect is
only visible if the cuts permit the photon to be almost on-shell.

An alternative is

$omega_flags = "-model:fudged_width"

which puts zero width in the matrix element, so that gauge cancellations hold, and reinstates
the s-channel width in the appropriate places by an overall factor that multiplies the whole
matrix element.

Another possibility is

$omega_flags = "-model:constant_width"

which puts the width both in the s and in the t channel everywhere.
Note that both options apply only to charged unstable particles, such as the W boson.

Multithreaded calculation of helicity sums via OpenMP

On multicore and / or multiprocessor systems, it is possible to speed up the calculation by
using multiple threads to perform the helicity sum in the matrix element calculation. As the
processing time used by WHIZARD is not used up solely in the matrix element, the speedup
thus achieved varies greatly depending on the process under consideration; while simple pro-
cesses without flavor sums do not profit significantly from this parallelization, the computation
time for processes involving flavor sums with four or more particles in the final state is typically
reduced by a factor between two and three when utilizing four parallel threads.

The parallization is implemented using OpenMP and requires WHIZARD to be compiled
with an OpenMP aware compiler and the appropiate compiler flags This is done in the config-
uration step, cf. Sec. 2.3

As with all OpenMP programs, the default number of threads used at runtime is up to the
compiler runtime support and typically set to the number of independent hardware threads
(cores / processors / hyperthreads) available in the system. This default can be adjusted
by setting the OMP NUM THREADS environment variable prior to calling WHIZARD. Alterna-
tively, the available number of threads can be reset anytime by the SINDARIN parameter
openmp num threads. Note however that the total number of threads that can be sensibly
used is limited by the number of nonvanishing helicty combinations.

5.4.4 Compilation

Once processes have been set up, to make them available for integration they have to be
compiled. More precisely, the matrix-element generator O’Mega is called to generate matrix
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element code, the compiler is called to transform this Fortran code into object files, and the
linker is called to collect this in a dynamically loadable library. Finally, this library is linked to
the program.

All this is done automatically when an integrate, unstable, or simulate command is
encountered for the first time. You may also force compilation explicitly by the command

compile

which performs all steps as listed above, including loading the generated library.
The Fortran part of the compilation will be done using the Fortran compiler specified by the

string variable $fc and the compiler flags specified as $fcflags. The default settings are those
that have been used for compiling WHIZARD itself during installation. For library compatibility,
you should stick to the compiler. The flags may be set differently. They are applied in the
compilation and loading steps, and they are processed by libtool, so libtool-specific flags
can also be given.

WHIZARD has some precautions against unnecessary repetitions. Hence, when a compile

command is executed (explicitly, or implicitly by the first integration), the program checks first
whether the library is already loaded, and whether source code already exists for the requested
processes. If yes, this code is used and no calls to O’Mega or to the compiler are issued.
Otherwise, it will detect any modification to the process configuration and regenerate the
matrix element or recompile accordingly. Thus, a SINDARIN script can be executed repeatedly
without rebuilding everything from scratch, and you can safely add more processes to a script in
a subsequent run without having to worry about the processes that have already been treated.

This default behavior can be changed. By setting

?rebuild_library = true

code will be re-generated and re-compiled even if WHIZARD would think that this is unncessary.
The same effect is achieved by calling WHIZARD with a command-line switch,

/home/user$ whizard --rebuild_library

There are further rebuild switches which are described below. If everything is to be rebuilt,
you can set a master switch ?rebuild or the command line option --rebuild. The latter can
be abbreviated as a short command-line option:

/home/user$ whizard -r

Setting this switch is always a good idea when starting a new project, just in case some old
files clutter the working directory. When re-running the same script, possibly modified, the -r

switch should be omitted, so the existing files can be reused.

5.4.5 Process libraries

Processes are collected in libraries. A script may use more than one library, although for most
applications a single library will probably be sufficient.
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The default library is processes. If you do not specify anything else, the processes you
compile will be collected by a driver file processes.f90 which is compiled together with the
process code and combined as a libtool archive processes.la, which is dynamically linked to
the running WHIZARD process.

Once in a while, you work on several projects at once, and you didn’t care about opening
a new working directory for each. If the -r option is given, a new run will erase the existing
library, which may contain processes needed for the other project. You could omit -r, so all
processes will be collected in the same library (this does not hurt), but you may wish to cleanly
separate the projects. In that case, you should open a separate library for each project.

Again, there are two possibilities. You may start the script with the specification

library = "my_lhc_proc"

to open a library my_lhc_proc in place of the default library. Repeating the command with
different arguments, you may introduce several libraries in the script. The active library is
always the one specified last. It is possible to issue this command locally, so a particular
process goes into its own library.

Alternatively, you may call WHIZARD with the option

/home/user$ whizard --library=my_lhc_proc

If several libraries are open simultaneously, the compile command will compile all libraries
that the script has referenced so far. If this is not intended, you may give the command an
argument,

compile ("my_lhc_proc", "my_other_proc")

to compile only a specific subset.
The command

show ("my_lhc_proc", "my_other_proc")

will display the contents of the libraries together with a code letter which indicates the status
of the libraries and the processes within.

5.4.6 Stand-alone WHIZARD with precompiled processes

Once you have set up a process library, it is straightforward to make a special stand-alone
WHIZARD executable which will have this library preloaded on startup. This is a matter of
convenience, and it is also useful if you need a statically linked executable for reasons of profiling,
batch processing, etc.

For this task, there is a variant of the compile command:

compile as "my_whizard" ("my_lhc_proc", "my_other_proc")

which produces an executable my_whizard. You can omit the library argument if you simply
want to include everything. (Note that this command will not load a library into the current
process, it is intended for creating a separate program that will be started independently.)

As an example, the script
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process proc1 = e1, E1 => e1, E1

process proc2 = e1, E1 => e2, E2

process proc3 = e1, E1 => e3, E3

compile as "whizard-leptons"

will make a new executable program whizard-leptons. This program behaves completely
identical to vanilla WHIZARD, except for the fact that the processes proc1, proc2, and proc3

are available without configuring them or loading any library.

5.5 Beams

Before processes can be integrated and simulated, the program has to know about the collider
properties. They can be specified by the beam statement.

In the command script, it is irrelevant whether a beam statement comes before or after
process specification. The integrate or simulate commands will use the beam statement that
was issued last.

5.5.1 Beam setup

If the beams have no special properties, and the colliding particles are the incoming particles
in the process themselves, there is no need for a beam statement at all. You only must specify
the center-of-momentum energy of the collider by setting the value of

√
s, for instance

sqrts = 14 TeV

The beam statement comes into play if

• the beams have nontrivial structure, e.g., parton structure in hadron collision or photon
radiation in lepton collision, or

• the beams have non-standard properties: polarization, asymmetry, crossing angle.

Note: some beam properties have not yet been implemented in WHIZARD2.
Beam parameters can be specified either globally or as local options to the beam statement

(in braces, located before any structure-function settings). These two forms have the same
effect on the beam properties:

sqrts = 14 TeV beams = p, p => lhapdf

beams = p, p { sqrts = 14 TeV } => lhapdf

The value of sqrts, as well as any other beam parameters, will be memorized by the beam

statement, so a modification of beam parameters after the statement has no effect on a process
where the beams setup is used.

The beam statement also applies to particle decay processes, where there is only a single
beam. Here, it is usually redundant because no structure functions are possible, and the energy
is fixed to the decaying particles’s mass. However, it is needed for computing polarized decay,
e.g.



64 CHAPTER 5. SINDARIN: DETAILS

beams = Z { beam_polarization = longitudinal (1) }

where for a boson at rest, the polarization axis is defined to be the z axis.
Beam polarization is described in detail below in Sec. 5.6.

5.5.2 LHAPDF

For incoming hadron beams, the beam statement specifies which structure functions are used.
The simplest example is the study of parton-parton scattering processes at a hadron-hadron
collider such as LHC or Tevatron. The LHAPDF structure function set is selected by a syntax
similar to process setup, namely the example already shown above:

beams = p, p => lhapdf

This selects a default LHAPDF structure-function set for both proton beams (currently, cteq6ll.LHpdf,
member 0). The structure function will apply for all quarks, antiquarks, and the gluon as far
as supported by the particular LHAPDF set. Choosing a different set is done by adding the
filename as a local option to the lhapdf keyword:

beams = p, p => lhapdf { $lhapdf_file = "MSTW2008lo68cl.LHgrid" }

Similarly, a member within the set is selected by the numeric variable lhapdf_member.
In some cases, different structure functions have to be chosen for the two beams. For

instance, we may look at ep collisions:

beams = "e-", p => none, lhapdf

Here, there is a list of two independent structure functions (each with its own option set, if
applicable) which applies to the two beams.

Another mixed case is pγ collisions, where the photon is to be resolved as a hadron. The
simple assignment

beams = p, gamma => lhapdf

will be understood as follows: WHIZARD selects the appropriate default structure functions,
cteq6ll.LHpdf for the proton and GSG960.LHgrid for the photon. The photon case has an
additional integer-valued parameter lhapdf_photon_scheme. (There are also pion structure
functions available.) For modifying the default, you have to specify separate structure functions

beams = p, gamma => lhapdf { ... }, lhapdf { ... }

Finally, the scattering of elementary photons on partons is described by

beams = p, gamma => lhapdf { ... }, none

Note that for LHAPDF 5.7.1 or higher hand PDF sets which support it, photons can be
used as partons.
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Tag Name Notes References

cteq6l CTEQ6L — [18]
cteq6l1† CTEQ6L1 — [18]
cteq6d† CTEQ6D — [18]
cteq6m† CTEQ6M — [18]

mrst2004qedp MRST2004QED (proton) includes photon [19]

mrst2004qedn MRST2004QED (neutron) includes photon [19]

mstw2008lo MSTW2008LO — [20]
mstw2008nlo MSTW2008NLO — [20]
mstw2008nnlo MSTW2008NNLO — [20]

ct10 CT10 — [21]

Table 5.2: All PDF sets available as builtin sets. A dagger † signifies the need to download
the respective grid files from the collaboration website prior to use. Sets within a single block
cannot be used concurrently.

5.5.3 Built-in PDFs

In addition to the possibility of linking against LHAPDF, WHIZARD comes with a couple of
built-in PDFs which are selected via the pdf_builtin keyword

beams = p, p => pdf_builtin

The default PDF set is CTEQ6L, but other choices are available by setting the $pdf_builtin_set
variable to an appropiate value. E.g, modifying the above setup to

beams = p, p => pdf_builtin {$pdf_builtin_set = "mrst2004qedp"}

would select the proton PDF from the MRST2004QED set. A list of all currently available
PDFs can be found in tab.5.2.

Please note that for the PDFs marked with a dagger †, the necessary grid files are not
shipped with WHIZARD. In order to use those sets, the grid files must be downloaded separately
from the websites of the respective collaborations. The location of the files can then be com-
municated to WHIZARD by using the variable $pdf_builtin_path, while copying the grids
to $prefix/share/whizard/pdf_builtin will make them globally accessible to all WHIZARD
users. To reuse our example,

beams = p, p => pdf_builtin {

$pdf_builtin_set = "cteq6m"

$pdf_builtin_path = "."

}

would select the CTEQ6M PDF set and tell WHIZARD to look for the necessary grid file in
the current working directory.

In addition, only one of the sets in each of the blocks in tab.5.2 can be active at one time
— a beam setup like
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beams = p, p =>

pdf_builtin {$pdf_builtin_set = "cteq6l"},

pdf_builtin {$pdf_builtin_set = "cteq6m"}

would fail, while

beams = p, p =>

pdf_builtin {$pdf_builtin_set = "cteq6l"},

pdf_builtin {$pdf_builtin_set = "mrst2004qedp"}

is perfectly possible.

5.5.4 ISR structure functions

5.5.5 Beamstrahlung

5.5.6 Effective photon approximation

5.6 Polarization

5.6.1 Initial state polarization

WHIZARD supports multiple modes of polarizing the inital state fully or partially by assigning
a nontrivial density matrix in helicity space. Initial state polarization requires a beam setup
and is initialized by means of the beam polarization statement:

beam_polarization = polarization_constructor [, polarization_constructor]

This statement assigns the polarization(s) specified by the polarization constructors to the
incoming beam(s). There are seven different constructors available:

• none: Unpolarized. This has the same effect as not specifying any polarization at all and
is the only constructor available for scalars and fermions declared as left- or right-handed
(like the neutrino). Density matrix:

ρ =
1

m
I

(m: particle multiplicty).

• circular (f): |f | of the particles are in the maximum / minimum helicity eigenstate,
the remainder is unpolarized. The sign of f determines the sign of the helicity eigenvalue.
As only the maximal / minimal entries of the density matrix are populated, circular is
useful mainly for spin 1

2
and massless bosons of spin > 0. Parameter range:

f ∈ [−1 ; 1]

Density matrix:

ρ = diag

(
1 + f

2
, 0 , . . . , 0 ,

1− f
2

)
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• longitudinal (f): |f | of the particles have longitudinal polarization, the remainder is
unpolarized. Longitudinal polarization is (obviously) only available for massive bosons of
spin > 0. Parameter range:

f ∈ [0 ; 1]

Density matrix:

ρ = diag

(
1− f
m

, . . . ,
1− f
m

,
1 + f (m− 1)

m
,

1− f
m

, . . . ,
1− f
m

)
(m: particle multiplicity)

• transverse (f, φ): Polarization along an arbitrary direction in the x − y plane, with
φ = 0 being positive x direction and φ = 90◦ positive y direction. |f | of the particles
are polarized, the remainder is unpolarized. The sign of f determines the sign of the
eigenvalue, and flipping it therefore is equivalent to shifting φ by 180◦. Note that, although
transverse polarization yields a valid density matrix for all particles with multiplicity > 1
(in which the only the highest and lowest helicity states are populated), it is meaningful
only for spin 1

2
particles and massless bosons of spin > 0. Parameter range:

f ∈ [−1 ; 1] , φ ∈ R

Density matrix:

ρ =


1 0 · · · · · · f

2
e−iφ

0 0
. . . 0

...
. . . . . . . . .

...

0
. . . 0 0

f
2
eiφ · · · · · · 0 1


(for antiparticles, the matrix is conjugated).

• axis (f, θ, φ): Polarization along an arbitrary axis in polar coordinates (polar axis in
positive z direction, polar angle θ, azimuthal angle φ). |f | of the particles are polar-
ized, the remainder is unpolarized. The sign of f determines the sign of the eigenvalue.
Note that, although axis polarization defines a valid density matrix for all particles with
multiplicity > 1, it is meaningful only for particles with spin 1

2
. Parameter range:

f ∈ [−1 ; 1] , θ ∈ R , φ ∈ R

Density matrix:

ρ =
1

2
·


1− f cos θ 0 · · · · · · f sin θ e−iφ

0 0
. . . 0

...
. . . . . . . . .

...

0
. . . 0 0

f sin θ eiφ · · · · · · 0 1 + f cos θ
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• density matrix (a, b): Allows to define a 2 × 2 density matrix (or the maximum /
minimum helicity entries of a n× n matrix) explicitly. Parameter range:

a ∈ [0 ; 1] , b ∈
{
z ∈ C

∣∣∣∣ |z| ≤ 1

2

}
Density matrix:

ρ =


a 0 · · · · · · b

0 0
. . . 0

...
. . . . . . . . .

...

0
. . . 0 0

b∗ · · · · · · 0 1− a


(note that the matrix is conjugated for antiparticles).

• diagonal density (h1 : f1 , [h2 : f2 , . . . , hn : fn]): This explicitely defines an arbitrary
diagonal density matrix. The entries ρh1,h1 , . . . , ρhn,hn (where the hi denotes the (dou-
bled) helicity eigenvalues for bosons (fermions) ) are initialized with f1 , . . . , fn, the
remaining matrix elements are set to zero. The hi must be mutually different; the fi are
required to be positive and are normalized if necessary. Parameter range:

hi ∈ Z , fi ∈ R+

In addition, the beam polarization statement can be used to deactivate beam polarization:

beam_polarization = off

The statement can be used both globally and locally; the order of the beam polarization

and beams statements doesn’t matter. Some examples are in order to eludicate its use together
with the different constructors:

• beams = A, A {

beam_polarization = circular(1), transverse (1, 90 degree)

}

beams = u, ubar

The first beam statement declares the initial state to be composed of two incoming pho-
tons, where the first photon is right-handed, and the second photon has transverse po-
larization in y direction. As beam polarization is used as a local option to beams, its
effect does not carry over to the second beams statement which sets up an unpolarized u
/ u pair.

• beam_polarization = longitudinal (1)

beams = "W+"

beams = Z

This example sets up the decay of a longitudinal vector boson. As the statement is
used globally, it affects both beams definitions with the first beams statement defining a
longitudinal W+, and the second one defining a longitudinal Z.
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• beams = u, ubar

integrate (uuzz) {

beam_polarization =

diagonal_density (-1:1),

density_matrix (0.25, 0.2 + exp (90 degree * I))

}

integrate (uuzz)

The first integrate uses a polarized initial state with the u being in a purely left-handed
state and the u being assigned the explicit density matrix

ρu =

 1
4

1
5
e
π
2
i

1
5
e−

π
2
i 3

4


(note that the sign of the phase is flipped as the u is an antiparticle). As beam polarization

is used as a local argument to integrate, the second integrate is not afflicted and cal-
culates the integral for the unpolarized process.

• beam_polarization = off

beams = u, ubar

scan int hel1 = (-1, 1) {

scan int hel2 = (-1, 1) {

beam_polarization = circular (hel1), circular (hel2)

integrate (uuzz)

}

}

integrate (uuzz)

This example loops over the different quark helicity combinations and calculates the
respective integrals. The beam polarization statement is confined to the loop and,
therefore, the last integrate calculates the unpolarized integral

Although beam polarization should be straightforward to use, some pitfalls exist for the
unwary:

• Once beam polarization is set globally, it persists and is applied every time beams is
executed. In particular, this means that code like

beam_polarization = axis (0.5, 45 degree, 45 degree), none

beams = "W+", "W-"

beams = Z

beam_polarization = transverse (1)

will throw an error, event though the beam setup is consistent in the end. In order to avoid
this, beam polarization must be explicitly disabled between the two beams statements:

beam_polarization = axis (0.5, 45 degree, 45 degree), none

beams = "W+", "W-"

beam_polarization = off

beams = Z

beam_polarization = transverse (1)
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This kind of trap can be avoided be using beam polarization only locally.

• On-the-fly integrations executed by simulate use the beam setup found at the point of
execution. This implies that any polarization settings you have previously done affect the
result of the integration.

• The unstable command also requires integrals of the selected decay processes, and will
compute them on-the-fly if they are unavailable. Here, a polarized integral is not mean-
ingful at all. Therefore, this command ignores the current beam setting and issues a
warning if a previous polarized integral is available; this will be discarded.

5.6.2 Final state polarization

Final state polarization is available in WHIZARD in the sense that the polarization of final
state particles can be retained when generating simulated events. In order for the polarization
of a particle to be retained, it must be declared as polarized via the polarized statement

polarized particle [, particle, ...]

The effect of polarized can be reversed with the unpolarized statement which has the same
syntax. For example,

polarized "W+", "W-", Z

will cause the polarization of all final state W and Z bosons to be retained, while

unpolarized "W+", "W-", Z

will reverse the effect and cause the polarization to be summed over again. Note that polarized
and unpolarized are global statements which cannot be used locally as command arguments
and if you use them e.g. in a loop, the effects will persist beyond the loop body. Also, a particle
can’t be polarized and unstable at the same time.

After toggling the polarization flag, the generation of polarized events can be requested by
using the ?polarized events option of the simulate command, e.g.

simulate (eeww) {?polarized_events = true}

When simulate is run in this mode, helicity information for final state particles that have been
toggled as polarized is written to the event file(s) (provided that polarization is supported by
the select event file format(s) ) and can also be accessed in the analysis by means of the Hel

observable. For example, an analysis defintion like

analysis =

if (all Hel == -1 ["W+"] and all Hel == -1 ["W-"] ) then

record cta_nn (eval cos (Theta) ["W+"]) endif;

if (all Hel == -1 ["W+"] and all Hel == 0 ["W-"] )

then record cta_nl (eval cos (Theta) ["W+"]) endif
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can be used to histogram the angular distribution for the production of polarized W pairs
(obviously, the example would have to extended to cover all possible helicity combinations).
Note, however, that helicity information is not available in the integration step; therefore, it is
not possible to use Hel as a cut observable.

While final state polarization is straightforward to use, there is a caveat when used in
combination with flavor products. If a particle in a flavor product is defined as polarized, then
all particles “originating” from the product will act as if they had been declared as polarized
— their polarization will be recorded in the generated events. E.g., the example

process test = u:d, ubar:dbar => d:u, dbar:ubar, u, ubar

! insert compilation, cuts and integration here

polarized d, dbar

simulate (test) {?polarized_events = true}

will generate events including helicity information for all final state d and d quarks, but only
for part of the final state u and u quarks. In this case, if you had wanted to keep the helicity
information also for all u and u, you would have had to explicitely include them into the
polarized statement.

5.7 Cross sections

Integrating matrix elements over phase space is the core of WHIZARD’s activities. For any process
where we want the cross section, distributions, or event samples, the cross section has to be
determined first. This is done by a doubly adaptive multi-channel Monte-Carlo integration.
The integration, in turn, requires a phase-space setup, i.e., a collection of phase-space channels,
which are mappings of the unit hypercube onto the complete space of multi-particle kinematics.
This phase-space information is encoded in the file xxx.phs, where xxx is the process tag.
WHIZARD generates the phase-space file on the fly and can reuse it in later integrations.

For each phase-space channel, the unit hypercube is binned in each dimension. The bin
boundaries are allowed to move during a sequence of iterations, each with a fixed number of
sampled phase-space points, so they adapt to the actual phase-space density as far as possible.
In addition to this intrinsic adaptation, the relative channel weights are also allowed to vary.

All these steps are done automatically when the integrate command is executed. At the
end of the iterative adaptation procedure, the program has obtained an estimate for the integral
of the matrix element over phase space, together with an error estimate, and a set of integration
grids which contains all information on channel weights and bin boundaries. This information
is stored in a file xxx.vg, where xxx is the process tag, and is used for event generation by the
simulate command. (Actually, the grid with the best accuracy obtained so far is copied to
xxx.vgb, and this is used for simulation.)
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5.7.1 Integration

Since everything can be handled automatically using default parameters, it often suffices to
write the command

integrate (proc1)

for integrating the process with name tag proc1, and similarly

integrate (proc1, proc2, proc3)

for integrating several processes consecutively. Options to the integrate command are specified,
if not globally, by a local option string

integrate (proc1, proc2, proc3) { mH = 200 GeV }

(It is possible to place a beams statement inside the option string, if desired.)
If the process is configured but not compiled, compilation will be done automatically. If it

is not available at all, integration will fail.
Integration uses the VAMP algorithm and code. It is done in several passes (usually two),

and each pass consists of several iterations. An iteration consists of a definite number of calls
to the matrix-element function.

For each iteration, WHIZARD computes an estimate of the integral and and estimate of the
error, based on the binned sums of matrix element values and squares. It also computes an
estimate of the rejection efficiency for generating unweighted events, i.e., the ratio of the average
sampling function value over the maximum value of this function.

After each iteration, both the integration grids (the binnings) and the relative weights of
the integration channels can be adapted to minimize the variance estimate of the integral.
After each pass of several iterations, WHIZARD computes an average of the iterations within the
pass, the corresponding error estimate, and a χ2 value. The integral, error, efficiency and χ2

value computed for the most recent integration pass, together with the most recent integration
grid, are used for any subsequent calculation that involves this process, in particular for event
generation.

In the default setup, during the first pass(es) both grid binnings and channel weights are
adapted. In the final (usually second) pass, only binnings are further adapted. Roughly speak-
ing, the final pass is the actual calculation, while the previous pass(es) are used for “warming
up” the integration grids, without using the numerical results.

Here is an example of the integration output, which illustrates these properties. The SIN-
DARIN script describes the process e+e− → qq̄qq̄ with q being any light quark, i.e., W+W−

and ZZ production and hadronic decay together will any irreducible background. We cut on
pT and energy of jets, and on the invariant mass of jet pairs. Here is the script:

alias q = d:u:s:c

alias Q = D:U:S:C

process proc_4f = e1, E1 => q, Q, q, Q

ms = 0 mc = 0

sqrts = 500 GeV
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cuts = all (Pt > 10 GeV and E > 10 GeV) [q:Q]

and all M > 10 GeV [q:Q, q:Q]

integrate (proc_4f)

After the run is finished, the integration output looks like

| Loading process library ’processes’

| Process ’proc_4f’: updating configuration

| Generating phase space configuration ...

| ... done.

| ... found 114 phase space channels, collected in 17 groves.

| Phase space: found 668 equivalences between channels.

| Wrote phase-space configuration file ’proc_4f.phs’.

| iterations = 10:10000, 5:20000

| Applying user-defined cuts.

| Creating VAMP integration grids:

| Using phase-space channel equivalences.

| 10000 calls, 114 channels, 8 dimensions, 8 bins, stratified = T

| Integrating process ’proc_4f’:

|=============================================================================|

| It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] |

|=============================================================================|

1 10000 2.8081256E+03 3.57E+02 12.72 12.72* 4.11

2 10000 3.0181098E+03 1.92E+02 6.36 6.36* 3.50

3 10000 2.9288866E+03 8.53E+01 2.91 2.91* 7.55

4 10000 3.0906462E+03 6.75E+01 2.18 2.18* 9.63

5 10000 2.9092659E+03 5.60E+01 1.93 1.93* 10.82

6 10000 3.0194199E+03 5.35E+01 1.77 1.77* 10.27

7 10000 2.9812271E+03 5.31E+01 1.78 1.78 10.63

8 10000 2.9072033E+03 5.02E+01 1.73 1.73* 13.28

9 10000 2.9534310E+03 5.05E+01 1.71 1.71* 11.72

10 10000 2.8998730E+03 4.89E+01 1.69 1.69* 14.10

|-----------------------------------------------------------------------------|

10 100000 2.9555210E+03 1.95E+01 0.66 2.09 14.10 0.99 10

|-----------------------------------------------------------------------------|

11 20000 2.9816184E+03 3.45E+01 1.16 1.63* 11.84

12 20000 2.9773291E+03 2.41E+01 0.81 1.15* 10.30

13 20000 2.9701919E+03 1.96E+01 0.66 0.93* 9.60

14 20000 2.9785382E+03 1.70E+01 0.57 0.81* 9.50

15 20000 2.9821841E+03 1.52E+01 0.51 0.72* 9.05

|-----------------------------------------------------------------------------|

15 100000 2.9781249E+03 8.79E+00 0.30 0.93 9.05 0.06 5

|-----------------------------------------------------------------------------|

|=============================================================================|

15 100000 2.9781249E+03 8.79E+00 0.30 0.93 9.05 0.06 5

|=============================================================================|

| Process ’proc_4f’:

| time estimate for generating 10000 unweighted events: 3m:13s

|-----------------------------------------------------------------------------|

Each row shows the index of a single iteration, the number of matrix element calls for that
iteration, and the integral and error estimate. The error should be viewed as the 1σ uncertainty,
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computed on a statistical basis. The next two columns display the error in percent, and the
accuracy which is the same error normalized by

√
ncalls. The accuracy value has the property

that it is independent of ncalls, it describes the quality of adaptation of the current grids.
Good-quality grids have a number of order one, the smaller the better. The next column is the
estimate for the rejection efficiency in percent. Here, the value should be as high as possible,
with 100 % being the possible maximum.

In the example, the grids are adapted over ten iterations, after which the accuracy and
efficiency have saturated at about 1.7 and 14 %, respectively. The asterisk in the accuracy
column marks those iterations where an improvement over the previous iteration is seen. The
average over these iterations exhibits an accuracy of 2.1, corresponding to 0.7 % error, and a
χ2 value of 0.98, which is just right: apparently, phase-space for this process and set of cuts
is well-behaved. The subsequent five iterations are used for obtaining the final integral, which
has an accuracy below one (error 0.3 %), while the efficiency settles at about 10 %. In this
example, the final χ2 value happens to be quite small, i.e., the individual results are closer
together than the error estimates would suggest. One should nevertheless not scale down the
error, but rather scale it up if the χ2 result happens to be much larger than unity: this often
indicates sub-optimally adapted grids, which insufficiently map some corner of phase space.

One should note that all values are subject to statistical fluctuations, since the number
of calls within each iterations is finite. Typically, fluctuations in the efficiency estimate are
considerably larger than fluctuations in the error/accuracy estimate. Two subsequent runs of
the same script should yield statistically independent results which may differ in all quantities,
within the error estimates, since the seed of the random-number generator will differ by default.

It is possible to get exactly reproducible results by setting the random-number seed explic-
itly, e.g.,

seed = 12345

at any point in the SINDARIN script. seed is a predefined intrinsic variable. The value can be
any 32bit integer. Two runs with different seeds can be safely taken as statistically independent.

The concluding line with the time estimate applies to a subsequent simulation step with
unweighted events, which is not actually requested in the current example. It is based on the
timing and efficiency estimate of the most recent iteration.

5.7.2 Integration run IDs

A single SINDARIN script may contain multiple calls to the integrate command with different
parameters. By default, files generated for the same process in a subsequent integration will
overwrite the previous ones. This is undesirable when the script is re-run: all results that have
been overwritten have to be recreated.

To avoid this, the user may identify a specific run by a string-valued ID, e.g.

integrate (foo) { $run_id = "first" }

This ID will become part of the file name for all files that are created specifically for this run.
Often it is useful to create a run ID from a numerical value using sprintd, e.g., in this scan:
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scan mh = (100 => 200 /+ 10) {

$run_id = sprintd (mh)

integrate (h_production)

}

For a finer control of the character string generated from a number, use sprintf instead.
With unique run IDs, a subsequent run of the same SINDARIN script will be able to reuse

all previous results, even if there is more than a single integration per process.

5.7.3 Controlling iterations

WHIZARD has some predefined numbers of iterations and calls for the first and second integration
pass, respectively, which depend on the number of initial and final-state particles. They are
guesses for values that yield good-quality grids and error values in standard situations, where
no exceptionally strong peaks or loose cuts are present in the integrand. Actually, the large
number of warmup iterations in the previous example indicates some safety margin in that
respect.

It is possible, and often advisable, to adjust the iteration and call numbers to the particular
situation. One may reduce the default numbers to short-cut the integration, if either less
accuracy is needed, or CPU time is to be saved. Otherwise, if convergence is bad, the number
of iterations or calls might be increased.

To set iterations manually, there is the iterations command:

iterations = 5:50000, 3:100000

This is a comma-separated list. Each pair of values corresponds to an integration pass. The
value before the colon is the number of iterations for this pass, the other number is the number
of calls per iteration.

While the default number of passes is two (one for warmup, one for the final result), you
may specify a single pass

iterations = 5:100000

where the relative channel weights will not be adjusted (because this is the final pass). This is
appropriate for well-behaved integrands where weight adaptation is not necessary.

You can also define more than two passes. That might be useful when reusing a previous
grid file with insufficient quality: specify the previous passes as-is, so the previous results will
be read in, and then a new pass for further adaptation.

In the final pass, the default behavior is to further adapt grids, but not channel weights. This
can be changed by the parameters ?adapt_final_grids (default true) and ?adapt_final_weights

(default false).
Since it is often not known beforehand how many iterations the grid adaptation will need,

it is generally a good idea to give the first pass a large number of iterations. However, in many
cases these turn out to be not necessary. To shortcut iterations, you can set any of

accuracy_goal

error_goal

relative_error_goal
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to a positive value. If this is done, WHIZARD will skip warmup iterations once all of the specified
goals are reached by the current iteration. The final iterations (without weight adaptation) are
always performed.

5.7.4 Phase space

Before integrate can start its work, it must have a phase-space configuration for the process
at hand. This is laid out in an ASCII file process-name.phs. Normally, you don’t have to deal
with this file, since WHIZARD will generate one automatically if it doesn’t find one. (WHIZARD is
careful to check for consistency of process definition and parameters before using an existing
file.)

Experts might find it useful to generate a phase-space file and inspect and/or modify it
before proceeding further. To this end, there is the parameter ?phs_only. If you set this
true, WHIZARD skips the actual integration after the phase-space file has been generated. There
is also a parameter ?vis_channels which can be set independently; if this is true, WHIZARD
will generate a graphical visualization of the phase-space parameterizations encoded in the
phase-space file.

Things might go wrong with the default phase-space generation, or manual intervention
might be necessary to improve later performance. There are a few parameters that control
the algorithm of phase-space generation. To understand their meaning, you should realize that
phase-space parameterizations are modeled after (dominant) Feynman graphs for the current
process.

The parameter phs_off_shell controls the number of off-shell lines in those graphs, not
counting s-channel resonances and logarithmically enhanced s- and t-channel lines. The default
value is 1. Setting it to zero will drop everything that is not resonant or logarithmically
enhanced. Increasing it will include more subdominant graphs. (WHIZARD increases the value
automatically if the default value does not work.)

There is a similar parameter phs_t_channel which controls multiperipheral graphs in the
parameterizations. The default value is 2, so graphs with up to 2 t/u-channel lines are con-
sidered. In particular cases, such as e+e− → nγ, all graphs are multiperipheral, and for
n > 2 WHIZARD would find no parameterizations in the default setup. Increase the value of
phs_t_channel solves this problem. (This is presently not done automatically.)

There are two numerical parameters that describe whether particles are treated like mass-
less particles in particular situations. The value of phs_threshold_s has the default value
50 GeV. Hence, W and Z are considered massive, while b quarks are considered massless. This
categorization is used for deciding whether radiation of b quarks can lead to (nearly) singular
behavior, i.e., logarithmic enhancement, in the infrared and collinear regions. If yes, logarithmic
mappings are applied to phase space. Analogously, phs_threshold_t decides about potential
t-channel singularities. Here, the default value is 100 GeV, so amplitudes with W and Z in the
t-channel are considered as logarithmically enhanced.

Such logarithmic mappings need a dimensionful scale as parameter. There are three such
scales, all with default value 10 GeV: phs_e_scale (energy), phs_m_scale (invariant mass),
and phs_q_scale (momentum transfer). If cuts and/or masses are such that energies, invari-
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ant masses of particle pairs, and momentum transfer values below 10 GeV are excluded or
suppressed, the values can be kept. In special cases they should be changed: for instance, if
you want to describe γ∗ → µ+µ− splitting well down to the muon mass, no cuts, you may set
phs_m_scale = mmu. The convergence of the Monte-Carlo integration result will be consider-
ably faster.

5.7.5 Cuts

WHIZARD 2 does not apply default cuts to the integrand. Therefore, processes with massless
particles in the initial, intermediate, or final states may not have a finite cross section. This
fact will manifest itself in an integration that does not converge, or is unstable, or does not
yield a reasonable error or reweighting efficiency even for very larger numbers of iterations or
calls per iterations. When doing any calculation, you should verify first that the result that you
are going to compute is finite on physical grounds. If not, you have to apply cuts that make it
finite.

A set of cuts is defined by the cuts statement. Here is an example

cuts = all Pt > 20 GeV [colored]

This implies that events are kept only (for integration and simulation) if the transverse momenta
of all colored particles are above 20 GeV.

Technically, cuts is a special object, which is unique within a given scope, and is defined
by the logical expression on the right-hand side of the assignment. It may be defined in
global scope, so it is applied to all subsequent processes. It may be redefined by another cuts
statement. This overrides the first cuts setting: the cuts statement is not cumulative. Multiple
cuts should be specified by the logical operators of SINDARIN, for instance

cuts = all Pt > 20 GeV [colored]

and all E > 5 GeV [photon]

Cuts may also be defined local to an integrate command, i.e., in the options in braces. They
will apply only to the processes being integrated, overriding any global cuts.

The right-hand side expression in the cuts statement is evaluated at the point where it is
used by an integrate command (which could be an implicit one called by simulate). Hence,
if the logical expression contains parameters, such as

mH = 120 GeV

cuts = all M > mH [b, bbar]

mH = 150 GeV

integrate (myproc)

the Higgs mass value that is inserted is the value in place when integrate is evaluated, 150 GeV
in this example. This same value will also be used when the process is called by a subsequent
simulate; it is integrate which compiles the cut expression and stores it among the process
data. This behavior allows for scanning over parameters without redefining the cuts every time.

The cut expression can make use of all variables and constructs that are defined at the point
where it is evaluated. In particular, it can make use of the particle content and kinematics of
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the hard process, as in the example above. In addition to the predefined variables and those
defined by the user, there are the following variables which depend on the hard process:

integer: n in, n out, n tot

real: sqrts, sqrts hat

Example:

cuts = sqrts_hat > 150 GeV

The constants n in etc. are sometimes useful if a generic set of cuts is defined, which applies
to various processes simultaneously.

The user is encouraged to define his own set of cuts, if possible in a process-independent
manner, even if it is not required. The include command allows for storing a set of cuts in
a separate SINDARIN script which may be read in anywhere. As an example, the system
directories contain a file default_cuts.sin which may be invoked by

include ("default_cuts.sin")

5.7.6 QCD scale and coupling

WHIZARD treats all physical parameters of a model, the coefficients in the Lagrangian, as con-
stants. As a leading-order program, WHIZARD does not make use of running parameters as they
are described by renormalization theory. For electroweak interactions where the perturbative
expansion is sufficiently well behaved, this is a consistent approach.

As far as QCD is concerned, this approach does not yield numerically reliable results, even
on the validity scale of the tree approximation. In WHIZARD2, it is therefore possible to replace
the fixed value of αs (which is accessible as the intrinsic model variable alphas), by a function
of an energy scale µ.

This is controlled by the parameter ?alpha_s_is_fixed, which is true by default. Setting
it to false enables running αs. The user has then to decide how αs is calculated.

One option is to set ?alpha_s_from_lhapdf (default true). This is recommended if the
LHAPDF library is used for including structure functions, but it may also be set if LHAPDF is
not invoked. WHIZARD will then use the αs formula and value that matches the active LHAPDF
structure function set and member.

If this is not appropriate, there are again two possibilities. If ?alpha_s_from_mz is true, the
user input value alphas is interpreted as the running value αs(mZ), and for the particular event,
the coupling is evolved to the appropriate scale µ. The formula is controlled by the further
parameters alpha_s_order (default 0, meaning leading-log; maximum 2) and alpha_s_nf

(default 5).
Otherwise (?alpha_s_from_mz = false), the scale ΛQCD, represented by the intrinsic vari-

able lambda_qcd, is used for fixing the reference value. alpha_s_order and alpha_s_nf apply
analogously.

In any case, if αs is not fixed, each event has to be assigned an energy scale. By default, this
is
√
ŝ, the partonic invariant mass of the event. This can be replaced by a user-defined scale,

the special object scale. This is assigned and used just like the cuts object. The right-hand
side is a real-valued expression. Here is an example:
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scale = eval Pt [sort by -Pt [colored]]

This selects the pT value of the first entry in the list of colored particles sorted by decreasing
pT , i.e., the pT of the hardest jet.

The scale definition is used not just for running αs (if enabled), but is is also the factor-
ization scale for the LHAPDF structure functions.

Just like the cuts expression, the scale expression is evaluated at the point where it is
read by an explicit or implicit integrate command.

5.7.7 Reweighting factor

It is possible to reweight the integrand by a user-defined function of the event kinematics. This
is done by specifying a weight expression. Syntax and usage is exactly analogous to the scale

expression. Example:

weight = (1 + cos (Theta) ^ 2) [lepton]

We should note that the phase-space setup is not aware of this reweighting, so in complicated
cases you should not expect adaptation to achieve as accurate results as for plain cross sections.

Needless to say, the default weight is unity.

5.8 Events

After the cross section integral of a scattering process is known (or the partial-width integral of
a decay process), WHIZARD can generate event samples. There are two limiting cases or modes
of event generation:

1. For a physics simulation, one needs unweighted events, so the probability of a process and
a kinematical configuration in the event sample is given by its squared matrix element.

2. Monte-Carlo integration yields weighted events, where the probability (without any grid
adaptation) is uniformly distributed over phase space, while the weight of the event is
given by its squared matrix element.

The choice of parameterizations and the iterative adaptation of the integration grids gradually
shift the generation mode from option 2 to option 1, which obviously is preferred since it
simulates the actual outcome of an experiment. Unfortunately, this adaptation is perfect only
in trivial cases, such that the Monte-Carlo integration yields non-uniform probability still with
weighted events. Unweighted events are obtained by rejection, i.e., accepting an event with a
probability equal to its own weight divided by the maximal possible weight. Furthermore, the
maximal weight is never precisely known, so this probability can only be estimated.

The default generation mode of WHIZARD is unweighted. This is controlled by the parameter
?unweighted with default value true. Unweighted events are easy to interpret and can be
directly compared with experiment, if properly interfaced with detector simulation and analysis.
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However, when applying rejection to generate unweighted events, the generator discards
information, and for a single event it needs, on the average, 1/ε calls, where the efficiency ε is
the ratio of the average weight over the maximal weight. If ?unweighted is false, all events
are kept and assigned their respective weights in histograms or event files.

5.8.1 Simulation

The simulate command generates an event sample. The number of events can be set either
by specifying the integer variable n_events, or by the real variable luminosity. (This holds
for unweighted events. If weighted events are requested, the luminosity value is ignored.) The
luminosity is measured in femtobarns, but other units can be used too. Since the cross sections
for the processes are known at that point, the number of events is determined as the luminosity
multiplied by the cross section.

As usual, both parameters can be set either as global or as local parameters:

n_events = 10000

simulate (proc1)

simulate (proc2, proc3) { luminosity = 100 / 1 pbarn }

In the second example, both n_events and luminosity are set. In that case, WHIZARD chooses
whatever produces the larger number of events.

If more than one process is specified in the argument of simulate, events are distributed
among the processes with fractions proportional to their cross section values. The processes
are mixed randomly, as it would be the case for real data.

The raw event sample is written to a file which is named after the first process in the
argument of simulate. If the process name is proc1, the file will be named proc1.evx. You
can choose another basename by the string variable $sample. For instance,

simulate (proc1) { n_events = 4000 $sample = "my_events" }

will produce an event file my_events.evx which contains 4000 events.
This event file is in a machine-dependent binary format, so it is not of immediate use. Its

principal purpose is to serve as a cache: if you re-run the same script, before starting simulation,
it will look for an existing event file that matches the input. If nothing has changed, it will
find the file previously generated and read in the events, instead of generating them. Thus
you can modify the analysis or any further steps without repeating the time-consuming task of
generating a large event sample. If you change the number of events to generate, the program
will make use of the existing event sample and generate further events only when it is used
up. If necessary, you can suppress the writing/reading of the raw event file by the parameters
?write_raw and ?read_raw.

If you try to reuse an event file that has been written by a previous version of WHIZARD,
you may run into an incompatibility, which will be detected as an error. If this happens,
you may enforce a compatibility mode (also for writing) by setting $event file version to
the appropriate version string, e.g., "2.06". Be aware that this may break some more recent
features in the event analysis.
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There are two things that are usually done with an event sample. It can be analyzed directly
when it is generated or read, and it can be written to file in a standard format that a human
or an external program can understand. The basic analysis features of WHIZARD are described
below in Sec. 5.9. In Chap. 6, you will find a more thorough discussion of event generation
with WHIZARD, which also covers in detail the available event-file formats.

5.8.2 Decays

Normally, the events generated by the simulate command will be identical in structure to
the events that the integrate command generates. This implies that for a process such as
pp → W+W−, the final-state particles are on-shell and stable, so they appear explicitly in
the generated event files. If events are desired where the decay products of the W bosons
appear, one has to generate another process, e.g., pp → ud̄ūd. In this case, the intermediate
vector bosons, if reconstructed, are off-shell as dictated by physics, and the process contains all
intermediate states that are possible. In this example, the matrix element contains also ZZ,
photon, and non-resonant intermediate states. (This can be restricted via the $restrictions

option, cf. 5.4.3.
Another approach is to factorize the process in production (of W bosons) and decays (W →

qq̄). This is actually the traditional approach, since it is much less computing-intensive. The
factorization neglects all off-shell effects and irreducible background diagrams that do not have
the decaying particles as an intermediate resonance. While WHIZARD is able to deal with multi-
particle processes without factorization, the needed computing resources rapidly increase with
the number of external particles.

5.9 Analysis and Visualization

SINDARIN natively supports basic methods of data analysis and visualization which are fre-
quently used in high-energy physics studies. Data generated during script execution, in partic-
ular simulated event samples, can be analyzed to evaluate further observables, fill histograms,
and draw two-dimensional plots.

In the following sections, we first summarize the available data structures, before we consider
their graphical display.

5.9.1 Observables

Analyses in high-energy physics often involve averages of quantities other than a total cross
section. SINDARIN supports this by its observable objects. An observable is a container
that collects a single real-valued variable with a statistical distribution. It is declared by a
command of the form

observable analysis-tag

where analysis-tag is an identifier that follows the same rules as a variable name.
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Once the observable has been declared, it can be filled with values. This is done via the
record command:

record analysis-tag (value )

To make use of this, after values have been filled, we want to perform the actual analysis and
display the results. For an observable, these are the mean value and the standard deviation.
There is the command write analysis:

write analysis (analysis-tag )

Here is an example:

observable obs

record obs (1.2) record obs (1.3) record obs (2.1) record obs (1.4)

write_analysis (obs)

The result is displayed on screen:

###############################################################################

# Observable: obs

average = 1.5000000

error[abs] = 0.20412415

error[rel] = 0.13608276

n_entries = 4

5.9.2 The analysis expression

The most common application is the computation of event observables – for instance, a forward-
backward asymmetry – during simulation. To this end, there is an analysis expression, which
behaves very similar to the cuts expression. It is defined either globally

analysis = logical-expr

or as a local option to the simulate or rescan commands which generate and handle event
samples. If this expression is defined, it is not evaluated immediately, but it is evaluated once
for each event in the sample.

In contrast to the cuts expression, the logical value of the analysis expression is discarded;
the expression form has been chosen just by analogy. To make this useful, there is a variant of
the record command, namely a record function with exactly the same syntax. As an example,
here is a calculation of the forward-backward symmetry in a process ee mumu with final state
µ+µ−:

observable a_fb

analysis = record a_fb (eval sgn Pz ["mu-"])

simulate (ee_mumu) { luminosity = 1 / 1 fbarn }
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The logical return value of record – which is discarded here – is true if the recording was
successful. In case of histograms (see below) it is true if the value falls within bounds, false
otherwise.

Note that the function version of record can be used anywhere in expressions, not just in
the analysis expression.

When record is called for an observable or histogram in simulation mode, the recorded
value is weighted appropriately. If ?unweighted is true, the weight is unity, otherwise it is the
event weight.

The analysis expression can involve any other construct that can be expressed as an
expression in SINDARIN. For instance, this records the energy of the 4th hardest jet in a
histogram pt dist, if it is in the central region:

analysis =

record pt_dist (eval E [extract index 4

[sort by - Pt

[select if -2.5 < Eta < 2.5 [colored]]]])

Here, if there is no 4th jet in the event which satisfies the criterion, the result will be an
undefined value which is not recorded. In that case, record evaluates to false.

Selection cuts can be part of the analysis expression:

analysis =

if any Pt > 50 GeV [lepton] then

record jet_energy (eval E [collect [jet]])

endif

Alternatively, we can specify a separate selection expression:

selection = any Pt > 50 GeV [lepton]

analysis = record jet_energy (eval E [collect [jet]])

The former version writes all events to file (if requested), but applies the analysis expression
only to the selected events. This allows for the simultaneous application of different selections
to a single event sample. The latter version applies the selection to all events before they are
analyzed or written to file.

The analysis expression can make use of all variables and constructs that are defined at the
point where it is evaluated. In particular, it can make use of the particle content and kinematics
of the hard process, as in the example above. In addition to the predefined variables and those
defined by the user, there are the following variables which depend on the hard process. Some
of them are constants, some vary event by event:

integer: event index

integer: process index, process num id

string: $process id

integer: n in, n out, n tot

real: sqrts, sqrts hat

real: sqme, sqme ref

real: event weight, event excess weight
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The process index refers to the current library, while process num id is the numeric ID as used
by external programs; by default, the two are identical. The sqme and sqme ref values indicate
the squared matrix element and the reference squared matrix element, respectively. The latter
applies when comparing with a reference sample (the rescan command).

record evaluates to a logical, so several record functions may be concatenated by the
logical operators and or or. However, since usually the further evaluation should not depend
on the return value of record, it is more advisable to concatenate them by the semicolon (;)
operator. This is an operator (not a statement separator or terminator) that connects two
logical expressions and evaluates both of them in order. The lhs result is discarded, the result
is the value of the rhs:

analysis =

record hist_pt (eval Pt [lepton]) ; record hist_ct (eval cos (Theta) [lepton])

5.9.3 Histograms

In SINDARIN, a histogram is declared by the command

histogram analysis-tag (lower-bound, upper-bound )

This creates a histogram data structure for an (unspecified) observable. The entries are orga-
nized in bins between the real values lower-bound and upper-bound . The number of bins is
given by the value of the intrinsic integer variable n bins, the default value is 20.

The histogram declaration supports an optional argument, so the number of bins can be
set locally, for instance

histogram pt distribution (0 GeV, 500 GeV) { n bins = 50 }

Sometimes it is more convenient to set the bin width directly. This can be done in a third
argument to the histogram command.

histogram pt distribution (0 GeV, 500 GeV, 10 GeV)

If the bin width is specified this way, it overrides the setting of n bins.
The record command or function fills histograms. A single call

record (real-expr )

puts the value of real-expr into the appropriate bin. If the call is issued during a simulation
where unweighted is false, the entry is weighted appropriately.

If the value is outside the range specified in the histogram declaration, it is put into one of
the special underflow and overflow bins.

The write analysis command prints the histogram contents as a table in blank-separated
fixed columns. The columns are: x (bin midpoint), y (bin contents), ∆y (error), n (number
of entries), and excess weight. The output also contains comments initiated by a # sign, and
following the histogram proper, information about underflow and overflow as well as overall
contents is added.
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5.9.4 Plots

While a histogram stores only summary information about a data set, a plot stores all data
as (x, y) pairs, optionally with errors. A plot declaration is as simple as

plot analysis-tag

Like observables and histograms, plots are filled by the record command or expression. To
this end, it can take two arguments,

record (x-expr, y-expr )

or up to four:

record (x-expr, y-expr, y-error )

record (x-expr, y-expr, y-error-expr, x-error-expr )

Note that the y error comes first. This is because applications will demand errors for the y
value much more often that x errors.

The plot output, again written by write analysis contains the four values for each point,
again in the ordering x, y,∆y,∆x.

5.9.5 Output

There is a default format for piping information into observables, histograms, and plots. In
older versions of WHIZARD there was a first version of a custom format, which was however
rather limited. A more versatile custom output format will be coming soon.

1. By default, the write analysis command prints all data to standard output. Output is
redirected to a file if the variable $out file has a nonempty value. If the file is already
open, the output will be appended to the file, and it will be kept open. If the file is not
open, write analysis will open the output file by itself, overwriting any previous file
with the same name, and close it again after data have been written.

The command is able to print more than one dataset, following the syntax

write analysis (analysis-tag1, analysis-tag2, ...) { options }

The argument in brackets may also be empty or absent; in this case, all currently existing
datasets are printed.

The default data format is suitable for compiling analysis data by WHIZARD’s built-
in GAMELAN graphics driver (see below). Data are written in blank-separated fixed
columns, headlines and comments are initiated by the # sign, and each data set is termi-
nated by a blank line. However, external programs often require special formatting.

2. Custom format. Not yet (re-)implemented in a general form.
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5.10 Custom Input/Output

WHIZARD is rather chatty. When you run examples or your own scripts, you will observe that
the program echoes most operations (assignments, commands, etc.) on the standard output
channel, i.e., on screen. Furthermore, all screen output is copied to a log file which by default
is named whizard.log.

For each integration run, WHIZARD writes additional process-specific information to a file
〈tag 〉.log, where 〈tag 〉 is the process name. Furthermore, the write analysis command
dumps analysis data – tables for histograms and plots – to its own set of files, cf. Sec. 5.9.

However, there is the occasional need to write data to extra files in a custom format.
SINDARIN deals with that in terms of the following commands:

5.10.1 Output Files

open out

open out (〈filename 〉)
open out (〈filename 〉) { 〈options 〉 }

Open an external file for writing. If the file exists, it is overwritten without warning, otherwise
it is created. Example:

open_out ("my_output.dat")

close out

close out (〈filename 〉)
close out (〈filename 〉) { 〈options 〉 }

Close an external file that is open for writing. Example:

close_out ("my_output.dat")

5.10.2 Printing Data

printf

printf 〈format-string-expr 〉
printf 〈format-string-expr 〉 (〈data-objects 〉)

Format 〈data-objects 〉 according to 〈format-string-expr 〉 and print the resulting string
to standard output if the string variable $out file is undefined. If $out file is defined and
the file with this name is open for writing, print to this file instead.

Print a newline at the end if ?out advance is true, otherwise don’t finish the line.
The 〈format-string-expr 〉 must evaluate to a string. Formatting follows a subset of the

rules for the printf(3) command in the C language. The supported rules are:
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• All characters are printed as-is, with the exception of embedded conversion specifications.

• Conversion specifications are initiated by a percent (%) sign and followed by an optional
prefix flag, an optional integer value, an optional dot followed by another integer, and a
mandatory letter as the conversion specifier.

• A percent sign immediately followed by another percent sign is interpreted as a single
percent sign, not as a conversion specification.

• The number of conversion specifiers must be equal to the number of data objects. The
data types must also match.

• The first integer indicates the minimum field width, the second one the precision. The
field is expanded as needed.

• The conversion specifiers d and i are equivalent, they indicate an integer value.

• The conversion specifier e indicates a real value that should be printed in exponential
notation.

• The conversion specifier f indicates a real value that should be printed in decimal notation
without exponent.

• The conversion specifier g indicates a real value that should be printed either in expo-
nential or in decimal notation, depending on its value.

• The conversion specifier s indicates a logical or string value that should be printed as a
string.

• Possible prefixes are # (alternate form, mandatory decimal point for reals), 0 (zero
padding), - (left adjusted), + (always print sign), ‘ ’ (print space before a positive num-
ber).

For more details, consult the printf(3) manpage. Note that other conversions are not sup-
ported and will be rejected by WHIZARD.

The data arguments are numeric, logical or string variables or expressions. Numeric expres-
sions must be enclosed in parantheses. Logical expressions must be enclosed in parantheses
prefixed by a question mark ?. String expressions must be enclosed in parantheses prefixed by
a dollar sign $. These forms behave as anonymous variables.

Note that for simply printing a text string, you may call printf with just a format string
and no data arguments.

Examples:

printf "The W mass is %8f GeV" (mW)

int i = 2

int j = 3

printf "%i + %i = %i" (i, j, (i+j))
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string $directory = "/usr/local/share"

string $file = "foo.dat"

printf "File path: %s/%s" ($directory, $file)

There is a related sprintf function, cf. Sec. 5.1.5.



Chapter 6

More on Event Generation

In order to perform a physics analysis with WHIZARD one has to generate events. This seems
to be a trivial statement, but as there have been any questions like ”My WHIZARD does not
produce plots – what has gone wrong?” we believe that repeating that rule is worthwile. Of
course, it is not mandatory to use WHIZARD’s own analysis set-up, the user can always choose
to just generate events and use his/her own analysis package like ROOT, or TopDrawer, or you
name it for the analysis.

Accordingly, we first start to describe how to generate events and what options there are
– different event formats, renaming output files, using weighted or unweighted events with
different normalizations. How to re-use and manipulate already generated event samples, how
to limit the number of events per file, etc. etc.

6.1 Event generation

To explain how event generation works, we again take our favourite example, e+e− → µ+µ−,

process eemm = e1, E1 => e2, E2

compile

The command to trigger generation of events is simulate (<proc name>) { <options> }, so
in our case – neglecting any options for now – simply:

simulate (eemm)

When you run this SINDARIN file you will experience a fatal error: FATAL ERROR: Process

’eemm’ must be integrated before simulation.. This is because you have to provide
WHIZARD with the information of the corresponding cross section, phase space parameteri-
zation and grids, i.e. you have to integrate a process before you could generate events. A
corresponding integrate command like

sqrts = 500 GeV

integrate (eemm) { iterations = 3:10000 }

89
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obviously has to appear before the corresponding simulate command (otherwise you would be
punished by the same error message as before). Putting things in the correct order results in
an output like:

| Loading process library ’processes’

| Process ’eemm’: updating configuration

sqrts = 500.00000000000000

| Integrating process ’eemm’

| Generating phase space configuration ...

| ... found 2 phase space channels, collected in 2 groves.

| Phase space: found 2 equivalences between channels.

| Wrote phase-space configuration file ’eemm.phs’.

Warning: No cuts have been defined.

| Using partonic energy as event scale.

| iterations = 3:10000

| Creating VAMP integration grids:

| Using phase-space channel equivalences.

| 10000 calls, 2 channels, 2 dimensions, 20 bins, stratified = T

|=============================================================================|

| It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] |

|=============================================================================|

1 10000 4.2823916E+02 6.75E-02 0.02 0.02* 40.29

2 10000 4.2823862E+02 4.37E-02 0.01 0.01* 40.29

3 10000 4.2824459E+02 3.38E-02 0.01 0.01* 40.29

|=============================================================================|

3 30000 4.2824192E+02 2.48E-02 0.01 0.01 40.29 0.01 3

|=============================================================================|

| Process ’eemm’:

| time estimate for 10000 unweighted events = 0h 00m 00.469s

|-----------------------------------------------------------------------------|

| Initializating simulation for processes eemm:

| Simulation mode = unweighted, event_normalization = ’1’

| No analysis setup has been provided.

| Simulation finished.

| There were no errors and 1 warning(s).

| WHIZARD run finished.

|=============================================================================|

So, WHIZARD tells you that it has entered simulation mode, but besides this, it has not done
anything. The next step is that you have to demand event generation – there are two ways to
do this: you could either specify a certain number, say 42, of events you want to have generated
by WHIZARD, or you could provide a number for an integrated luminosity of some experiment.
(Note, that if you choose to take both options, WHIZARD will take the one which gives the larger
event sample. This, of course, depends on the given process(es) – as well as cuts – and its
corresponding cross section(s).) The first of these options is set with the command: n events

= <number>, the second with luminosity = <number> <opt. unit>.
Another important point already stated several times in the manual is that WHIZARD follows

the commands in the steering SINDARIN file in a chronological order. Hence, a given number
of events or luminosity after a simulate command will be ignored – or are relevant only for
any simulate command potentially following further down in the SINDARIN file. So, in our
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case, try:

n_events = 500

luminosity = 10

simulate (eemm)

Per default, numbers for integrated luminosity are understood as inverse femtobarn. So, for
the cross section above this would correspond to 4282 events, clearly superseding the demand
for 500 events. After reducing the luminosity number from ten to one inverse femtobarn, 500
is the larger number of events taken by WHIZARD for event generation. Now WHIZARD tells you:

| No analysis setup has been provided.

| Generating 500 events ...

| Writing events in internal format to file ’whizard.evx’

| Event sample corresponds to luminosity [fb-1] = 1.167

I.e., it evaluates the luminosity to which the sample of 500 events would correspond to, which
is now, of course, bigger than the 1fb−1 explicitly given for the luminosity. Furthermore, you
can read off that a file whizard.evx has been generated, containing the demanded 500 events.
Files with the suffix .evx are binary format event files, using a machine-independent WHIZARD-
specific event file format. Before we list the event formats supported by WHIZARD, the next two
section tell you more about unweighted and weighted events as well as different possibilities to
normalize events in WHIZARD.

As already explained for the libraries, as well as the phase space and grid files, WHIZARD is
trying to re-use as much information as possible. The same holds for the event files. There are
special MD5 check sums testing the integrity and compatibility of the event files. If you demand
for a process with an already existing event file less or equally many events as generated before,
WHIZARD will not generate again but re-use the existing events (as will be explained below, the
events are stored in a WHIZARD-own binary event format, i.e. in a so-called .evx file. If you
suppress generation of that file, as will be described in subsection 6.4 then WHIZARD has to
generate events all the time). Re-using event files is very practical for doing several different
analyses with the same data, especially if there are many and big data samples. Consider the
case, there is an event file with 200 events, and you now ask WHIZARD to generate 300 events,
then it will re-use the 200 events (if MD5 check sums are OK!), generate the remaining 100
events and append them to the existing file. If the user for some reason, however, wants to
regenerate events (i.e. ignoring possibly existing events), there is the command option whizard

--rebuild-events.

6.2 Unweighted and weighted events

WHIZARD is able to generate unweighted events, i.e. events that are distributed uniformly and
each contribute with the same event weight to the whole sample. This is done by mapping out
the phase space of the process under consideration according to its different phase space channels
(which each get their own weights), and then unweighting the sample of weighted events. Only
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a sample of unweighted events could in principle be compared to a real data sample from some
experiment. The seventh column in the WHIZARD iteration/adaptation procedure tells you about
the efficiency of the grids, i.e. how well the phase space is mapped to a flat function. The better
this is achieved, the higher the efficiency becomes, and the closer the weights of the different
phase space channels are to uniformity. This means, for higher efficiency less weighted events
(”calls”) are needed to generate a single unweighted event. An efficiency of 10 % means that
ten weighted events are needed to generate one single unweighted event. After the integration
is done, WHIZARD uses the duration of calls during the adaptation to estimate a time interval
needed to generate 10,000 unweighted events. The ability of the adaptive mult-channel Monte
Carlo decreases with the number of integrations, i.e. with the number of final state particles.
Adding more and more final state particles in general also increases the complexity of phase
space, especially its singularity structure. For a 2 → 2 process the efficiency is roughly of the
order of several tens of per cent. As a rule of thumb, one can say that with every additional
pair of final state particle the average efficiency one can achieve decreases by a factor of five to
ten.

The default of WHIZARD is to generate unweighted events. One can use the logical variable
?unweighted = false to disable unweighting and generate weighted events. (The command
?unweighted = true is a tautology, because true is the default for this variable.) Note that
again this command has to appear before the corresponding simulate command, otherwise it
will be ignored or effective only for any simulate command appearing later in the SINDARIN
file.

Excess events to be done...

6.3 Choice on event normalizations

There are basically four different choices to normalize event weights (. . . denotes the average) :

1. 〈wi〉 = 1, 〈
∑

iwi〉 = N

2. 〈wi〉 = σ, 〈
∑

iwi〉 = N × σ

3. 〈wi〉 = 1/N , 〈
∑

iwi〉 = 1

4. 〈wi〉 = σ/N , 〈
∑

iwi〉 = σ

So the four options are to have the average weight equal to unity, to the cross section of the
corresponding process, to one over the number of events, or the cross section over the event
calls. In these four cases, the event weights sum up to the event number, the event number
times the cross section, to unity, and to the cross section, respectively. Note that neither of
these really guarantees that all event weight individually lie in the interval 0 ≤ wi ≤ 1.

The user can steer the normalization of events by using in SINDARIN input files the string
variable $event normalization. The default is $event normalization = "auto", which uses
option 1 for unweighted and 2 for weighted events, respectively. Note that this is also what
the Les Houches Event Format (LHEF) demands for both types of events. This is WHIZARD’s
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Format Type remark ext.
Athena ASCII variant of HEPEVT no
debug ASCII most verbose WHIZARD format no
default ASCII WHIZARD verbose format no
evx binary WHIZARD’s home-brew no
HepMC ASCII HepMC format yes
HEPEVT ASCII WHIZARD 1 style no
LHA ASCII WHIZARD 1/old Madgraph style no
LHEF ASCII Les Houches accord compliant no
long ASCII variant of HEPEVT no
mokka ASCII variant of HEPEVT no
StdHEP (HEPEVT) binary based on HEPEVT common block yes
StdHEP (HEPRUP/EUP) binary based on HEPRUP/EUP common block yes

Table 6.1: Event formats supported by WHIZARD, classified according to ASCII/binary formats
and whether an external program or library is needed to generate a file of this format.

preferred mode, also for the reason, that event normalizations are independent from the number
of events. Hence, event samples can be cut or expanded without further need to adjust the
normalization. The unit normalization (option 1) can be switched on also for weighted events by
setting the event normalization variable equal to "1" or "unity". Option 2 can be demanded
by setting $event normalization = "sigma". Options 3 and 4 can be set by "1/n" and
"sigma/n", respectively. WHIZARD accepts small and capital letter for these expressions.

In the following section we show some examples when discussing the different event formats
available in WHIZARD.

6.4 Supported event formats

Event formats can either be distinguished whether they they are plain text (i.e. ASCII) formats
or binary formats. Besides this, one can classify event formats according to whether they are
natively supported by WHIZARD or need some external program or library to be linked. Table 6.1
gives a complete list of all event formats available in WHIZARD. The second column shows
whether these are ASCII or binary formats, the third column contains brief remarks about the
corresponding format, while the last column tells whether external programs or libraries are
needed (which is the case only for StdHEP and HepMC formats).

The ”.evx” is WHIZARD’s native binary event format. If you demand event generation and
do not specify anything further, WHIZARD will write out its events exclusively in this binary
format. So in the examples discussed in the previous sections (where we omitted all details
about event formats), in all cases this and only this internal binary format has been generated.
The generation of this raw format can be suppressed (e.g. if you want to have only one specific
event file type) by setting the variable ?write_raw = false. However, if the raw event file is
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not present, WHIZARD is not able to re-use existing events (e.g. from an ASCII file) and will
regenerate events for a given process.

Other event formats can be written out by setting the variable sample format = <format>,
where <format> can be any of the following supported variables:

• ascii: a quite verbose ASCII format which contains lots of information (an example is
shown in the appendix).
Standard suffix: .evt

• debug: an even more verbose ASCII format intended for debugging which prints out also
information about the internal data structures
Standard suffix: .debug

• hepevt: ASCII format that writes out a specific incarnation of the HEPEVT common
block (WHIZARD 1 back-compatibility)
Standard suffix: .hepevt

• short: abbreviated variant of the previous HEPEVT (WHIZARD 1 back-compatibility)
Standard suffix: .short.evt

• long: HEPEVT variant that contains a little bit more information than the short format
but less than HEPEVT (WHIZARD 1 back-compatibility)
Standard suffix: .long.evt

• athena: HEPEVT variant suitable for read-out in the ATLAS ATHENA software envi-
ronment (WHIZARD 1 back-compatibility)
Standard suffix: .athena.evt

• mokka: HEPEVT variant suitable for read-out in the MOKKA ILC software environment
Standard suffix: .mokka.evt

• lha: Implementation of the Les Houches Accord as it was in the old MadEvent and
WHIZARD 1
Standard suffix: .lha

• lhef: Formatted Les Houches Accord implementation that contains the XML headers
Standard suffix: .lhef

• hepmc: HepMC ASCII format (only available if HepMC is installed and correctly linked)
Standard suffix: .hepmc

• stdhep: StdHEP binary format based on the HEPEVT common block (only available if
StdHEP is installed and correctly linked)
Standard suffix: .stdhep

• stdhep up: StdHEP binary format based on the HEPRUP/HEPEUP common blocks
(only available if StdHEP is installed and correctly linked)
Standard suffix: .up.stdhep
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Of course, the variable sample format can contain more than one of the above identifiers,
in which case more than one different event file format is generated. The list above also
shows the standard suffixes for these event formats (remember, that the native binary format
of WHIZARD does have the suffix .evx). (The suffix of the different event format can even
be changed by the user by setting the corresponding variable $extension lhef = "foo" or
$extension ascii short = "bread". The dot is automatically included.)

The name of the corresponding event sample is taken to be the string of the name of the
first process in the simulate statement. Remember, that conventionally the events for all
processes in one simulate statement will be written into one single event file. So simulate

(proc1, proc2) will write events for the two processes proc1 and proc2 into one single event
file with name proc1.evx. The name can be changed by the user with the command $sample

= "<name>".

The commands $sample and sample format are both accepted as optional arguments of a
simulate command, so e.g. simulate (proc) { $sample = "foo" sample format = hepmc

} generates an event sample in the HepMC format for the process proc in the file foo.hepmc.

Examples for event formats (in the sequel, we gave the numbers out as single precision for
better readability), for specifications of the event formats correspond the different accords and
publicatios:

HEPEVT:

The HEPEVT is an ASCII event format that does not contain an event file header. There
is a one-line header for each single event, containing four entries. The number of particles in
the event (ISTHEP), which is four for our example process e+e− → µ+µ−, but could be larger
if e.g. beam remnants are demanded to be included in the event. The second entry and third
entry are the number of outgoing particles and beam remnants, respectively. The event weight
is the last entry. For each particle in the event there are three lines: the first one is the status
according to the HEPEVT format, ISTHEP, the second one the PDG code, IDHEP, then there
are the one or two possible mother particle, JMOHEP, the first and last possible daughter particle,
JDAHEP, and the polarization. The second line contains the three momentum components, px,
py, pz, the particle energy E, and its mass, m. The last line contains the position of the vertex
in the event reconstruction.

4 2 0 1.00000000

2 11 0 0 3 4 0

0.00000000 0.00000000 249.999999 250.000000 5.11003380E-004

0.00000000 0.00000000 0.00000000 0.00000000 0.000000000

2 -11 0 0 3 4 0

0.00000000 0.00000000 -249.999999 250.000000 5.11003380E-004

0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

1 13 1 2 0 0 0

225.985918 -80.1076510 70.8033735 250.000000 0.10565838

0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

1 -13 1 2 0 0 0

-225.985918 80.1076510 -70.8033735 250.000000 0.10565838

0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

ASCII SHORT:
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This is basically the same as the HEPEVT standard, but very much abbreviated. The
header line for each event is identical, but first line per particle does only contain the PDG and
the polarization, while the vertex information line is omitted.

4 2 0 1.00000000

11 0

0.00000000 0.00000000 249.999999 250.000000 5.11003380E-004

-11 0

0.00000000 0.00000000 -249.999999 250.000000 5.11003380E-004

13 0

225.985918 -80.1076510 70.8033735 250.000000 0.10565838

-13 0

-225.985918 80.1076510 -70.8033735 250.000000 0.10565838

ASCII LONG:
Identical to the ASCII short format, but after each event there is a line containg two values:

the value of the sample function to be integrated over phase space, so basically the squared
matrix element including all normalization factors, flux factor, structure functions etc.

4 2 0 1.00000000

11 0

0.00000000 0.00000000 249.999999 250.000000 5.11003380E-004

-11 0

0.00000000 0.00000000 -249.999999 250.000000 5.11003380E-004

13 0

225.985918 -80.1076510 70.8033735 250.000000 0.10565838

-13 0

-225.985918 80.1076510 -70.8033735 250.000000 0.10565838

435.480971 1.00000000

ATHENA:
Quite similar to the HEPEVT ASCII format. The header line, however, does contain only

two numbers: an event counter, and the number of particles in the event. The first line for each
particle lacks the polarization information (irrelevant for the ATHENA environment), but has
as leading entry an ordering number counting the particles in the event. The vertex information
line has only the four relevant position entries.

1 4

1 2 11 0 0 3 4

0.00000000 0.00000000 249.999999 250.000000 5.11003380E-004

0.00000000 0.00000000 0.00000000 0.00000000

2 2 -11 0 0 3 4

0.00000000 0.00000000 -249.999999 250.000000 5.11003380E-004

0.00000000 0.00000000 0.00000000 0.00000000

3 1 13 1 2 0 0

225.985918 -80.1076510 70.8033735 250.000000 0.10565838

0.00000000 0.00000000 0.00000000 0.00000000

4 1 -13 1 2 0 0

-225.985918 80.1076510 -70.8033735 250.000000 0.10565838

0.00000000 0.00000000 0.00000000 0.00000000

MOKKA:
Quite similar to the ASCII short format, but the event entries are the particle status, the

PDG code, the first and last daughter, the three spatial components of the momentum, as well
as the mass.
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4 2 0 1.00000000

2 11 3 4 0.00000000 0.00000000 249.999999 5.11005717E-004

2 -11 3 4 0.00000000 0.00000000 -249.999999 5.11005717E-004

1 13 0 0 -165.101237 182.071662 45.7327036 0.105658389

1 -13 0 0 165.101237 -182.071662 -45.7327036 0.105658389

LHA:
This is the implementation of the Les Houches Accord, as it was used in WHIZARD 1 and

the old MadEvent. There is a first line containing six entries: 1. the number of particles in
the event, NUP, 2. the subprocess identification index, IDPRUP, 3. the event weight, XWGTUP, 4.
the scale of the process, SCALUP, 5. the value or status of αQED, AQEDUP, 6. the value fÃ1

4
r αs,

AQCDUP. The next seven lines contain as many entries as there are particles in the event: the
first one has the PDG codes, IDUP, the next two the first and second mother of the particles,
MOTHUP, the fourth and fifth line the two color indices, ICOLUP, the next one the status of the
particle, ISTUP, and the last line the polarization information, ISPINUP. At the end of the event
there are as lines for each particles with the counter in the event and the four-vector of the
particle. For more information on this event format confer [9].

4 1 1.0000000000 500.000000 -1.000000 0.117800

11 -11 13 -13

0 0 1 1

0 0 2 2

0 0 0 0

0 0 0 0

-1 -1 1 1

9 9 9 9

1 250.0000000000 0.0000000000 0.0000000000 249.9999999995

2 250.0000000000 0.0000000000 0.0000000000 -249.9999999995

3 250.0000000000 223.6404152843 -102.7925182666 43.8024162280

4 250.0000000000 -223.6404152843 102.7925182666 -43.8024162280

LHEF:
This is the modern version of the Les Houches accord event format (LHEF), for the details

confer the corresponding publication [11].

<LesHouchesEvents version="1.0">

<header>

<generator_name>WHIZARD</generator_name>

<generator_version>2.2.0 beta</generator_version>

</header>

<init>

11 -11 250.000000 250.000000 -1 -1 -1 -1 3 1

0.347536454 1.413672505E-004 1.00000000 1

</init>

<event>

4 1 1.00000000 500.000000 -1.00000000 0.117800000

11 -1 0 0 0 0 0.00000000 0.00000000 249.999999 250.000000 5.110033809E-004 0.00000000 9.00000000

-11 -1 0 0 0 0 0.00000000 0.00000000 -249.999995 250.000000 5.110033807E-004 0.00000000 9.00000000

13 1 1 2 0 0 223.640415 -102.792518 43.8024162 250.000000 0.105699999 0.00000000 9.00000000

-13 1 1 2 0 0 -223.640415 102.792518 -43.8024162 250.000000 0.105699999 0.00000000 9.00000000

</event>

</LesHouchesEvents>

Sample files for the default ASCII format as well as for the debug event format are shown
in the appendix.
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6.5 Interfaces to Parton Showers, Matching

and Hadronization

This section describes the interfaces to the internal parton shower as well as the parton shower
and hadronization routines from PYTHIA. Moreover, our implementation of the MLM matching
making use of the parton showers is described. Sample SINDARIN files are located in the
share/examples directory. All input files come in two versions, one using the internal shower,
ending in W.sin, and one using PYTHIA’s shower, ending in P.sin. Thus we state all file names
as ending with X.sin, where X has to be replaced by either W or P. The input files include
EENoMatchingX.sin and DrellYanNoMatchingX.sin for e+e− → hadrons and pp̄→ Z without
matching. The corresponding SINDARIN files with matching enabled are EEMatching2X.sin to
EEMatching5X.sin for e+e− → hadrons with a different number of partons included in the
matrix element and DrallYanMatchingX.sin for Drell-Yan with one matched emission.

6.5.1 Parton Showers and Hadronization

From version 2.1 onwards, WHIZARD contains a implementation of an analytic parton shower
as presented in [22], providing the opportunity to perform the parton shower from whithin
WHIZARD. Moreover, an interface to PYTHIAis included, which can be used to delegate the parton
shower to PYTHIA. The same interface can be used to hadronize events using the generated
events using PYTHIA’s hadronization routines. Note that by PYTHIA’s default, when performing
initial-state radiation multiple interactions are included and when performing the hadronization
hadronic decays are included. If required, these additional steps have to be switched off using
the corresponding arguments for PYTHIA’s PYGIVE routine vie the $ps PYTHIA PYGIVE string.

During configuration the --enable-shower flag has to be set (this is the default from version
2.1.0 on), which then triggers automatic compilation of the shower subpackage and the PYTHIA

version included in the WHIZARD package – at the moment 6.426 – as well as the interface. It
can be invoked by the following SINDARIN keywords:

?ps fsr active = true master switch for final-state parton showers
?ps isr active = true master switch for initial-state parton showers
?hadronization active = true master switch to enable hadronization
?ps use PYTHIA shower = true switch to use PYTHIA’s parton shower instead of

WHIZARD’s own shower
If either ?ps fsr active or ?ps isr active is set to true, the event will be transferred

to the internal shower routines or the PYTHIA data structures, and the chosen shower steps
(initial- and final-state radiation) will be performed. If hadronization is enabled via the
?hadronization active switch, WHIZARD will call PYTHIA’s hadronization routine. The hadron-
ization can be applied to events showered using the internal shower or showered using PYTHIA’s
shower routines, as well as unshowered events. Any necessary transfer of event data to PYTHIA

is automatically taken care of within WHIZARD’s shower interface. The resulting (showered
and/or hadronized) event will be transferred back to WHIZARD, the former final particles will be
marked as intermediate. The analysis can be applied to a showered and/or hadronized event
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just like in the unshowered/unhadronized case. Any event file can be used and will contain the
showered/hadronized event.

Settings for the internal analytic parton shower are set via the following SINDARIN variables:

ps mass cutoff The cut-off in virtuality, below which, partons are assumed to radiate no more.
Used for both ISR and FSR. Given in GeV. (Default = 1.0)

ps fsr lambda The value for Λ used in calculating the value of the running coupling constant
αS for Final State Radiation. Given in GeV. (Default = 0.29)

ps isr lambda The value for Λ used in calculating the value of the running coupling constant
αS for Initial State Radiation. Given in GeV. (Default = 0.29)

ps max n flavors Number of quark flavours taken into account during shower evolution. Mean-
ingful choices are 3 to include u, d, s-quarks, 4 to include u, d, s, c-quarks and 5 to include
u, d, s, c, b-quarks. (Default = 5)

?ps isr alpha s running Switch to decide between a constant αS, given by ps fixed alpha s,
and a running αS, calculated using ps isr lambda for ISR. (Default = true)

?ps fsr alpha s running Switch to decide between a constant αS, given by ps fixed alpha s,
and a running αS, calculated using ps fsr lambda for FSR. (Default = true)

ps fixed alpha s Fixed value of αS for the parton shower. Used if either ?ps fsr alpha s running

or ?ps isr alpha s running are set to false. (Default = 0.0)

?ps isr angular ordered Switch for angular ordered ISR. (Default = true )1

ps isr primordial kt width The width in GeV of the Gaussian assumed to describe the
transverse momentum of partons inside the proton. Other shapes are not yet imple-
mented. (Default = 0.0)

ps isr primordial kt cutoff The maximal transverse momentum in GeV of a parton inside
the proton. Used as a cut-off for the Gaussian. (Default = 5.0)

ps isr z cutoff Maximal z-value in initial state branchings. (Default = 0.999)

ps isr minenergy Minimal energy in GeV of an emitted timelike or final parton. Note that
the energy is not calculated in the labframe but in the center-of-mas frame of the two
most initial partons resolved so far, so deviations may occur. (Default = 1.0)

ps isr tscalefactor Factor for the starting scale in the initial state shower evolution. (
Default = 1.0 )

1The FSR is always simulated with angular ordering enabled.
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?ps isr only onshell emitted partons Switch to allow only for on-shell emitted partons,
thereby rejecting all possible final state parton showers starting from partons emitted
during the ISR. (Default = false)

Settings for the PYTHIA are transferred using the following SINDARIN variables:

?ps PYTHIA verbose if set to false, output from PYTHIA will be suppressed
$ps PYTHIA PYGIVE a string containing settings transferred to PYTHIA’s PYGIVE subroutine.

The format is explained in the PYTHIA manual. The limitation to 100
characters mentioned there does not apply here, the string is split
appropriately before being transferred to PYTHIA.

Note that the included version of PYTHIA uses LHAPDF for initial state radiation whenever
this is available, but the PDF set has to be set manually in that case using the keyword
ps PYTHIA PYGIVE.

6.5.2 Matching

Along with the inclusion of the parton showers, WHIZARD includes an implementation of the
MLM matching procedure. For a detailed description of the implemented steps see [22]. The
inclusion of MLM matching still demands some manual settings in the SINDARIN file. For a
given base process and a matching of N additional jets, all processes that can be obtained by
attaching up to N QCD splittings, either a quark emitting a gluon or a gluon splitting into two
quarks ar two gluons, have to be manually specified as additional processes. These additional
processes need to be included in the simulate statement along with the original process. The
SINDARIN variable mlm nmaxMEjets has to be set to the maximum number of additional jets
N . Moreover additional cuts have to be specified for the additional processes.

alias quark = u:d:s:c

alias antiq = U:D:S:C

alias j = quark:antiq:g

?mlm_matching = true

mlm_ptmin = 5 GeV

mlm_etamax = 2.5

mlm_Rmin = 1

cuts = all Dist > mlm_Rmin [j, j]

and all Pt > mlm_ptmin [j]

and all abs(Eta) < mlm_etamax [j]

Note that the variables mlm ptmin, mlm etamax and mlm Rmin are used by the matching routine.
Thus, replacing the variables in the cut expression and omitting the assignment would destroy
the matching procedure.

The complete list of variables introduced to steer the matching procedure is as follows:
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?mlm matching active Master switch to enable MLM matching. (Default = false)

mlm ptmin Minimal transverse momentum, also used in the definition of a jet

mlm etamax Maximal absolute value of pseudorapidity η, also used in defining a jet

mlm Rmin Minimal η − φ distance Rmin

mlm nmaxMEjets Maximum number of jets N

mlm ETclusfactor Factor to vary the jet definition. Should be ≥ 1 for complete coverage of
phase space. (Default = 1)

mlm ETclusminE Minimal energy in the variation of the jet definition

mlm etaclusfactor Factor in the variation of the jet definition. Should be ≤ 1 for complete
coverage of phase space. (Default = 1)

mlm Rclusfactor Factor in the variation of the jet definition. Should be ≥ 1 for complete
coverage of phase space. (Default = 1)

The variation of the jet definition is a tool to asses systematic uncertainties introduced by the
matching procedure (See section 3.1 in [22]).

6.6 Negative weight events
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Chapter 7

User Code Plug-Ins

7.1 The plug-in mechanism

The capabilities of WHIZARD and its SINDARIN command language are not always sufficient
to adapt to all users’ needs. To make the program more versatile, there are several spots in
the workflow where the user may plug in his/her own code, to enhance or modify the default
behavior.

User code can be injected, without touching WHIZARD’s source code, in the following places:

• Cuts, weights, analysis, etc.:

– Cut functions that operate on a whole subevent.

– Observable (e.g., event shapes) calculated from a whole subevent.

– Observable calculated for a particle or particle pair.

• Spectra and structure functions.

Additional plug-in locations may be added in the future.
User code is loaded dynamically by WHIZARD. There are two possibilities:

1. The user codes the required procedures in one or more Fortran source files that are present
in the working directory of the WHIZARD program. WHIZARD is called with the -u flag:

whizard -u --user-src=user-source-code-file . . .

The file must have the extension .f90, and the file name must be specified without
extension.

There may be an arbitrary number of user source-code files. The compilation is done
in order of appearance. If the name of the user source-code file is user.f90, the flag
--user-src can be omitted.

This tells the program to compile and dynamically link the code at runtime. The base-
name of the linked library is user.

103
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If a compiled (shared) library with that name already exists, it is taken as-is. If the
user code changes or the library becomes invalid for other reasons, recompilation of the
user-code files can be forced by the flag --rebuild-user or by the generic -r flag.

2. The user codes and compiles the required procedures him/herself. They should be pro-
vided in form of a library, where the interfaces of the individual procedures follow C
calling conventions and exactly match the required interfaces as described in the follow-
ing sections. The library must be compiled in such a way that it can be dynamically
linked. If the calling conventions are met, the actual user code may be written in any
programming language. E.g., it may be coded in Fortran, C, or C++ (with extern(C)

specifications).

WHIZARD is called with the -u flag and is given the name of the user library as

whizard -u --user-lib=user-library-file . . .

The library file should either be a dynamically loadable (shared) library with appropriate
extension (.so on Linux), or a libtool archive (.la).

The user-provided procedures may have arbitrary names; the user just has to avoid clashes
with procedures from the Fortran runtime library or from the operating-system environment.

7.2 Data Types Used for Communication

Since the user-code interface is designed to be interoperable with C, it communicates with
WHIZARD only via C-interoperable data types. The basic data types (Fortran: integer and real
kinds) c int and c double are usually identical with the default kinds on the Fortran side. If
necessary, explicit conversion may be inserted.

For transferring particle data, we are using a specific derived type c prt t which has the
following content:

type, bind(C) :: c_prt_t

integer(c_int) :: type

integer(c_int) :: pdg

integer(c_int) :: polarized

integer(c_int) :: h

real(c_double) :: pe

real(c_double) :: px

real(c_double) :: py

real(c_double) :: pz

real(c_double) :: p2

end type c_prt_t

The meaning of the entries is as follows:

type: The type of the particle. The common type codes are 1=incoming, 2=outgoing, and
3=composite. A composite particle in a subevent is created from a combination of indi-
vidual particle momenta, e.g., in jet clustering. If the status code is not defined, it is set
to zero.
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pdg: The particle identification code as proposed by the Particle Data Group. If undefined, it
is zero.

polarized: If nonzero, the particle is polarized. The only polarization scheme supported at
this stage is helicity. If zero, particle polarization is ignored.

h: If the particle is polarized, this is the helicity. 0 for a scalar, ±1 for a spin-1/2 fermion,
−1, 0, 1 for a spin-1 boson.

pe: The energy in GeV.

px/py: The transversal momentum components in GeV.

pz: The longitudinal momentum component in GeV.

p2: The invariant mass squared of the actual momentum in GeV2.

WHIZARD does not provide tools for manipulating c prt t objects directly. However, the four-
momentum can be used in Lorentz-algebra calculations from the lorentz module. To this end,
this module defines the transformational functions vector4 from c prt and vector4 to c prt.

7.3 User-defined Observables and Functions

7.3.1 Cut function

Instead of coding a cut expression in SINDARIN, it may be coded in Fortran, or in any other
language with a C-compatible interface. A user-defined cut expression is referenced in SINDARIN

as follows:

cuts = user cut (name-string ) [subevent ]

The name-string is an expression that evaluates to string, the name of the function to call in
the user code. The subevent is a subevent expression, analogous to the built-in cut definition
syntax. The result of the user cut function is a logical value in SINDARIN. It is true if the
event passes the cut, false otherwise.

If coded in Fortran, the actual user-cut function in the user-provided source code has the
following form:

function user_cut_fun (prt, n_prt) result (iflag) bind(C)

use iso_c_binding

use c_particles

type(c_prt_t), dimension(*), intent(in) :: prt

integer(c_int), intent(in) :: n_prt

integer(c_int) :: iflag

! ... code that evaluates iflag

end function user_cut_fun



106 CHAPTER 7. USER CODE PLUG-INS

Here, user cut fun can be replaced by an arbitrary name by which the function is referenced
as name-string above. The bind(C) attribute in the function declaration is mandatory.

The argument prt is an array of objects of type c prt t, as described above. The integer
n prt is the number of entries in the array. It is passed separately in order to determine the
actual size of the assumed-size prt array.

The result iflag is an integer. A nonzero value indicates true (i.e., the event passes the
cut), zero value indicates false. (We do not use boolean values in the interface because their
interoperability might be problematic on some systems.)

7.3.2 Event-shape function

An event-shape function is similar to a cut function. It takes a subevent as argument and
returns a real (i.e., C double) variable. It can be used for defining subevent observables, event
weights, or the event scale, as in

analysis = record hist-id (user event fun (name-string ) [subevent ])

or

scale = user event fun (name-string ) [subevent ]

The corresponding Fortran source code has the form

function user_event_fun (prt, n_prt) result (rval) bind(C)

use iso_c_binding

use c_particles

type(c_prt_t), dimension(*), intent(in) :: prt

integer(c_int), intent(in) :: n_prt

real(c_double) :: rval

! ... code that evaluates rval

end function user_event_fun

with user event fun replaced by name-string .

7.3.3 Observable

In SINDARIN, an observable-type function is a function of one or two particle objects that returns
a real value. The particle objects result from scanning over subevents. In the SINDARIN code,
the observable is used like a variable; the particle-object arguments are implictly assigned.

A user-defined observable is used analogously, e.g.,

cuts = all user obs (name-string ) > 0 [subevent ]

The user observable is defined, as Fortran code, as either a unary or as a binary C-double-valued
function of c prt t objects. The use in SINDARIN (unary or binary) must match the definition.
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function user_obs_unary (prt1) result (rval) bind(C)

use iso_c_binding

use c_particles

type(c_prt_t), intent(in) :: prt1

real(c_double) :: rval

! ... code that evaluates rval

end function user_obs_unary

or

function user_obs_binary (prt1, prt2) result (rval) bind(C)

use iso_c_binding

use c_particles

type(c_prt_t), intent(in) :: prt1, prt2

real(c_double) :: rval

! ... code that evaluates rval

end function user_obs_binary

with user obs unary/binary replaced by name-string .

7.3.4 Examples

For an example, we implement three different ways of computing the transverse momentum of
a particle. This observable is actually built into WHIZARD, so the examples are not particularly
useful. However, implementing kinematical functions that are not supported (yet) by WHIZARD

(and not easily computed via SINDARIN expressions) proceeds along the same lines.

Cut

The first function is a complete cut which can be used as

cuts = user cut("ptcut") [subevt ]

It is equivalent to

cuts = all Pt > 50 [subevt ]

The implementation reads

function ptcut (prt, n_prt) result (iflag) bind(C)

use iso_c_binding

use c_particles

use lorentz

type(c_prt_t), dimension(*), intent(in) :: prt

integer(c_int), intent(in) :: n_prt

integer(c_int) :: iflag

logical, save :: first = .true.

if (all (transverse_part (vector4_from_c_prt (prt(1:n_prt))) > 50)) then

iflag = 1

else

iflag = 0

end if

end function ptcut
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The procedure makes use of the kinematical functions in the lorentz module, after transform-
ing the particles into a vector4 array.

Event Shape

Similar functionality can be achieved by implementing an event-shape function. The function
computes the minimum pT among all particles in the subevent. The SINDARIN expression reads

cuts = user event shape("pt min") [subevt ] > 50

and the function is coded as

function pt_min (prt, n_prt) result (rval) bind(C)

use iso_c_binding

use c_particles

use lorentz

type(c_prt_t), dimension(*), intent(in) :: prt

integer(c_int), intent(in) :: n_prt

real(c_double) :: rval

rval = minval (transverse_part (vector4_from_c_prt (prt(1:n_prt))))

end function pt_min

Observable

The third (and probably simplest) user implementation of the pT cut computes a single-particle
observable. Here, the usage is

cuts = all user obs("ptval") > 50 [subevt ]

and the subroutine reads

function ptval (prt1) result (rval) bind(C)

use iso_c_binding

use c_particles

use lorentz

type(c_prt_t), intent(in) :: prt1

real(c_double) :: rval

rval = transverse_part (vector4_from_c_prt (prt1))

end function ptval

7.4 Spectrum or Structure Function

7.4.1 Definition

User-defined spectra or structure functions can be used in a beams definition just like ordinary
ones (isr, pdf builtin, etc.), for instance:

beams = p, p => user sf (name-string )
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or

beams = p, "e-" => user sf (name-string ), none

To implement a particular spectrum or structure function, the user must code five different
procedures. Their names all must begin with name-string with specific suffixes appended. In
the following, replace user sf by whatever name-string has been chosen:

1. user sf info:
This subroutine tells WHIZARD about static information on the spectrum. In the user-
provided source code, the function takes the form (if it is coded in Fortran):

subroutine user_sf_info (n_in, n_out, n_states, n_col, n_dim, n_var) bind(C)

use iso_c_binding

integer(c_int), intent(inout) :: n_in, n_out, n_states, n_col

integer(c_int), intent(inout) :: n_dim, n_var

! ... code that sets the parameters

end subroutine user_sf_info

The subroutine arguments describe the overall properties of the spectrum. For all argu-
ments, there exist default values which apply if the parameter is not set in the subroutine.

n in Number of incoming particles. This is 1 for a single-particle spectrum (default), or
2 for a two-particle spectrum.

n out Number of outgoing particles. Should be greater or equal to n in. Default is 2.

n states Number of distinct quantum states that are supported by the spectrum. Each
possible combination of flavor, color, and helicity counts as a separate state. Quan-
tum numbers that are ignored (e.g., unpolarized particles) do not count. Default
is 1.

n col Maximal number of distinct color-flow lines attached to any particle. In the Stan-
dard Model, this is 2 or less. Usually, the default value (2) should be left untouched.

n dim Number of independent integration parameters on which the spectrum depends.
For instance, a parton structure function depends on a single parameter, while ISR
radiation with generated transverse momentum depends on three parameters. De-
fault is 1.

n var Number of real parameters that have to be communicated from the kinematics
routine to the evaluation routine. For instance, a PDF depends on one variable (x)
that is used both for computing the momentum and for evaluating the structure
function, so it must be communicated. Default value is 1.

2. user sf mask:
This subroutine tells WHIZARD which quantum numbers are explicit and which ones are
ignored. The default is that all quantum numbers are explicit, but it may be appropriate
to ignore the polarization of specific particles, e.g., a radiated photon.
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subroutine user_sf_mask (i_prt, m_flv, m_col, m_hel, i_lock) bind(C)

use iso_c_binding

integer(c_int), intent(in) :: i_prt

integer(c_int), intent(inout) :: m_flv, m_hel, m_col, i_lock

! ... code that sets m_flv, m_hel, m_col, i_lock

end subroutine user_sf_mask

The arguments define the properties of a specific particle within the interaction that the
spectrum describes.

i prt This is the index of the particle for which the info is requested. i prt, which is a
value between 1 and n in + n out. For each possible value of i prt, the subroutine
should set the appropriate flags, unless the default values are correct.

m flv If nonzero, the flavor of this particle is unspecified. In the process, the spectrum
interaction matches any particle. Default is 0.

m col If nonzero, the color of this particle is unspecified. In the process, the spectrum
interaction matches any color assignment, and the attached color lines are ignored
for the whole process. Default is 0.

m hel If nonzero, the helicity of this particle is unspecified. In the process, the spectrum
interaction matches any helicity assignment, i.e., the particle is treated as unpolar-
ized. Default is 0.

i lock If nonzero, this indicates a helicity conservation rule. The current particle (i prt)
and the particle with index i lock are declared to have the same helicity.

The particle with index i lock must have a correponding entry pointing to index
i prt. Of course, the conservation rule must be satisfied by all quantum-number
combination.

(The conservation rule improves efficiency when a beam is declared as unpolarized.
(De-)polarization is carried through the structure-function chain, so that it is the
hard matrix element which is effectively averaged over polarizations.)

3. user sf state:
This subroutine tells WHIZARD which quantum number combinations are allowed in the
spectrum. For each particles, only the quantum numbers allowed by the corresponding
mask value (see above) have to be set.

subroutine user_sf_state (i_state, i_prt, flv, hel, col) bind(C)

use iso_c_binding

integer(c_int), intent(in) :: i_state, i_prt

integer(c_int), intent(inout) :: flv, hel

integer(c_int), dimension(*), intent(inout) :: col

! ... code that sets flv, hel, col

end subroutine user_sf_state

Given i state and i prt, the routine should return appropriate values for the other
parameters or leave them at zero (default).
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i state Index of a quantum number combination, a number between 1 and n states.

i prt Index of a particle in the interaction, a number between 1 and n in + n out. The
incoming particles come before the outgoing particles in the interaction.

flv PDG code of the particle.

hel Helicity value of the particle, as described above in Sec. 7.2.

col Array of color-flow indices of the particle. The size of the array is n col. Color
connections between particles are indicated by coinciding color-flow indices. By
convention, color-flow indices are integer values of 500 and greater.

4. user sf kinematics:
This subroutine generates the momenta for the outgoing particles, given the momenta of
incoming particles and an array of parameters.

subroutine user_sf_kinematics (prt_in, rval, prt_out, xval) bind(C)

use iso_c_binding

use c_particles

type(c_prt_t), dimension(*), intent(in) :: prt_in

real(c_double), dimension(*), intent(in) :: rval

type(c_prt_t), dimension(*), intent(inout) :: prt_out

real(c_double), dimension(*), intent(out) :: xval

! ... code that computes prt_out and xval

end subroutine user_sf_kinematics

prt in Array of incoming particles as generated by WHIZARD. Only the energy-momentum
entries in the c prt t objects are relevant, the others are meaningless at this stage.
The array size is n in.

rval Array of real parameters, sufficient for calculating the outgoing four-momenta. The
array size is n dim.

prt out Array of outgoing particles. They must be computed by the user-defined code.
Only the energy-momentum entries will be used. The array size is n out.

xval Array of parameters that are needed for the evaluation routine below, to uniquely
determine the spectrum values. For instance, these could be the x momentum frac-
tion(s) and possibly an extra Jacobian factor. The array size is n var.

5. user sf evaluate:
This subroutine computes the values (the squared matrix elements) of the spectrum, one
for each quantum-number combination, given the variables returned by the kinematics
routine above and the energy scale of the event.

subroutine user_sf_evaluate (xval, scale, fval) bind(C)

use iso_c_binding

real(c_double), dimension(*), intent(in) :: xval

real(c_double), intent(in) :: scale

real(c_double), dimension(*), intent(out) :: fval

end subroutine user_sf_evaluate
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xval Array of parameters as returned by the kinematics routine. The array size is n var.

scale Energy scale in GeV computed by WHIZARD (using the SINDARIN expression for
scale) for the current kinematics. The spectrum evaluation can use this scale.
Alternatively, the kinematics routine may compute the scale and transfer it to the
evaluation via the xval array, which ignores the scale argument.

fval Value array of the structure function. For each state (combination of quantum
numbers) there must be one value. The array size is n states.

7.4.2 Example

For a simple example, we reproduce the effect of an energy scan spectrum for electrons, anal-
ogous to the generic one that is built into WHIZARD. We assume that a fraction of the energy
is transferred from the beam to the incoming parton. In contrast to the actual energy-scan
spectrum where no further particle is involved, we transfer the remaining energy to a radiated
photon. The user-defined spectrum can be used as in

beams = "e-", "e-" => user sf ("escan")

where it is applied to both beams, independently.
We are considering an interaction with one incoming and two outgoing colorless particles.

There are two quantum-number states, one input parameter, and no output parameters since
the matrix element of this spectrum is constant (unity).

subroutine escan_info (n_in, n_out, n_states, n_col, n_dim, n_var) bind(C)

use iso_c_binding

integer(c_int), intent(inout) :: n_in, n_out, n_states, n_col

integer(c_int), intent(inout) :: n_dim, n_var

n_in = 1

n_out = 2

n_states = 2

n_dim = 1

n_var = 0

end subroutine escan_info

The mask is set up such that polarization is transferred from the incoming to the outgoing
particle (locking them together), and the radiated photon is unpolarized.

subroutine escan_mask (i_prt, m_flv, m_col, m_hel, i_lock) bind(C)

use iso_c_binding

integer(c_int), intent(in) :: i_prt

integer(c_int), intent(inout) :: m_flv, m_hel, m_col, i_lock

select case (i_prt)

case (1)

i_lock = 3

case (2)

m_hel = 1

case (3)

i_lock = 1

end select

end subroutine escan_mask



7.4. SPECTRUM OR STRUCTURE FUNCTION 113

There are two quantum-number states, one with negative and one with positive helicity for
both incoming and outgoing electron. They are color singlets (no color index), and the flavor
of the three particles is electron, photon, electron.

subroutine escan_state (i_state, i_prt, flv, hel, col) bind(C)

use iso_c_binding

integer(c_int), intent(in) :: i_state, i_prt

integer(c_int), intent(inout) :: flv, hel

integer(c_int), dimension(*), intent(inout) :: col

select case (i_prt)

case (1, 3)

flv = 11

select case (i_state)

case (1); hel = -1

case (2); hel = 1

end select

case (2)

flv = 22

end select

end subroutine escan_state

The kinematics routine computes the x value as x = r2, where r is the integration parameter.
The four-momenta are simply scaled by the momentum fraction, assuming zero mass.

subroutine escan_kinematics (prt_in, rval, prt_out, xval) bind(C)

use iso_c_binding

use c_particles

use kinds

use lorentz

type(c_prt_t), dimension(*), intent(in) :: prt_in

real(c_double), dimension(*), intent(in) :: rval

type(c_prt_t), dimension(*), intent(inout) :: prt_out

real(c_double), dimension(*), intent(out) :: xval

type(vector4_t), dimension(3) :: p

real(default) :: x

x = rval(1)**2

p(1) = vector4_from_c_prt (prt_in(1))

p(2) = (1-x) * p(1)

p(3) = x * p(1)

prt_out(1:2) = vector4_to_c_prt (p(2:3))

end subroutine escan_kinematics

Finally, the evaluation is trivial. For each quantum-number state, the matrix element is unity.

subroutine escan_evaluate (xval, scale, fval) bind(C)

use iso_c_binding

real(c_double), dimension(*), intent(in) :: xval

real(c_double), intent(in) :: scale

real(c_double), dimension(*), intent(out) :: fval

fval(1) = 1

fval(2) = 1

end subroutine escan_evaluate
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7.5 User Code and Static Executables

In Sec. 5.4.6 we describe how to build a static executable that can be submitted to batch jobs,
e.g., on the grid, where a compiler may not be available.

If there is user plug-in code, it would require the same setup of libtool, compiler and linker
on the target host, as physical process code. To avoid this, it is preferable to link the user code
statically with the executable, which is then run as a monolithic program.

This is actually simple. Two conditions have to be met:

1. The WHIZARD job that creates the executable has to be given the appropriate options (-u,
--user-src, --user-lib) such that the user code is dynamically compiled and linked.

2. The compile command in the SINDARIN script which creates the executable takes options
that list the procedures which the stand-alone program should access:

compile as "executable-name " {
$user procs cut = "cut-proc-names "

$user procs event shape = "event-shape-proc-names "

$user procs obs1 = "obs1-proc-names "

$user procs obs2 = "obs2-proc-names "

$user procs sf = "strfun-names "

}

The values of these option variables are comma-separated lists of procedure names,
grouped by their nature. obs1 and obs2 refer to unary and binary observables, respec-
tively. The strfun-names are the names of the user-defined spectra or structure functions
as they would appear in the SINDARIN file which uses them.

With these conditions met, the stand-alone executable will have the user code statically linked,
and it will be able to use exactly those user-defined routines that have been listed in the various
option strings. (It is possible nevertheless, to plug in additional user code into the stand-alone
executable, using the same options as for the original WHIZARD program.)
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Data Visualization

8.1 GAMELAN

The data values and tables that we have introduced in the previous section can be visualized
using built-in features of WHIZARD. To be precise, WHIZARD can write LATEX code which in-
corporates code in the graphics language GAMELAN to produce a pretty-printed account of
observables, histograms, and plots.

GAMELAN is a macro package for MetaPost, which is part of the TEX/LATEX family.
MetaPost, a derivative of Knuth’s MetaFont language for font design, is usually bundled with
the TEX distribution, but might need a separate switch for installation. The GAMELAN
macros are contained in a subdirectory of the WHIZARD package. Upon installation, they will
be installed in the appropriate directory, including the gamelan.sty driver for LATEX. WHIZARD
uses a subset of GAMELAN’s graphics macros directly, but it allows for access to the full
package if desired.

An (incomplete) manual for GAMELAN can be found in the share/doc subdirectory of
the WHIZARD system. WHIZARD itself uses a subset of the GAMELAN capabilities, interfaced by
SINDARIN commands and parameters. They are described in this chapter.

To process analysis output beyond writing tables to file, the write analysis command
described in the previous section should be replaced by compile analysis, with the same
syntax:

compile analysis (analysis-tags ) { options }

where analysis-tags , a comma-separated list of analysis objects, is optional. If there are no
tags, all analysis objects are processed. The options script of local commands is also optional,
of course.

This command will perform the following actions:

1. It writes a data file in default format, as write analysis would do. The file name is
given by $out file, if nonempty. The file must not be already open, since the command
needs a self-contained file, but the name is otherwise arbitrary. If the value of $out file

is empty, the default file name is whizard analysis.dat.
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2. It writes a driver file for the chosen datasets, whose name is derived from the data file
by replacing the file extension of the data file with the extension .tex. The driver file is
a LATEX source file which contains embedded GAMELAN code that handles the selected
graphics data. In the LATEX document, there is a separate section for each contained
dataset.

3. The driver file is processed by LATEX, which generates an appropriate GAMELAN source
file with extension .mp. This code is executed (calling GAMELAN/MetaPost, and again
LATEX for typesetting embedded labels). There is a second LATEX pass which collects the
results, and finally conversion to PostScript and PDF formats.

The resulting PostScript or PDF file – the file name is the name of the data file with the
extension replaced by .ps or .pdf, respectively – can be printed or viewed with an appropriate
viewer such as gv. The viewing command is not executed automatically by WHIZARD.

Note that LATEX will write further files with extensions .log, .aux, and .dvi, and GAME-
LAN will produce auxiliary files with extensions .ltp and .mpx. The log file in particular,
could overwrite WHIZARD’s log file if the basename is identical. Be careful to use a value for
$out file which is not likely to cause name clashes.

8.2 Histogram Display

8.3 Plot Display

8.4 Graphs

Graphs are an additional type of analysis object. In contrast to histograms and plots, they do
not collect data directly, but they rather act as containers for graph elements, which are copies
of existing histograms and plots. Their single purpose is to be displayed by the GAMELAN
driver.

Graphs are declared by simple assignments such as

graph g1 = hist1

graph g2 = hist2 & hist3 & plot1

The first declaration copies a single histogram into the graph, the second one copies two his-
tograms and a plot. The syntax for collecting analysis objects uses the & concatenation operator,
analogous to string concatenation. In the assignment, the rhs must contain only histograms
and plots. Further concatenating previously declared graphs is not supported.

After the graph has been declared, its contents can be written to file (write analysis) or,
usually, compiledd by the LATEX/GAMELAN driver via the compile analysis command.

The graph elements on the right-hand side of the graph assignment are copied with their
current data content. This implies a well-defined order of statements: first, histograms and
plots are declared, then they are filled via record commands or functions, and finally they can
be collected for display by graph declarations.
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Table 8.1: Graph options. The content of strings of type LATEX must be valid LATEX code (con-
taining typesetting commands such as math mode). The content of strings of type GAMELAN
must be valid GAMELAN code. If a graph bound is kept undefined, the actual graph bound is
determined such as not to crop the graph contents in the selected direction.

Variable Default Type Meaning

$title "" LATEX Title of the graph = subsection headline
$description "" LATEX Description text for the graph
$x label "" LATEX x-axis label
$y label "" LATEX y-axis label
graph width mm 130 Integer graph width (on paper) in mm
graph height mm 90 Integer graph height (on paper) in mm
?x log false Logical Whether the x-axis scale is linear or logarithmic
?x log false Logical Whether the y-axis scale is linear or logarithmic
x min undefined Real Lower bound for the x axis
x max undefined Real Upper bound for the x axis
y min undefined Real Lower bound for the y axis
y max undefined Real Upper bound for the y axis
gmlcode bg "" GAMELAN Code to be executed before drawing
gmlcode fg "" GAMELAN Code to be executed after drawing

A simple graph declaration without options as above is possible, but usually there are
option which affect the graph display. There are two kinds of options: graph options and
drawing options. Graph options apply to the graph as a whole (title, labels, etc.) and are
placed in braces on the lhs of the assigment. Drawing options apply to the individual graph
elements representing the contained histograms and plots, and are placed together with the
graph element on the rhs of the assignment. Thus, the complete syntax for assigning multiple
graph elements is

graph graph-tag { graph-options }
= graph-element-tag1 { drawing-options1 }
& graph-element-tag2 { drawing-options2 }
. . .

This form is recommended, but graph and drawing options can also be set as global parameters,
as usual.

We list the supported graph and drawing options in Tables 8.1 and 8.2, respectively.
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Table 8.2: Drawing options. The content of strings of type GAMELAN must be valid GAME-
LAN code. The behavior w.r.t. the flags with undefined default value depends on the type
of graph element. Histograms: draw baseline, piecewise, fill area, draw curve, no errors, no
symbols; Plots: no baseline, no fill, draw curve, no errors, no symbols.

Variable Default Type Meaning

?draw base undefined Logical Whether to draw a baseline for the curve
?draw piecewise undefined Logical Whether to draw bins separately (histogram)
?fill curve undefined Logical Whether to fill area between baseline and curve
$fill options "" GAMELAN Options for filling the area
?draw curve undefined Logical Whether to draw the curve as a line
$draw options "" GAMELAN Options for drawing the line
?draw errors undefined Logical Whether to draw error bars for data points
$err options "" GAMELAN Options for drawing the error bars
?draw symbols undefined Logical Whether to draw symbols at data points
$symbol Black dot GAMELAN Symbol to be drawn
gmlcode bg "" GAMELAN Code to be executed before drawing
gmlcode fg "" GAMELAN Code to be executed after drawing

8.5 Drawing options

The options for coloring lines, filling curves, or choosing line styles make use of macros in the
GAMELAN language. At this place, we do not intend to give a full account of the possiblities,
but we rather list a few basic features that are likely to be useful for drawing graphs.

Colors

GAMELAN knows about basic colors identified by name:

black, white, red, green, blue, cyan, magenta, yellow

More generically, colors in GAMELAN are RGB triplets of numbers (actually, numeric expres-
sions) with values between 0 and 1, enclosed in brackets:

(r, g, b )

To draw an object in color, one should apply the construct withcolor color to its drawing
code. The default color is always black. Thus, this will make a plot drawn in blue:

$draw options = "withcolor blue"

and this will fill the drawing area of some histogram with an RGB color:

$fill options = "withcolor (0.8, 0.7, 1)"
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Dashes

By default, lines are drawn continuously. Optionally, they can be drawn using a dash pattern.
Predefined dash patterns are

evenly, withdots, withdashdots

Going beyond the predefined patterns, a generic dash pattern has the syntax

dashpattern (on l1 off l2 on . . . )

with an arbitrary repetition of on and off clauses. The numbers l1 , l2 , . . . are lengths
measured in pt.

To apply a dash pattern, the option syntax dashed dash-pattern should be used. Options
strings can be concatenated. Here is how to draw in color with dashes:

$draw options = "withcolor red dashed evenly"

and this draws error bars consisting of intermittent dashes and dots:

$err options = "dashed (withdashdots scaled 0.5)"

The extra brackets ensure that the scale factor 1/2 is applied only the dash pattern.

Hatching

Areas (e.g., below a histogram) can be filled with plain colors by the withcolor option. They
can also be hatched by stripes, optionally rotated by some angle. The syntax is completely
analogous to dashes. There are two predefined hatch patterns :

withstripes, withlines

and a generic hatch pattern is written

hatchpattern (on w1 off w2 on . . . )

where the numbers l1 , l2 , . . . determine the widths of the stripes, measured in pt.
When applying a hatch pattern, the pattern may be rotated by some angle (in degrees) and

scaled. This looks like

$fill options = "hatched (withstripes scaled 0.8 rotated 60)"

Smooth curves

Plot points are normally connected by straight lines. If data are acquired by statistical methods,
such as Monte Carlo integration, this is usually recommended. However, if a plot is generated
using an analytic mathematical formula, or with sufficient statistics to remove fluctuations, it
might be appealing to connect lines by some smooth interpolation. GAMELAN can switch on
spline interpolation by the specific drawing option linked smoothly. Note that the results
can be surprising if the data points do have sizable fluctuations or sharp kinks.
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Error bars

Plots and histograms can be drawn with error bars. For histograms, only vertical error bars are
supported, while plot points can have error bars in x and y direction. Error bars are switched
on by the ?draw errors flag.

There is an option to draw error bars with ticks: withticks and an alternative option to
draw arrow heads: witharrows. These can be used in the $err options string.

Symbols

To draw symbols at plot points (or histogram midpoints), the flag ?draw symbols has to be
switched on.
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User Interfaces for WHIZARD

9.1 Command Line and SINDARIN Input Files

The standard way of using WHIZARD involves a command script written in SINDARIN. This script
is executed by WHIZARD by mentioning it on the command line:

whizard script-name.sin

You may specify several script files on the command line; they will be executed consecutively.
If there is no script file, WHIZARD will read commands from standard input. Hence, this is

equivalent:

cat script-name.sin | whizard

When executed from the command line, WHIZARD accepts several options. They are given
in long form, i.e., they begin with two dashes. Values that belong to options follow the op-
tion string, separated either by whitespace or by an equals sign. Hence, --prefix /usr and
--prefix=/usr are equivalent. Some options are also available in short form, a single dash
with a single letter. Short-form options can be concatenated, i.e., a dash followed by several
option letters.

The first set of options is intended for normal operation.

–execute COMMANDS : Execute COMMANDS as a script before the script file. Short version: -e

–help : List the available options and exit. Short version: -h

–interactive : Run WHIZARD interactively. See Sec. 9.2. Short version: -i.

–library LIB : Preload process library LIB (instead of the default processes). Short version:
-l.

–localprefix DIR : Search in DIR for local models. Default is $HOME/.whizard.

–logfile FILE : Write log to FILE. Default is whizard.log. Short version: -L.
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–model MODEL : Preload model MODEL. Default is the Standard Model SM. Short version: -m.

–no-logfile : Don’t write a logfile.

–rebuild : Don’t preload a process library and do all calculations from scratch, even if results
exist. This combines all rebuild options. Short version: -r.

–rebuild-library : Rebuild the process library, even if code exists.

–rebuild-phase-space : Rebuild the phase space setup, even if it exists.

–rebuild-grids : Redo the integration, even if previous grids and results exist.

–rebuild-events : Redo event generation, discarding previous event files.

–version : Print version information and exit. Short version: -V.

- : Any further options are interpreted as filenames.

The second set of options refers to the configuration. They are relevant when dealing with a
relocated WHIZARD installation, e.g., on a batch systems. Cf. Sec. 2.4.3:

–prefix DIR : Specify the actual location of the WHIZARD installation, including all subdirec-
tories.

–exec prefix DIR : Specify the actual location of the machine-specific parts of the WHIZARD

installation (rarely needed).

–bindir DIR : Specify the actual location of the executables contained in the WHIZARD instal-
lation (rarely needed).

–libdir DIR : Specify the actual location of the libraries contained in the WHIZARD installation
(rarely needed).

–includedir DIR : Specify the actual location of the include files contained in the WHIZARD

installation (rarely needed).

–datarootdir DIR : Specify the actual location of the data files contained in the WHIZARD

installation (rarely needed).

–libtool LOCAL LIBTOOL : Specify the actual location and name of the libtool script that
should be used by WHIZARD.

–lhapdfdir DIR : Specify the actual location and of the LHAPDF installation that should be
used by WHIZARD.
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9.2 WHISH – The WHIZARD Shell/Interactive mode

WHIZARD can be also run in the interactive mode using its own shell environment. This is called
the WHIZARD Shell (WHISH). For this purpose, one starts with the command

/home/user> whizard --interactive

or

/home/user> whizard -i

WHIZARD will preload the Standard Model and display a command prompt:

whish?

You now can enter one or more SINDARIN commands, just as if they were contained in a script
file. The commands are compiled and executed after you hit the ENTER key. When done, you
get a new prompt. The WHISH can be closed by the quit command:

whish? quit

Obviously, each input must be self-contained: commands must be complete, and conditionals
or scans must be closed on the same line.

If WHIZARD is run without options and without a script file, it also reads commands interac-
tively, from standard input. The difference is that in this case, interactive input is multi-line,
terminated by Ctrl-D, the script is then compiled and executed as a whole, and WHIZARD

terminates.
In WHISH mode, each input line is compiled and executed individually. Furthermore, fatal

errors are masked, so in case of error the program does not terminate but returns to the WHISH
command line. (The attempt to recover may fail in some circumstances, however.)

9.3 Graphical user interface

This is planned, but not implemented yet.

9.4 WHIZARD as a library

This is planned, but not implemented yet.
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Chapter 10

Examples

In this chapter we discuss the running and steering of WHIZARD with the help of several examples.
These examples can be found in the share/examples directory of your installation.
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Chapter 11

Implemented physics

11.1 The Monte-Carlo integration routine: VAMP

11.2 The Phase-Space Setup

11.3 The hard interaction models

11.3.1 The Standard Model and friends

11.3.2 Beyond the Standard Model
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MODEL TYPE with CKM matrix trivial CKM

Yukawa test model --- Test

QED with e, µ, τ, γ --- QED

QCD with d, u, s, c, b, t, g --- QCD

Standard Model SM CKM SM

SM with anomalous gauge couplings SM ac CKM SM ac

SM with Hgg, Hγγ, Hµµ --- SM Higgs

SM with charge 4/3 top --- SM top

SM with anomalous top couplings --- SM top anom

SM with K matrix --- SM KM

MSSM MSSM CKM MSSM

MSSM with gravitinos --- MSSM Grav

NMSSM NMSSM CKM NMSSM

extended SUSY models --- PSSSM

Littlest Higgs --- Littlest

Littlest Higgs with ungauged U(1) --- Littlest Eta

Littlest Higgs with T parity --- Littlest Tpar

Simplest Little Higgs (anomaly-free) --- Simplest

Simplest Little Higgs (universal) --- Simplest univ

SM with graviton --- Xdim

UED --- UED

SM with Z ′ --- Zprime

“SQED” with gravitino --- GravTest

Augmentable SM template --- Template

Table 11.1: List of models available in WHIZARD. There are pure test models or models imple-
mented for theoretical investigations, a long list of SM variants as well as a large number of
BSM models.
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Technical details – Advanced Spells

12.1 Efficiency and tuning

Since massless fermions and vector bosons (or almost massless states in a certain approximation)
lead to restrictive selection rules for allowed helicity combinations in the initial and final state.
To make use of this fact for the efficiency of the WHIZARD program, we are applying some
sort of heuristics: WHIZARD dices events into all combinatorially possible helicity configuration
during a warm-up phase. The user can specify a helicity threshold which sets the number of
zeros WHIZARD should have got back from a specific helicity combination in order to ignore that
combination from now on. By that mechanism, typically half up to more than three quarters of
all helicity combinations are discarded (and hence the corresponding number of matrix element
calls). This reduces calculation time up to more than one order of magnitude. WHIZARD shows
at the end of the integration those helicity combinations which finally contributed to the process
matrix element.

Note that this list – due to the numerical heuristics – might very well depend on the number
of calls for the matrix elements per iteration, and also on the corresponding random number
seed.
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Chapter 13

New Models via FeynRules
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Appendix A

SINDARIN Reference

This appendix is out-of-date and needs revision.

In the SINDARIN language, there are certain pre-defined constructors or commands that
cannot be used in different context by the user, which are – in alphabetical order – alias, all,
$analysis filename, and, as, any, beams, cmplx, combine, compile, cuts, $description,
echo, else, exec, expect, false, ?fatal beam decay, if, include, int, integrate, iterations,
$label, lhapdf, library, luminosity, model, n events, no, observable, or, $physical unit,
plot, process, read slha, real, ?rebuild, ?recompile, record, $restrictions, results,
$sample, sample format, scan, seed, show, simulate, sqrts, then, $title, tolerance, true,
unstable, ?vis channels, write analysis, write slha, $xlabel, and $ylabel. Also units
are fixed, like degree, eV, keV, q MeV, GeV, and TeV. Again, these tags are locked and not user-
redefinable. There functionality will be listed in detail below. Furthermore, a variable with a
preceding question mark, ?, is a logical, while a preceding hash, #, denotes a character string
variable. Also, a lot of unary and binary operators exist, + - \ , = : => < > <= >= ^ ()

[] {} ~~~, as well as quotation marks, ”. Note that the different parentheses and brackets
fulfill different purposes, which will be explained below. Comments in a line can be marked by
a hash, #, or an exclamation mark, !.

• alias

This allows to define a collective expression for a class of particles, e.g. to define a generic
expression for leptons, neutrinos or a jet as alias lepton = e1:e2:e3:E1:E2:E3, alias
neutrino = n1:n2:n3:N1:N2:N3, and alias jet = u:d:s:c:U:D:S:C:g, respectively.

• all

all is a function that works on a logical expression and a list, all <log expr> [<list>],
and returns true if and only if log expr is fulfilled for all entries in list, and false oth-
erwise. Examples: all Pt > 100 GeV [lepton] checks whether all leptons are harder
than 100 GeV, all Dist > 2 [u:U, d:D] checks whether all pairs of corresponding
quarks are separated in R space by more than 2. Logical expressions with all can
be logically combined with and and or. (cf. also any, and, no, and or)

• $analysis filename
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This character variable allows to create a LATEXfile for the user anaylsis, and to specify
its name. If this variable is not set, the analysis will be directed to the screen output.
(cf. also write analysis)

• and

This is the standard two-place logical connective that has the value true if both of its
operands are true, otherwise a value of false. It is applied to logical values, e.g. cut
expressions. (cf. also or).

• as

cf. compile

• ascii

Specifier for the sample format command to demand the generation of the standard
WHIZARD verbose ASCII event files. (cf. also $sample, sample format)

• any

any is a function that works on a logical expression and a list, any <log expr> [<list>],
and returns true if log expr is fulfilled for any entry in list, and false otherwise.
Examples: any PDG == 13 [lepton] checks whether any lepton is a muon, any E > 2 *

mW [jet] checks whether any jet has an energy of twice the W mass. Logical expressions
with any can be logically combined with and and or. (cf. also all, and, no, and or)

• athena

Specifier for the sample format command to demand the generation of the ATHENA
variant for HEPEVT ASCII event files. (cf. also $sample, sample format)

• beams

This specifies the contents and structure of the beams. If this command is absent in the
input file, WHIZARD automatically takes the two incoming partons (or one for decays)
of the corresponding process as beam particles and no structure functions are applied.
Protons and antiprotons as beam particles are predefined as p and pbar, respectively. A
structure function, like lhapdf, ISR, EPA and so on are switched on as e.g. beams = p,

p => lhapdf. (cf. also circe, circe2, lhapdf).

• logical ?check events file

Setting this to false turns off all sanity checks when reading a raw event file with previously
generated events. Use this at your own risk; the program may return wrong results or
crash if data do not match.

• logical ?check grid file

Setting this to false turns off all sanity checks when reading a grid file with previous
integration data. Use this at your own risk; the program may return wrong results or
crash if data do not match.
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• logical ?check grid file

Setting this to false turns off all sanity checks when reading a previously generated phase-
space configuration file. Use this at your own risk; the program may return wrong results
or crash if data do not match.

• int checkpoint

Setting this variable to a positive integer n instructs simulate to print out a progress
summary every n events.

• cmplx

Defines a complex variable. (to be finalized still

• combine

The combine [<list1>, <list2>] operation makes a particle list whose entries are the
result of adding (the momenta of) each pair of particles in the two input lists list1, list2.
For example, combine [incoming lepton, lepton] constructs all mutual pairings of an
incoming lepton with an outgoing lepton (an alias for the leptons has to defined, of course).

• compile

The compile command is mandatory, it invokes the compilation of the process(es) (i.e. the
matrix element file(s)) to be compiled as a shared library. This shared object file has the
standard name processes.so and resides in the .libs subdirectory of the corresponding
user workspace. If the user has defined a different library name lib name with the library
command, then WHIZARD compiles this as the shared object .libs/lib name.so. (This
allows to split process classes and to avoid too large libraries.) Another possibility is to
use the command compile as "static name". This will compile and link the process
library in a static way and create the static executable static name in the user workspace.
(cf. also library)

• cuts

This command defines the cuts to be applied to certain processes. The syntax is: cuts =

<log class> <log expr> [<unary or binary particle (list) arg>], where the cut
expression must be initialized with a logical classifier log class like all, any, no. The
logical expression log expr contains the cut to be evaluated. Note that this need not only
be a kinematical cut expression like E > 10 GeV or 5 degree < Theta < 175 degree,
but can also be some sort of trigger expression or event selection, e.g. PDG == 15 would
select a tau lepton. Whether the expression is evaluated on particles or pairs of particles
depends on whether the discriminating variable is unary or binary, Dist being obviously
binary, Pt being unary. Note that some variables are both unary and binary, e.g. the
invariant mass M . Cut expressions can be connected by the logical connectives and and
or. The cuts statement acts on all subsequent process integrations and analyses until a
new cuts statement appears. (cf. also all, any, Dist, E, M, no, Pt).

• debug

Specifier for the sample format command to demand the generation of the very verbose
WHIZARD ASCII event file format intended for debugging. (cf. also $sample, sample format)
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• degree

Expression specifying the physical unit of degree for angular variables, e.g. the cut ex-
pression function Theta. (if no unit is specified for angular variables, radians are used).

• $description

String variable that allows to specify a description text for the analysis, $description
= "analysis description text". This line appears below the title of a corresponding
analysis, on top of the respective plot. (cf. analysis, $title)

• ?diags
Logical variable that allows to give out a Postscript or PDF file for the Feynman diagrams
for a O’Mega process. (cf. ?diags color).

• ?diags
Same as ?diags, but switches on color flow instead of Feynman diagram generation. (cf.
?diags).

• echo

Allows to put verbose information on the screen during execution, e.g. echo ("Hello,

world!"). (cf. also show)

• else

cf. if

• eV

Physical unit, stating that the corresponding number is in electron volt.

• exec

Constructor exec ("<cmd name>") that demands WHIZARD to execute/run the com-
mand cmd name. For this to work that specific command must be present either in the
path of the operating system or as a command in the user workspace.

• expect

The binary function expect compares two numerical expressions whether they are fulfill a
certain ordering condition or are equal up to a specific uncertainty or tolerance which can
bet set by the specifier tolerance, i.e. in principle it checks whether a logical expression
is true. The expect function does actually not just check a value for correctness, but also
records its result. If failures are present when the program terminates, the exit code is
nonzero. The syntax is expect (<num1> <log comp> <num2>), where num1 and num2 are
two numerical values (or corresponding variables) and log comp is one of the following
logical comparators: <, >, <=, >=, ==~, <>, ~~, ~. (cf. also <, >, <=, >=, ==, <>, ~~, ~,
tolerance).

• $extension ascii

String variable that allows via $extension ascii = "<suffix>" to specify the suffix for
the file name.suffix to which events in a the standard WHIZARD verbose ASCII format

<
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are written. If not set, the default file name and suffix is <process name>.evt. (cf. also
sample format, $sample)

• $extension ascii long

String variable that allows via $extension ascii long = "<suffix>" to specify the
suffix for the file name.suffix to which events in the so called long variant of the WHIZARD
1 style HEPEVT ASCII format are written. If not set, the default file name and suffix is
<process name>.long.evt. (cf. also sample format, $sample)

• $extension ascii short

String variable that allows via $extension ascii short = "<suffix>" to specify the
suffix for the file name.suffix to which events in the so called short variant of the WHIZARD
1 style HEPEVT ASCII format are written. If not set, the default file name and suffix is
<process name>.short.evt. (cf. also sample format, $sample)

• $extension debug

String variable that allows via $extension debug = "<suffix>" to specify the suffix for
the file name.suffix to which events in a a long verbose format with debugging informa-
tion are written. If not set, the default file name and suffix is <process name>.debug.
(cf. also sample format, $sample)

• $extension hepevt

String variable that allows via $extension hepevt = "<suffix>" to specify the suffix
for the file name.suffix to which events in the WHIZARD 1 style HEPEVT ASCII format
are written. If not set, the default file name and suffix is <process name>.hepevt. (cf.
also sample format, $sample)

• $extension hepmc

String variable that allows via $extension hepmc = "<suffix>" to specify the suffix
for the file name.suffix to which events in the HepMC format are written. If not set,
the default file name and suffix is <process name>.hepmc. (cf. also sample format,
$sample)

• $extension lhef

String variable that allows via $extension lhef = "<suffix>" to specify the suffix for
the file name.suffix to which events in the LHEF format are written. If not set, the
default file name and suffix is <process name>.lhef. (cf. also sample format, $sample)

• false

Constructor stating that a logical expression or variable is false, e.g. ?<log var> =

false. (cf. also true).

• ?fatal beam decay

Logical variable that let the user decide whether the possibility of a beam decay is treated
as a fatal error or only as a warning. An example is a process bt→ X, where the bottom
quark as an inital state particle appears as a possible decay product of the second incoming
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particle, the top quark. This might trigger inconsistencies or instabilities in the phase
space set-up.

• GeV

Physical unit, energies in 109 electron volt. This is the default energy unit of WHIZARD.

• hepevt

Specifier for the sample format command to demand the generation of HEPEVT ASCII
event files. (cf. also $sample, sample format)

• hepmc

Specifier for the sample format command to demand the generation of HepMC ASCII
event files. Note that this is only available if the HepMC package is installed and correctly
linked. (cf. also $sample, sample format)

• if

Conditional clause with the construction if <log expr> then <expr> else <expr>.
Note that there must be an end if statement. For more complicated expressions it is bet-
ter to use expressions in parentheses: if (<log expr>) then {<expr>} else {<expr>}.
Examples are a selection of up quarks over down quarks depending on a logical variable:
if ?ok then u else d, or the setting of an integer variable depending on the rapidity of
some particle: if (eta > 0) then { a = +1} else { a = -1}. The then constructor
is not mandatory and can be omitted.

• include

The include statement, include ("file.sin") allows to include external SINDARIN
files file.sin into the main WHIZARD input file. A standard example is the inclusion
of the standard cut file default cuts.sin.

• int

This is a constructor to specify integer constants in the input file. Strictly speaking, it is a
unary function setting the value int val of the integer variable int var: int <int var>

= <int val>. (cf. also real and cmplx)

• integrate

The integrate (<proc name>) { <integrate options> } command invokes the inte-
gration (phase-space grid generation and Monte-Carlo sampling of the process proc name

(which can also be a list of processes) with the integration options <integrate options.
Right now the only option is to specify the number of iterations and calls per integration
during the Monte-Carlo phase-space integration via iterations = <n iterations>:<n calls>.
Note that this can be list, separated by colons, which breaks up the integration process
into units of the specified number of integrations and calls each.

• iterations

Option to set the number of iterations and calls per iteration during the Monte-Carlo
phase-space integration process, cf. integrate.
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• ?keep beams

The logical variable ?keep beams = true/false specifies whether beam particles and
beam remnants are included when writing event files. For example, in order to read Les
Houches accord event files into PYTHIA, no beam particles are allowed.

• keV

Physical unit, energies in 103 electron volt.

• $label

This is a string variable, $label = "label name" that allows to specify a label label name

for analysis plots on the x axis. It is only taken into account if the variable $xlabel has
not been set, in which case it is overwritten by the string value of that variable. (cf. also
xlabel, ylabel).

• lha

Specifier for the sample format command to demand the generation of the WHIZARD
1 LHA ASCII event format files. (cf. also $sample, sample format)

• lhapdf

This is a specifier to demand calling LHAPDF parton densities to integrate processes in
hadron collisions. (cf. beams)

• lhef

Specifier for the sample format command to demand the generation of the Les Houches
Accord (LHEF) event format files, with the XML headers. (cf. also $sample, sample format)

• library

The command library = "<lib name>" allows to specify a separate shared object li-
brary archive lib name.so, not using the standard library processes.so. Those libraries
(when using shared libraries) are located in the .libs subdirectory of the user workspace.
Specifying a separate library is useful for splitting up large lists of processes, or to restrict
a larger number of different loaded model files to one specific process library. (cf. also
compile)

• long

Specifier for the sample format command to demand the generation of the long variant
of HEPEVT ASCII event files. (cf. also $sample, sample format)

• luminosity This specifier luminosity = <num> sets the integrated luminosity for the
event generation of the processes in the SINDARIN input files. Note that WHIZARD
itself chooses the number from the luminosity or from the n events specifier, whichever
would give the larger number of events. As this depends on the cross section under
consideration, it might be different for different processes in the process list. Furthermore,
the luminosity or n events command has to be invoked after the corresponding logical
variable which tells WHIZARD to write an event file in a specific format. (cf. n events,
$sample, sample format)
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• MeV

Physical unit, energies in 106 electron volt.

• model

With this specifier, model = <MODEL NAME>, one sets the hard interaction physics model
for the processes defined after this model specification. The list of available models can
be found in Table 11.1. Note that the model specification can appear arbitrarily often
in a SINDARIN input file, e.g. for compiling and running processes defined in different
physics models.

• mokka

Specifier for the sample format command to demand the generation of the MOKKA
variant for HEPEVT ASCII event files. (cf. also $sample, sample format)

• no

no is a function that works on a logical expression and a list, no <log expr> [<list>],
and returns true if and only if log expr is fulfilled for none of the entries in list, and
false otherwise. Examples: no Pt < 100 GeV [lepton] checks whether no lepton is
softer than 100 GeV. It is the logical opposite of the function all. Logical expressions
with no can be logically combined with and and or. (cf. also all, any, and, and or)

• n events

This specifier n events = <num> sets the number of events for the event generation of
the processes in the SINDARIN input files. Note that WHIZARD itself chooses the
number from the n events or from the luminosity specifier, whichever would give the
larger number of events. As this depends on the cross section under consideration, it
might be different for different processes in the process list. Furthermore, the n events

or luminosity command has to be invoked after the corresponding logical variable which
tells WHIZARD to write an event file in a specific format. (cf. luminosity, $sample,
sample format)

• observable

With this, observable = <obs spec>, the user is able to define a variable specifier
obs spec for observables. These can be reused in the analysis, e.g. as a record, as
functions of the fundamental kinematical variables of the processes. (cf. analysis,
record)

• or

This is the standard two-place logical connective that has the value true if one of its
operands is true, otherwise a value of false. It is applied to logical values, e.g. cut
expressions. (cf. also and).

• $physical unit

This is a string variable, $physical unit = "<unit name>’’, that allows to set a LATEXname
unit name for the physical unit of a label of an analysis plot. This unit is then also used
for calculations within the analysis set-up.
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• plot

(cf. record)

• process

Allows to set a hard interaction process, either for a decay process decay proc as process
<decay proc> = <mother> => <daughter1>, <daughter2>, ..., or for a scattering pro-
cess scat proc as <incoming1>, <incoming2> => <outgoing1>, <outgoing2>, ....
Note that there can be arbitrarily many processes to be defined in a SINDARIN input
file. (cf. also restrictions)

• read slha

Tells WHIZARD to read in an input file in the SUSY Les Houches accord (SLHA), as
read slha ("slha file.slha"). Note that the files for the use in WHIZARD should
have the suffix .slha. (cf. also write slha)

• real

This is a constructor to specify real constants in the input file. Strictly speaking, it
is a unary function setting the value real val of the integer variable real var: real

<real var> = <real val>. (cf. also int and cmplx)

• real epsilon

Predefined real; the relative uncertainty instrinsic to the floating point type used by
WHIZARD.

• int real precision

Predefined integer; the decimal precision of the floating point type used by WHIZARD.

• int range

Predefined integer; the decimal range of the floating point type used by WHIZARD.

• real tiny

Predefined real; the smallest number which can be represented by the floating point type
used by WHIZARD.

• ?rebuild

The logical variable ?rebuild = true/false specifies whether the matrix element code
for processes is re-generated by the matrix element generator O’Mega (e.g. if the process
has been changed, but not its name). This can also be set as a command-line option
whizard --rebuild. The default is false, i.e. code is never re-generated if it is present
and the MD5 checksum is valid. (cf. also recompile).

• ?recompile

The logical variable ?recompile = true/false specifies whether the matrix element
code for processes is re-compiled (e.g. if the process code has been manually modified by
the user). This can also be set as a command-line option whizard --recompile. The
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default is false, i.e. code is never re-compiled if its corresponding object file is present.
(cf. also rebuild)

• record

The record constructor provides an internal data structure in SINDARIN input files.
Its syntax is in general record <record name> (<cmd expr>). The <cmd expr> could
be the definition of a tuple of points for a histogram or an eval constructor that tells
WHIZARD e.g. by which rule to calculate an observable to be stored in the record
record name. (cf. also eval)

• $restrictions

This is an optional argument for process definitions. It defines a string variable, process
<process name> = <particle1>, <particle2> => <particle3>, <particle4>, ...

{ $restrictions = "<restriction def>" }. The string argument restriction def

is directly transferred during the code generation to the matrix element generator O’Mega.
It has to be of the form n1 + n2 + ... ~ <particle (list)>, where n1 and so on
are the numbers of the particles above in the process definition. The tilde specifies
a certain intermediate state to be equal to the particle(s) in particle (list). An ex-
ample is process eemm z = e1, E1 => e2, E2 { $restrictions = "1+2 ~ Z" } re-
stricts the code to be generated for the process e−e+ → µ−µ+ to the s-channel Z-boson
exchange. (cf. also process)

• results

Only used in the combination show(results). Forces WHIZARD to print out a results
summary for the integrated processes. (cf. also show)

• $sample

String variable to set the (base) name of the event output format, e.g. $sample = "foo"

will result in an intrinsic binary format event file foo.evx. (cf. also sample format,
simulate, hepevt, ascii, athena, debug, long, short, hepmc, lhef, lha, stdhep,
stdhep up)

• sample format

Variable that allows the user to specify additional event formats beyond the WHIZARD

native binary event format. Its syntax is sample format = <format>, where <format>

can be any of the following specifiers: hepevt, ascii, athena, debug, long, short, hepmc,
lhef, lha, stdhep, stdhep up. (cf. also $sample, simulate, hepevt, ascii, athena,
debug, long, short, hepmc, lhef, lha, stdhep, stdhep up)

• scan

Constructor to perform loops over variables or scan over processes in the integration pro-
cedure. The syntax is scan <var> <var name> (<value list> or <value init> =>

<value fin> /<incrementor> <increment>) { <scan cmd> }. The variable var can
be specified if it is not a real, e.g. an integer. var name is the name of the variable
which is also allowed to be a predefined one like seed. For the scan, one can either

~
~
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specify an explicit list of values value list, or use an initial and final value and a
rule to increment. The scan cmd can either be just a show to print out the scanned
variable or the integration of a process. Examples are: scan seed (32 => 1 / / 2) {
show (seed value) } , which runs the seed down in steps 32, 16, 8, 4, 2, 1 (division
by two). scan mW (75 GeV, 80 GeV => 82 GeV /+ 0.5 GeV, 83 GeV => 90 GeV /*

1.2) { show (sw) } scans over the W mass for the values 75, 80, 80.5, 81, 81.5, 82, 83
GeV, namely one discrete value, steps by adding 0.5 GeV, and increase by 20 % (the latter
having no effect as it already exceeds the final value). It prints out the corresponding
value of the effective mixing angle which is defined as a dependent variable in the model
input file(s). scan sqrts (500 GeV => 600 GeV /+ 10 GeV) { integrate (proc) }
. integrates the process proc in eleven increasing 10 GeV steps in center-of-mass energy
from 500 to 600 GeV.

• seed

Integer variable seed = <num> that allows to set a specific random seed num. If not set,
WHIZARD takes the time from the system clock to determine the random seed.

• short

Specifier for the sample format command to demand the generation of the short variant
of HEPEVT ASCII event files. (cf. also $sample, sample format)

• show

This is a unary function that is operating on specific constructors in order to print them
out in the WHIZARD screen output as well as the log file whizard.log. Examples
are show(<parameter name>) to issue a specific parameter from a model or a constant
defined in a SINDARIN input file, show(integral(<proc name>)), show(library),
show(results), or show(¡var¿) for any arbitrary variable. (cf. also echo, library,
results)

• simulate

This command invokes the generation of events for the process proc by means of simulate
(<proc>).
Optional arguments: $sample, sample format, checkpoint
(cf. also integrate, luminosity, n events, $sample, sample format, checkpoint)

• sqrts

Real variable in order to set the center-of-mass energy for the collisions (collider energy√
s, not hard interaction energy sqrtŝ): sqrts = <num> <phys unit>. The physical unit

can be one of the following eV, keV, MeV, GeV, and TeV. If absent, WHIZARD takes GeV

as its standard unit.

• stable

This constructor allows particles in the final states of processes in decay cascade set-up
to be set as stable, and not letting them decay. The syntax is stable <particle name.
(cf. also unstable)
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• stdhep

Specifier for the sample format command to demand the generation of binary StdHEP
event files based on the HEPEVT common block. Note that this is only available if the
StdHEP package is installed and correctly linked. (cf. also $sample, sample format)

• stdhep up

Specifier for the sample format command to demand the generation of binary StdHEP
event files based on the HEPRUP/HEPEUP common blocks. Note that this is only
available if the StdHEP package is installed and correctly linked. (cf. also $sample,
sample format)

• TeV

Physical unit, for energies in 1012 electron volt.

• then

Alternative option inside a conditional clause, not mandatory, hence maybe be omitted,
cf. if.

• $title

This string variable sets the title of a plot in a WHIZARD analysis setup, e.g. a histogram
or an observable. The syntax is $title = "<your title>". This title appears as a
section header in the analysis file, but not in the screen output of the analysis. (cf. also
$description, $label, $xlabel, $ylabel).

• tolerance

Real variable that defines the tolerance with which the (logical) function expect accepts
equality or inequality: tolerance = <num>. This can e.g. be used for cross-section tests
and backwards compatibility checks. (cf. also expect)

• true

Constructor stating that a logical expression or variable is true, e.g. ?<log var> = true.
(cf. also false).

• unstable

This constructor allows to let final state particles of the hard interaction undergo a subse-
quent (cascade) decay (in the on-shell approximation). For this the user has to define the
list of desired Decay channels as unstable <mother> (<decay1>, <decay2>, ....),
where mother is the mother particle, and the argument is a list of decay channels. Note
that these have to be provided by the user as in the example in Fig. A.1. First, the Z
decays to electrons and up quarks are generated, then ZZ production at a 500 GeV ILC
is called, and then both Zs are decayed according to the probability distribution of the
two generated decay matrix elements. This obviously allows also for inclusive decays. (cf.
also stable)

• ?vis channels

Optional logical argument for the integrate command that demands WHIZARD to generate
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process zee = Z => e1, E1

process zuu = Z => u, U

process zz = e1, E1 => Z, Z

compile

integrate (zee) { iterations = 1:100 }

integrate (zuu) { iterations = 1:100 }

sqrts = 500 GeV

integrate (zz) { iterations = 3:5000, 2:5000 }

unstable Z (zee, zuu)

Figure A.1: SINDARIN input file for unstable particles and inclusive decays.

a PDF or postscript output showing the classification of the found phase space channels
according to their properties: integrate (foo) iterations=3:10000 ?vis channels

= true. The default is false. (cf. also integrate)

• write analysis

The write analysis statement tells WHIZARD to write the analysis setup by the user
for the SINDARIN input file under consideration. If no $analysis filename is provided,
the analysis (including the histograms) are printed out on the screen, otherwise they are
written to a file defined by that specific string variable. (cf. also $analysis filename)

• write slha

Demands WHIZARD to write out a file in the SUSY Les Houches accord (SLHA). (Cf.
also read slha)

• $xlabel

String variable, $xlabel = "<LaTeX code>", that sets the x axis label in a plot or his-
togram in a WHIZARD analysis. (cf. also label and $ylabel)

• $ylabel

String variable, $ylabel = "<LaTeX code>", that sets the y axis label in a plot or his-
togram in a WHIZARD analysis. (cf. also label and $xlabel)
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