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ABSTRACT

WHIZARD is a program system designed for the efficient calculation of multi-
particle scattering cross sections and simulated event samples. The generated
events can be written to file in various formats (including HepMC, LHEF,
STDHEP, and ASCII) or analyzed directly on the parton level using a built-
in LATEX-compatible graphics package.

Complete tree-level matrix elements are generated automatically for arbi-
trary partonic multi-particle processes by calling the built-in matrix-element
generator O’Mega. Beyond hard matrix elements, WHIZARD can generate
(cascade) decays with complete spin correlations. Various models beyond the
SM are implemented, in particular, the MSSM is supported with an interface
to the SUSY Les Houches Accord input format. Matrix elements obtained
by alternative methods (e.g., including loop corrections) may be interfaced
as well.

The program uses an adaptive multi-channel method for phase space inte-
gration, which allows to calculate numerically stable signal and background
cross sections and generate unweighted event samples with reasonable effi-
ciency for processes with up to eight and more final-state particles. Polariza-
tion is treated exactly for both the initial and final states. Quark or lepton
flavors can be summed over automatically where needed.

For hadron collider physics, an interface to the LHAPDF library is provided.

For showering, fragmenting and hadronizing the final state, a PYTHIA and
HERWIG interface are provided which follow the Les Houches Accord.

The WHIZARD distribution is available at

http://whizard.event-generator.org

or at

http://projects.hepforge.org/whizard

where also the svn repository is located.
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Chapter 1

Introduction

1.1 Disclaimer

This is a very preliminary version of the WHIZARD manual. Many parts are still missing or
incomplete, and some parts will be rewritten and improved soon. To find updated versions of
the manual, visit the WHIZARD website

http://whizard.event-generator.org

or consult the current version in the svn repository on http: // projects. hepforge. org/

whizard directly.
For information that is not (yet) written in the manual, please consult the examples in the

WHIZARD distribution. You will find these in the subdirectory share/examples of the main
directory where WHIZARD is installed.
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1.2 Overview

1.3 About examples in this manual

Although WHIZARD has been designed as a Monte Carlo event generator for LHC physics, several
elementary steps and aspects of its usage throughout the manual will be demonstrated with
the famous textbook example of e+e− → µ+µ−. This is the same process, the textbook by
Peskin/Schroeder [14] uses as a prime example to teach the basics of quantum field theory.
We use this example not because it is very special for WHIZARD or at the time being a relevant
physics case, but simply because it is the easiest fundamental field theoretic process without
the complications of structured beams (which can nevertheless be switched on like for ISR and
beamstrahlung!), the need for jet definitions/algorithms and flavor sums; furthermore, it easily
accomplishes a demonstration of polarized beams. After the basics of WHIZARD usage have been
explained, we move on to actual physics cases from Tevatron or LHC.



Chapter 2

Installation

2.1 Prerequisites and Installation

The concept of the WHIZARD installation has been changed from version 1 to version 2. Now
WHIZARD is centrally installed on a computer, e.g. in the /usr/local, and then the user
has a working space which is completely separated from the WHIZARD installation directory.
The WHIZARD tarball can be downloaded either from the WHIZARD webpage, http://whizard.
event-generator.org, or the corresponding HepForge webpage, http://projects.hepforge.
org/whizard. On the WHIZARD webpage, one can either download the tarball of the most re-
cent version (or older versions), or one can check out the latest version from the subversion
(svn) repository. The latter is only recommended for developers and users willing to accept
that maybe not all newly installed features are already working. The check-out from the svn
repository is done with the following command:

svn checkout http://svn.hepforge.org/whizard/trunk/ SomeLocalDir

Note again, that the subversion contains the latest developer version. In order to be able,
to compile this, one has to first generate the configure script out of the file configure.ac

by running autoreconf (NOT autoconf) which is part of the autoconf/automake (http://
www.gnu.org/software/autoconf/ and http://www.gnu.org/software/automake) package.
Furthermore, the development version also needs the noweb tools to be installed on the system
in order to extract the source codes and documentation from several so called .nw files. The
noweb package can be downloaded and installed from http://www.cs.tufts.edu/~nr/noweb/.

The general prerequisites for the installation (i.e. also from the tarball, not only from the
svn) are standard tools for software development like make etc., and two different compilers, a
FORTRAN2003 for the WHIZARD core and its corresponding libraries as well as an O’Caml compiler
for the O’Mega matrix element generator.

Unpack the tarball, go to the WHIZARD directory, create a new directory and go to it. In
that directory, perform a ../configureFC=<yourFORTRANcompiler>--prefix=/usr/local.
Note that this is because the source and compile directories should be different to avoid any
problems during compilation and installation. ../configure--help shows you the options
for the configure process you have. The FC environment variable allows you to specify your

9
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FORTRAN compiler of choice. Note that WHIZARD 2 has been written in FORTRAN2003 in a
fully object-oriented way. We highly recommend usage of the standard gfortran compiler
from version 4.5.0 on. You can access the help menu of configure by ../configure --help.
./configure -V shows you the actual version of your downloaded WHIZARD distribution. The
possible environment variables are:

CC C compiler command

CFLAGS C compiler flags

LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a

nonstandard directory <lib dir>

LIBS libraries to pass to the linker, e.g. -l<library>

CPPFLAGS C/C++/Objective C preprocessor flags, e.g. -I<include dir> if

you have headers in a nonstandard directory <include dir>

CPP C preprocessor

FC Fortran compiler command

FCFLAGS Fortran compiler flags

CXX C++ compiler command

CXXFLAGS C++ compiler flags

CXXCPP C++ preprocessor

For most of these there is no need to be set during installation.

The configure process checks for the build and host system type; only if this is not detected
automatically, the user would have to specify this by himself. After that system-dependent files
are searched for, LaTeX and Acroread for documentation and plots, the FORTRAN compiler is
checked, and finally the O’Caml compiler. The next step is the checks for external programs
like LHAPDF and HepMC. Finally, all the Makefiles are being built.

The compilation is done by invoking make and finally make install. You could also do a
make check in order to test whether the compilation has produced sane files on your system.
This is highly recommended.

Be aware that there be problems for the installation if the install path or a user’s home
directory is part of an AFS file system. Several times problems were encountered connected
with conflicts with permissions inside the OS permission environment variables and the AFS
permission flags which triggered errors during the make install procedure.

For specific problems that might have been encountered in rare circumstances for some
FORTRAN compilers confer the webpage

It is possible to compile WHIZARD without the O’Caml parts of O’Mega, namely by using
the --disable-omega option of the configure. This will result in a built of WHIZARD with
the O’Mega Fortran library, but without the binaries for the matrix element generation. All
selftests (cf. 2.1.2) requiring O’Mega matrix elements are thereby switched off. Note that you
can install such a built (e.g. on a batch system without O’Caml installation), but the try to
build a distribution (all make distxxx targets) will fail.
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2.1.1 Installation of optional external programs

There are several optional external programs that can be installed and linked to WHIZARD. The
probably most important is LHAPDF [16] for using parton distribution functions (PDFs) for
hadron colliders. Other external programs or libraries are HepMC [17] and StdHEP [?] for the
corresponding event formats. As LHAPDF has become a widely accepted tool and is easily
available from the Hepforge server, we decided not to ship WHIZARD with a standard PDF. Note
that because we believe this code is outdated by now, from WHIZARD 2.0 on we do no longer
support the PDFLIB interface from the CERNLIB library.

As the LHAPDF homepage states, it provides a unified and easy to use interface to modern
PDF sets. The LHAPDF package is available from the Hepforge address: http://projects.

hepforge.org/lhapdf/. A comprehensive manual and description on how to install it. The
basic procedure is the same as for WHIZARD itself, namely unpack it, configure it with a flag
FC=<your compiler> for the Fortran 95 compiler and a flag --prefix=<install dir.> for the
install directory, and then do a make. After that you can do an optional make check. Finally,
install LHAPDF by doing make install. It is not mandatory to compile LHAPDF with the
same Fortran compiler as WHIZARD, but of course desirable. In the worst case, when configuring
WHIZARD you have to specify the run-time library for the Fortran compiler for LHAPDF by
LIBS=-L<Fortran run time>. If this library is in a system-accessible library path, this is not
necessary. When configuring WHIZARD, WHIZARD looks for the binary lhapdf-config (which
is present since LHAPDF version 4.1.0): if this file is in an executable path, the environment
variables for LHAPDF are automatically recognized by WHIZARD, as well as the version number.
This should look like this in the configure output:

configure: --------------------------------------------------------------

configure: --- LHAPDF ---

configure:

checking for lhapdf-config... /usr/local/bin/lhapdf-config

checking the LHAPDF version... 5.8.2

checking the LHAPDF pdfsets path... /usr/local/share/lhapdf/PDFsets

checking for initpdfsetm in -lLHAPDF... yes

configure: --------------------------------------------------------------

If you want to use a different LHAPDF (e.g. because the one installed on your system by
default is an older one), the preferred way to do so is to put the lhapf-config in an executable
path that is checked before the system paths, e.g. <home>/bin.

A possible error could arise if LHAPDF had been compiled with a different Fortran compiler
than WHIZARD, and if the run-time library of that Fortran compiler had not been included in
the WHIZARD configure process. The output then looks like this:

configure: --------------------------------------------------------------

configure: --- LHAPDF ---

configure:

checking for lhapdf-config... /usr/local/bin/lhapdf-config

checking the LHAPDF version... 5.8.2

checking the LHAPDF pdfsets path... /usr/local/share/lhapdf/PDFsets

checking for initpdfsetm in -lLHAPDF... no

configure: --------------------------------------------------------------

http://projects.hepforge.org/lhapdf/
http://projects.hepforge.org/lhapdf/
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So, the WHIZARD configure found the LHAPDF distribution, but could not link because it
could not resolve the symbols inside the library. In case of failure, for more details confer the
config.log.

The HepMC package [17] is an object oriented event record written in C++ for High Energy
Physics Monte Carlo Generators. Many extensions from HEPEVT, the Fortran HEP standard,
are supported: the number of entries is unlimited, spin density matrices can be stored with each
vertex, flow patterns (such as color) can be stored and traced, integers representing random
number generator states can be stored, and an arbitrary number of event weights can be
included. The HepMC webpage is: https://savannah.cern.ch/projects/hepmc/, and the
package can be downloaded from http://lcgapp.cern.ch/project/simu/HepMC/download/.
Detailed information on the installation and usage can be found there. We give here only some
brief details relevant for the usage with WHIZARD: For the compilation of HepMC one needs a C++

compiler. Then the procedure is the same as for the WHIZARD package, namely configure HepMC:
configure --with-momentum=GEV --with-length=MM --prefix=<install dir>. Note that
the particle momentum and decay length flags are mandatory, and we highly recommend to
set them to the values GEV and MM, respectively. After configuration, do make, an optional make
check (which might sometimes fail for non-standard values of momentum and length), and
finally make install.

A WHIZARD configuration for HepMC is a bit lengthier as the C++ details have to be checked
first:

configure: --------------------------------------------------------------

configure: --- HepMC ---

configure:

checking for g++... g++

checking whether we are using the GNU C++ compiler... yes

checking whether g++ accepts -g... yes

checking dependency style of g++... gcc3

checking whether we are using the GNU C++ compiler... (cached) yes

checking whether g++ accepts -g... (cached) yes

checking dependency style of g++... (cached) gcc3

checking how to run the C++ preprocessor... g++ -E

checking for ld used by g++... /usr/bin/ld

checking if the linker (/usr/bin/ld) is GNU ld... yes

checking whether the g++ linker (/usr/bin/ld) supports shared libraries... yes

checking for g++ option to produce PIC... -fPIC -DPIC

checking if g++ PIC flag -fPIC -DPIC works... yes

checking if g++ static flag -static works... yes

checking if g++ supports -c -o file.o... yes

checking if g++ supports -c -o file.o... (cached) yes

checking whether the g++ linker (/usr/bin/ld) supports shared libraries... yes

checking dynamic linker characteristics... GNU/Linux ld.so

checking how to hardcode library paths into programs... immediate

checking the HepMC version... 2.05.01

checking for LDFLAGS_STATIC: host system is linux-gnu: static flag...

checking for GenEvent class in -lHepMC... yes

checking whether we are using the GNU Fortran compiler... (cached) yes

checking whether /usr/bin/gfortran accepts -g... (cached) yes

https://savannah.cern.ch/projects/hepmc/
http://lcgapp.cern.ch/project/simu/HepMC/download/
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configure: --------------------------------------------------------------

If WHIZARD does not automatically find the HepMC distribution (because it is installed in a
non-standard path), or you want to use a different version than installed on your system, then
set the environment variable HEPMC DIR during the WHIZARD configuration to the corresponding
HepMC installation directory:

./configure HEPMC_DIR=<HEPMC install dir.> CXXFLAGS=<C++ falgs>

The environment variable CXXFLAGS allows you to set specific C/C++ preprocessor flags, e.g.
non-standard include paths for header files.

Besides the fact that StdHEP contains a set of translation routines which convert Herwig,
Jetset, Isajet, or QQ events to and from the standard HEP event format, it also contains utility
routines to work with the HEPEVT common block and a set of I/O routines. The second point
is the interesting one for the usage with WHIZARD, as StdHEP provides a possibility to write
machine-independent binary event files, using either the HEPEVT or the HEPRUP/HEPEUP
common block. The StdHEP webpage is http://cepa.fnal.gov/psm/stdhep/ and the pack-
age can be downloaded from http://cepa.fnal.gov/psm/stdhep/getStdHep.shtml. Std-
HEP is written in Fortran77. Although not really necessary, we strongly advice to compile
StdHEP with the same compiler as WHIZARD. Otherwise, one has to add the corresponding
Fortran77 run-time libraries to the configure command for WHIZARD. In order to compile Std-
HEP with a modern Fortran90/95/03 compiler, add the line F77 = <your Fortran compiler>

below the MAKE=make statement in the GNUmakefile of the StdHEP distribution after you ex-
tracted the tarball (Note that there might be some difficulties that some modern compilers
do not understand the D debugging precompiler statements in some of the files. In that case
just replace them by comment characters, C. Also, some of the hard-coded compiler flags are
tailor-made for old-fashioned g77). After that just do make. Copy the libraries created in the
lib directory of your StdHEP distribution to a directory which is in the LD LIBRARY PATH of
your computer.

The WHIZARD configure script will search for the two libraries libFmcfio.a and libstdhep.a.
When WHIZARD does not find the StdHEP library, you have to set the location of the two libraries
explicitly:

./configure ... ... ... STDHEP=<stdhep path>/libstdhep.a

FMCFIO=<fmcfio path>/libFmcfio.a

The corresponding configure output will look like this:

configure: --------------------------------------------------------------

configure: --- STDHEP ---

configure:

checking for libFmcfio.a... /usr/local/lib/libFmcfio.a

checking for libstdhep.a... /usr/local/lib/libstdhep.a

checking for stdxwinit in -lstdhep -lFmcfio... yes

configure: --------------------------------------------------------------

http://cepa.fnal.gov/psm/stdhep/
http://cepa.fnal.gov/psm/stdhep/getStdHep.shtml
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In the last line, WHIZARD checks whether it can correctly access functions from the library. If
some symbols could not be resolved, it will put a “no” in the last entry. Then the config.log

will tell you more about what went wrong in detail.

2.1.2 WHIZARD self tests/checks

WHIZARD has a number of self-consistency checks and test which assure that most of its features
are running in the intended way. The standard procedure to invoke these self tests is to perform
a make check from the build directory. If src and build directories are the same, all relevant
files for these self-tests reside in the test subdirectory of the main WHIZARD directory. In that
case, one could in principle just call the scripts individually from the command line. Note, that
if src and build directory are different as recommended, then the input files will have been
installed in prefix/share/whizard/test, while the corresponding test shell scripts remain in
the srcdir/test directory. As the main shell script run_whizard_sh has been built in the
build directory, one now has to copy the files over by and set the correct paths by hand, if
one wishes to run the test scripts individually. make check still correctly performs all WHIZARD
self-consistency tests.

There are additional, quite extensiv numerical tests for validation and backwards compatibil-
ity checks for SM and MSSM processes. As a standard, these extended self tests are not invoked.
However, they can be enabled by setting the configure option --enable-extnum-checks. On
the other hand, the standard self-consistency checks can be completely disabled with the option
--disable-default-checks.

2.2 Setting up a user work space

When WHIZARD is installed on a system it can be used by any user in a multi-user environment.

prefix/share/whizard/test
run_whizard_sh
--enable-extnum-checks
--disable-default-checks


Chapter 3

Getting Started

WHIZARD can run as a stand-alone program. You (the user) can steer WHIZARD either interactively
or by a script file. We will first describe the latter method, since it will be the most common
way to interact with the WHIZARD system.

3.1 Hello World

The script is written in SINDARIN. This is a DSL – a domain-specific scripting language that
is designed for the single purpose of steering and talking to WHIZARD1. Now since SINDARIN is
a programming language, we honor the old tradition of starting with the famous Hello World
program. In SINDARIN this reads simply

printf "Hello World!"

Open your favorite editor, type this text, and save it into a file named hello.sin.
Now we assume that you – or your kind system administrator – has installed WHIZARD in

your executable path. Then you should open a command shell and execute

/home/user$ whizard -r hello.sin

and if everything works well, you get the output

| Writing log to ’whizard.log’

[... here a banner is displayed]

|=============================================================================|

| WHIZARD 2.0.1

|=============================================================================|

| Initializing process library ’processes’

| Reading model file ’SM.mdl’

| Using model: SM

1As it is well known, W(h)izards communicate in SINDARIN, Scripting INtegration, Data Analysis, Results
display and INterfaces.
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| Reading commands from file ’hello.sin’

Hello World!

| WHIZARD run finished.

|=============================================================================|

If this has just worked for you, you can be confident that you have a working WHIZARD instal-
lation, and you have been able to successfully run the program.

3.2 A Simple Calculation

You may object that WHIZARD is not exactly designed for printing out plain text. So let us
demonstrate a more useful example.

Looking at the Hello World output, we first observe that the program writes a log file named
(by default) whizard.log. This file receives all screen output, except for the output of external
programs that are called by WHIZARD. You don’t have to cache WHIZARD’s screen output yourself.

After the welcome banner, WHIZARD tells you that it initializes a process library, and it reads
a physics model. The process library is initially empty. It is ready for receiving definitions of
elementary high-energy physics processes (scattering or decay) that you provide. The processes
are set in the context of a definite model of high-energy physics. By default this is the Standard
Model, dubbed SM.

Here is the SINDARIN code for defining a SM physics process, computing its cross section,
and generating a simulated event sample in Les Houches event format:

process ee = e1, E1 => e2, E2

sqrts = 360 GeV

n_events = 10

sample_format = lhef

simulate (ee)

As before, you save this text in a file (named, e.g., ee.sin) which is run by

/home/user$ whizard -r ee.sin

(We will come to the meaning of the -r option later.) This produces a lot of output which
looks similar to this:

| Writing log to ’whizard.log’

|=============================================================================|

| WHIZARD 2.0.0_rc1

|=============================================================================|

| Initializing process library ’processes’

| Reading model file ’SM.mdl’

| Using model: SM

| Reading commands from file ’ee.sin’

| Added process to library ’processes’:

| [O] ee = e-, e+ => mu-, mu+
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| Generating code for process library ’processes’

| Calling O’Mega for process ’ee’

| command:

| /home/kilian/whizard/build/nagfor/src/omega/bin/omega_SM.opt -o

| ee.f90 -target:whizard -target:parameter_module parameters_SM

| -target:module ee -target:md5sum 6ABA33BC2927925D0F073B1C1170780A

! -fusion:progress -scatter ’e- e+ => mu- mu+’

[1/1] e- e+ => mu- mu+ ... done. [time: 0.03 secs, total: 0.03 secs, remaining: 0.00 secs]

all processes done. [total time: 0.03 secs]

SUMMARY: 6 fusions, 2 propagators, 2 diagrams

| Writing interface code for process library ’processes’

| Compiling process library ’processes’

| Loading process library ’processes’

| Process ’ee’: updating previous configuration

sqrts = 3.6000000000000000E+02

| Integrating process ’ee’

| Generating phase space, writing file ’ee.phs’ (this may take a while)

| Found 2 phase space channels.

Warning: No cuts have been defined.

| Using partonic energy as event scale.

| iterations = 3:1000, 3:10000

| Creating VAMP integration grids:

| Using phase-space channel equivalences.

| 1000 calls, 2 channels, 2 dimensions, 20 bins, stratified = T

|=============================================================================|

| It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] |

|=============================================================================|

1 1000 8.3366006E+02 1.47E+00 0.18 0.06* 40.12

2 1000 8.3357740E+02 8.16E-01 0.10 0.03* 40.11

3 1000 8.3214263E+02 1.01E+00 0.12 0.04 57.40

|-----------------------------------------------------------------------------|

3 3000 8.3311382E+02 5.83E-01 0.07 0.04 57.40 0.69 3

|-----------------------------------------------------------------------------|

4 10000 8.3325834E+02 1.10E-01 0.01 0.01* 57.02

5 10000 8.3333796E+02 1.11E-01 0.01 0.01 57.03

6 10000 8.3323772E+02 1.11E-01 0.01 0.01 57.03

|=============================================================================|

6 30000 8.3327798E+02 6.41E-02 0.01 0.01 57.03 0.23 3

|=============================================================================|

n_events = 10

$sample => "ee"

| Initializating simulation for processes ee:

| Simulation mode = unweighted, event_normalization = ’1’

| No analysis setup has been provided.

| Writing events in LHEF format to file ’ee.lhef’

| Generating 10 events ...
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| Writing events in internal format to file ’ee.evx’

| Event sample corresponds to luminosity [fb-1] = 0.1200E-01

| ... done

| Simulation finished.

| There were no errors and 1 warning(s).

| WHIZARD run finished.

|=============================================================================|

The final result is the desired event file, ee.lhef.
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SINDARIN:
The WHIZARD command language

4.1 A specialized command language

A conventional physics application program gets its data from a set of input files. Alternatively,
it is called as a library, so the user has to write his own code to interface ist, or it combines
these two approaches. WHIZARD 1 was built in this way: there were some input files which were
written by the user, and it could be called both stand-alone or as an external library.

WHIZARD 2 is also a stand-alone program. It comes with its own full-fledged script language,
called SINDARIN. All interaction between the user and the program is done in SINDARIN
expressions, commands, and scripts. Two main reasons led us to this choice:

• In any nontrivial physics study, cuts and (parton- or hadron-level) analysis are of central
importance. The task of specifying appropriate kinematics and particle selection for a
given process is well defined, but it is impossible to cover all possiblities in a simple format
like the cut files of WHIZARD 1.

The usual way of dealing with this problem is to write analysis driver code (often in
C++), using external libraries for Lorentz algebra etc. However, the overhead of writing
correct C++ or Fortran greatly blows up problems that could be formulated in a few
lines of text.

• While many problems lead to a repetitive workflow (process definition, integration, simu-
lation), there are more involved tasks that involve parameter scans, comparisons of differ-
ent processes, conditional execution, or writing output in widely different formats. This
is easily done by a steering script, which should be formulated in a complete language.

The SINDARIN language is built specifically around event analysis, suitably extended to sup-
port steering, including data types, loops, conditionals, and I/O.

It would have been possible to use an established general-purpose language for these tasks.
For instance, O’Caml which is a functional language would be a suitable candidate, and the
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matrix-element generator is written in that language. Another candidate would be a popular
scripting language such as PYTHON.

We do plan to support interfaces for commonly used languages in the future. However,
introducing a speal-purpose language has the three distinct advantages: First, it is compiled
and executed by the very Fortran code that handles data and thus accesses it without interfaces.
Second, it can be designed with a syntax especially suited to the task of event handling and
Monte-Carlo steering, and third, the user is not forced to learn all those features of a generic
language that are of no relevance to the application he is interested in.

4.2 Overview: Basic concepts

4.2.1 SINDARIN scripts

SINDARIN scripts are contained in files. The user can create them using any editor of his
choice. By convention, the files have the extension ‘.sin’. WHIZARD executes a script if the
filename is given as an argument to the program:

$ whizard script.sin

Alternatively, scripts can be executed line by line interactively; we describe this below in Sec.5.2.
A SINDARIN script as a whole is a sequence of commands, similar to the commands in any

imperative language such as Fortran or C. Examples of commands are integrate or simulate.
The script is free-form, i.e., indentation, extra whitespace and newlines are syntactically

insignificant. In contrast to most languages, there is no command separator. Commands
simply follow each other, just separated by whitespace.

Nevertheless, we recommend to use some line-oriented format and meaningful identation,
so the logical structure of a script is made explicit. How this is done in detail, is up to the
script writer.

A command may consist of a keyword, a list of arguments in brackets (. . . ), and an op-
tion script. In some cases, there is a zeroth (suffix ) argument without brackets, immediately
following the keyword.

Arguments enclosed in square brackets [] also exist. They have a special meaning, they
denote subevents (collections of momenta) in event analysis.

The option script, if any, is enclosed in braces {. . . }. It is also a sequence of commands
(possibly with their own options). Usually, it has the purpose of setting specific parameters in
a context local to the command. The braces indicate a scoping unit; most parameters will be
restored their previous values when the execution of that command is completed.

4.2.2 Data types and expressions

SINDARIN data are classified by their types. The language supports the classical numeric
types

• int for integer: machine-default, usually 32 bit;

• real, usually double precision or 64 bit;
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• complex, consisting of real and imaginary part equivalent to a real each.

SINDARIN contains arithmetic expressions and functions very much similar to conventional
languages. In arithmetic expressions, the three numeric types can be mixed as appropriate.
The computation essentially follows the rules for mixed arithmetic in Fortran.

The names of numerical variables consist of alphanumeric characters and underscores. The
first character must not be a digit. Character case does matter. In this manual we follow the
convention that variable names consist of lower-case letters, digits, and underscores only.

Exclusively in the context of particle selections (event analysis), there are observables as
special numeric objects. They are used like numeric variables, but they are never declared or
assigned. They get their value assigned dynamically, computed from the particle momentum
configuration. Observable names begin with a capital letter.

The language also has the following standard types:

• logical (a.k.a. boolean). Logical variable names are prefixed by a ? (question mark)
sign, otherwise the same rules as for numerical variables apply.

• string (arbitrary length). String variable names have a $ (dollar) sign as prefix.

There are comparisons, logical operations, string concatenation, and a mechanism for format-
ting objects as strings for output.

Furthermore, SINDARIN supports two data types tailored specifically for Monte Carlo:

• alias objects denote a set of particle species. Alias names have no prefix, they are
distinguished from numerics by context.

• subevt objects denote a collection of particle momenta within an event. Their names are
prefixed by a @ (at) sign.

Each variable or object has a well-defined type.
In the current implementation, SINDARIN has no container data types derived from basic

types, such as lists, arrays, or hashes. The subevt type is a container for particles, but there
is no type for an individual particle: this is represented as a one-particle subevt.

Grouping of numerical, logical, string, and alias expressions is done using ordinary brackets
(). For subevent expressions, use square brackets [].

4.2.3 Variables

SINDARIN supports global variables, variables local to a scoping unit (the option body of a
command, the body of a scan loop), and variables local to an expression.

Some variables are predefined by the system (intrinsic variables). They are further sepa-
rated into independent variables that can be reset by the user, and derived variables that are
automatically computed by the program. On top of that, the user is free to introduce his own
variables (user variables).

User variables – global or local – are declared by their type when they are introduced, and
acquire an initial value upon declaration. Examples:
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int i = 3

real my_cut_value = 10 GeV

complex c = 3 - 4 * I

logical ?top_decay_allowed = mH > 2 * mtop

string $hello = "Hello world!"

alias q = d:u:s:c

An existing user variable can be assigned a new value without a declaration:

i = i + 1

and it may also be redeclared if the new declaration specifies the same type, this is equivalent
to assigning a new value.

Intrinsic, independent variables can also be assigned a new value, but they cannot be rede-
clared. Intrinsic dependent variables can never be assigned a new value explicitly. They get a
new value automatically when one of the variables they depend on is assigned a new value.

Variables local to an expression are introduced by the let ... in contruct. Example:

real a = let int n = 2 in

x^n + y^n

The explicit int declaration is necessary only if the variable n has not been declared before.
An intrinsic variable must not be declared: let mtop = 175.3 GeV in ...

let constructs can be concatenated if several local variables need to be assigned: let a =

3 in let b = 4 in expression .
Variables of type subevt can only be defined in let constructs.

4.2.4 Special objects

In addition to the basic data types, SINDARIN contains objects that serve special purposes.
Most of them do not occur in expressions, but there are assignment statements and operations
acting on them with specific rules. Examples are physics models, processes, cut expressions,
iteration specifiers, histograms, and more. These objects are intrinsic.

4.2.5 Control structures

A complete programming language should have some concept of conditionals and loops. In
SINDARIN, conditionals are represented by the usual if-then-elsif-else-endif sequence.
Since parameter scans are the obvious motivation for loops in SINDARIN, the loop syntax is
scan variable = (values) {. . . }.

4.3 Data and expressions

4.3.1 Real-valued objects

Real literals have their usual form, mantissa and, optionally, exponent:
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0. 3.14 -.5 2.345e-3 .890E-023

Internally, real values are treated as double precision. The values are read by the Fortran
library, so details depend on its implementation.

A special feature of SINDARIN is that numerics (real and integer) can be immediately
followed by a physical unit. The supported units are presently hard-coded, they are

meV eV keV MeV GeV TeV

nbar pbarn fbarn abarn

rad mrad degree

%

If a number is followed by a unit, it is automatically normalized to the corresponding default
unit: 14.TeV is transformed into the real number 14000. Default units are GeV, fbarn, and
rad. The % sign after a number has the effect that the number is multiplied by 0.01. Note that
no checks for consistency of units are done, so you can add 1 meV + 3 abarn if you absolutely
wish to. Omitting units is always allowed, in that case, the default unit is assumed.

Units are not treated as variables. In particular, you can’t write theta / degree, the
correct form is theta / 1 degree.

There is a single predefined real constant, namely π which is referred to by the keyword pi.
The arithmetic operators are

+ - * / ^

with their obvious meaning and the usual precedence rules.
SINDARIN supports a bunch of standard numerical functions, mostly equivalent to their

Fortran counterparts:

abs sgn mod modulo

sqrt exp log log10

sin cos tan asin acos atan

sinh cosh tanh

(Unlike Fortran, the sgn function takes only one argument and returns 1., 0., or −1.) The
function argument is enclosed in brackets: sqrt (2.), tan (11.5 degree).

There are two functions with two real arguments:

max min

Example: real lighter_mass = min (mZ, mH)

The following functions of a real convert to integer:

int nint floor ceiling

and this converts to complex type:

complex
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Real values can be compared by the following operators, the result is a logical value:

== <>

> < >= <=

In SINDARIN, it is possible to have more than two operands in a logical expressions. The
comparisons are done from left to right. Hence,

115 GeV < mH < 180 GeV

is valid SINDARIN code and evaluates to true if the Higgs mass is in the given range.
Tests for equality and inequality with machine-precision real numbers are notoriously unre-

liable and should be avoided altogether. To deal with this problem, SINDARIN has the “fuzzy”
comparison operators

==~ <>~

which should be read as “equal (unequal) up to a tolerance”, where the tolerance is given by the
real-valued intrinsic variable tolerance. This variable is initially zero, but can be set to any
value (for instance, tolerance = 1.e-13 by the user. Note that these operators, in contrast
to == vs. <>, are not mutually exclusive.

4.3.2 Integer-valued objects

Integer literals are obvious:

1 -98765 0123

Integers are always signed. Their range is the default-integer range as determined by the Fortran
compiler.

Like real values, integer values can be followed by a physical unit: 1 TeV, 30 degree. This
actually transforms the integer into a real.

Standard arithmetics is supported:

+ - * / ^

It is important to note that there is no fraction datatype, and pure integer arithmetics does
not convert to real. Hence 3/4 evaluates to 0, but 3 GeV / 4 GeV evaluates to 0.75.

Since all arithmetics is handled by the underlying Fortran library, integer overflow is not
detected. If in doubt, do real arithmetics.

Integer functions are more restricted than real functions. We support the following:

abs sgn mod modulo

max min

and the conversion functions

real complex

Comparisons of integers among themselves and with reals are possible using the same set of
comparison operators as real values. This includes the operators ==~ and <>~.
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4.3.3 Complex-valued objects

Complex variables and values are currently not yet used by the physics models implemented in
WHIZARD. They are an experimental feature.

There is no form for complex literals. Complex values must be created via an arithmetic
expression,

complex c = 1 + 2 * I

where the imaginary unit I is predefined as a constant.
The standard arithmetic operations are supported (also mixed with real and integer). Sup-

port for functions is currently still incomplete, among the supported functions there are sqrt,
log, exp.

4.3.4 Logical-valued objects

There are two predefined logical constants, true and false. Logicals are not equivalent to
integers (like in C) or to strings (like in PERL), but they make up a type of their own. Only
in printf output, they are treated as strings, that is, they require the %s conversion specifier.

The names of logical variables begin with a question mark ?. Here is the declaration of a
logical user variable:

logical ?higgs_decays_into_tt = mH > 2 * mtop

Logical expressions use the standard boolean operations

or and not

The results of comparisons (see above) are logicals.
There is also a special logical operator with lower priority, concatenation by a semicolon:

lexpr1 ; lexpr2

This evaluates lexpr1 and throws its result away, then evaluates lexpr2 and returns that result.
This feature is to used with logical expressions that have a side effect, namely the record

function within analysis expressions.
The primary use for intrinsic logicals are flags that change the behavior of commands.

For instance, ?unweighted = true and ?unweighted = false switch the unweighting of a
simulated event samples on and off.

4.3.5 String-valued objects and string operations

String literals are enclosed in double quotes: "This is a string." The empty string is "".
String variables begin with $. There is only one string operation, concatenation

$string = "abc" & "def"
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However, it is possible to transform variables and values to a string using the sprintf

function. This function is an interface to the system’s C function sprintf with some restrictions
and modifications. The allowed conversion specifiers are

%d %i (integer)
%e %f %g %E %F %G (real)

%s (string and logical)

The conversions can use flag parameter, field width, and precision, but length modifiers are not
supported since they have no meaning for the application.

The sprintf function has the syntax

sprintf format-string (arg-list)

This is an expression that evaluates to a string. The format string contains the mentioned
conversion specifiers. The argument list is optional. The arguments are separated by commas.
Allowed arguments are integer, real, logical, and string variables, and numeric expressions.
Logical and string expressions can also be printed, but they have to be dressed as anonymous
variables. A logical anonymous variable has the form ?(logical-expr) (example: ?(mH > 115

GeV)). A string anonymous variable has the form $(string-expr).
Example:

string $unit = "GeV"

string $str = sprintf "mW = %f %s" (mW, $unit)

The related printf command with the same syntax prints the formatted string to standard
output. There is also a sprint function and a print command; they have no format string
but typeset their arguments in a default format.

4.4 Particles and (sub)events

4.4.1 Particle aliases

A particle species is denoted by its name as a string: "W+". Alternatively, it can be addressed
by an alias. For instance, the W+ boson has the alias Wp. Aliases are used like variables in a
context where a particle species is expected, and the user can specify his own aliases.

An alias may either denote a single particle species or a class of particles species. A colon
: concatenates particle names and aliases to yield multi-species aliases:

alias quark = u:d:s

alias wboson = "W+":"W-"

Such aliases are used for defining processes with summation over flavors, and for defining classes
of particles for analysis.

Each model files define both names and (single-particle) aliases for all particles it contains.
Furthermore, it defines the class aliases colored and charged which are particularly useful for
event analysis.
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4.4.2 Subevents

Subevents are sets of particles, extracted from an event. The sets are unordered by default,
but may be ordered by appropriate functions. Obviously, subevents are meaningful only in a
context where an event is available. The possible context may be the specification of a cut,
weight, scale, or analysis expression.

To construct a simple subevent, we put a particle alias or an expression of type particle
alias into square brackets:

["W+"] [u:d:s] [colored]

These subevents evaluate to the set of all W+ bosons (to be precise, their four-momenta), all
u, d, or s quarks, and all colored particles, respectively.

A subevent can contain particle combinations. That is, the four-momenta of distinct par-
ticles are combined (added conmponent-wise), and the results become subevent elements just
like ordinary particles.

Sometimes, variables (actually, named constants) of type subevent are useful. Subevent
variables are declared by the subevt keyword, and their names carry the prefix @. Within
expressions, they are assigned via the let construct.

cuts =

let subevt @jets = select if Pt > 10 GeV [colored]

in

all Theta > 10 degree [@jets, @jets]

In this expression, we first define @jets to stand for the set of all colored partons with pT >
10 GeV. This abbreviation is then used in a logical expression, which evaluates to true if all
relative angles between distinct jets are greater than 10 degree.

We note that the example also introduces pairs of subevents: the square bracket with two
entries evaluates to the list of all possible pairs which do not overlap. The objects within square
brackets can be either subevents or alias expressions. The latter are transformed into subevents
before they are used.

As a special case, the original event is always available as the predefined subevent @evt.

4.4.3 Subevent functions

There are several functions that take a subevent (or an alias) as an argument and return a new
subevent. Here we describe them:

collect

collect [particles ]

collect if condition [particles ]

collect if condition [particles, ref-particles ]
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First version: collect all particle momenta in the argument and combine them to a single four-
momentum. The particles argument may either be a subevt expression or an alias expression.
The result is a one-entry subevt. In the second form, only those particle are collected which
satisfy the condition, a logical expression. Example: collect if Pt > 10 GeV [colored]

The third version is usefule if you want to put binary observables (i.e., observables con-
structed from two different particles) in the condition. The ref-particles provide the second ar-
gument for binary observables in the condition. A particle is taken into account if the condition
is true with respect to all reference particles that do not overlap with this particle. Example:
collect if Theta > 5 degree [photon, charged]: combine all photons that are separated
by 5 degrees from all charged particles.

combine

combine [particles-1, particles-2 ]

combine if condition [particles-1, particles-2 ]

Make a new subevent of composite particles. The composites are generated by combining all
particles from subevent particles-1 with all particles from subevent particles-2 in all possible
combinations. Overlapping combinations are excluded, however: if a (composite) particle in the
first argument has a constituent in common with a composite particle in the second argument,
the combination is dropped. In particular, this applies if the particles are identical.

If a condition is provided, the combination is done only when the logical expression, applied
to the particle pair in question, returns true. For instance, here we reconstruct intermediate
W− bosons:

@W_candidates = combine if 70 GeV < M < 80 GeV ["mu-", "numubar"]

Note that the combination may fail, so the resulting subevent could be empty.

select

select if condition [particles ]

select if condition [particles, ref-particles ]

One argument: select all particles in the argument that satisfy the condition and drop the rest.
Two arguments: the ref-particles provide a second argument for binary observables. Select
particles if the condition is satisfied for all reference particles.

extract

extract [particles ]

extract index index-value [particles ]

Return a single-particle subevent. In the first version, it contains the first particle in the
subevent particles. In the second version, the particle with index index-value is returned,
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where index-value is an integer expression. If its value is negative, the index is counted from
the end of the subevent.

The order of particles in a event or subevent is not always well-defined, so you may wish to
sort the subevent before applying the extract function to it.

sort

sort [particles ]

sort by observable [particles ]

sort by observable [particles, ref-particle ]

Sort the subevent according to some criterion. If no criterion is supplied (first version), the
subevent is sorted by increasing PDG code (first particles, then antiparticles). In the second
version, the observable is a real expression which is evaluated for each particle of the subevent
in turn. The subevent is sorted by increasing value of this expression, for instance:

@sorted_evt = sort by Pt [@evt]

In the third version, a reference particle is provided as second argument, so the sorting can be
done for binary observables. It doesn’t make much sense to have several reference particles at
once, so the sort function uses only the first entry in the subevent ref-particle, if it has more
than one.

join

join [particles, new-particles ]

join if condition [particles, new-particles]

This commands appends the particles in subevent new-particles to the subevent particles, i.e.,
it joins the two particle sets. To be precise, a particle from new-particles is only appended if
it is not present in particles, so the function will not produce duplicate entries unless they had
been there in the first place.

In the second version, each particle from new-particles is also checked with all particles in
the first set whether condition is fulfilled. If yes, it is appended, otherwise it is dropped.

operator &

Subevents can also be concatenated by the operator &. This effectively applies join to all
operands in turn. Example:

@visible =

select if Pt > 10 GeV and E > 5 GeV [photon]

& select if Pt > 20 GeV and E > 10 GeV [colored]

& select if Pt > 10 GeV [lepton]
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4.4.4 Calculating observables

Observables (invariant mass M, energy E, . . . ) are used in expressions just like ordinary numeric
variables. By convention, their names start with a capital letter. They are computed using
a particle momentum (or two particle momenta) which are taken from a subsequent subevent
argument.

We can extract the value of an observable for an event and make it available for computing
the scale value, or for histogramming etc.:

eval

eval expr [particles ]

eval expr [particles-1, particles-2 ]

The function eval takes an expression involving observables and evaluates it for the first
momentum (or momentum pair) of the subevent (or subevent pair) in square brackets that
follows the expression. For example,

eval Pt [colored]

evaluates to the transverse momentum of the first colored particle,

eval M [@jets, @jets]

evaluates to the invariant mass of the first distinct pair of jets (assuming that @jets has been
defined in let construct), and

eval E - M [combine [e1, N1]]

evaluates to the difference of energy and mass of the combination of the first electron-neutrino
pair in the event.

The last example illustrates why observables are treated like variables, even though they are
functions of particles: the eval construct with the particle reference in square brackets after
the expression allows to compute derived observables – observables which are functions of new
observables – without the need for hard-coding them as new functions.

4.4.5 Cuts and event selection

Instead of a numeric value, we can use observables to compute a logical value.

all

all logical-expr [particles ]

all logical-expr [particles-1, particles-2 ]

The all construct expects a logical expression and one or two subevent arguments in square
brackets.
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all Pt > 10 GeV [charged]

all 80 GeV < M < 100 GeV [lepton, antilepton]

In the second example, lepton and antilepton should be aliases defined in a let construct.
(Recall that aliases are promoted to subevents if they occur within square brackets.)

This construction defines a cut. The result value is true if the logical expression evaluates
to true for all particles in the subevent in square brackets. In the two-argument case it must
be true for all non-overlapping combinations of particles in the two subevents. If one of the
arguments is the empty subevent, the result is also true.

any

any logical-expr [particles ]

any logical-expr [particles-1, particles-2 ]

The any construct is true if the logical expression is true for at least one particle or non-
overlapping particle combination:

any E > 100 GeV [photon]

This defines a trigger or selection condition. If a subevent argument is empty, it evaluates to
false

no

no logical-expr [particles ]

no logical-expr [particles-1, particles-2 ]

The no construct is true if the logical expression is true for no single one particle or non-
overlapping particle combination:

no 5 degree < Theta < 175 degree ["e-":"e+"]

This defines a veto condition. If a subevent argument is empty, it evaluates to true. It is
equivalent to not any..., but included for notational convenience.

4.4.6 More particle functions

count

count [particles ]

count [particles-1, particles-2 ]

count if logical-expr [particles] count if logical-expr [particles-1, ref-particles-2 ]

This counts the number of events in a subevent, the result is of type int. If there is a conditional
expression, it counts the number of particle in the subevent that pass the test. If there are
two arguments, it counts the number of non-overlapping particle pairs (that pass the test, if
any).
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Predefined observables

The following real-valued observables are available in SINDARIN for use in eval, all, any,
no, and count constructs. The argument is always the subevent or alias enclosed in square
brackets.

• M2

– One argument: Invariant mass squared of the (composite) particle in the argument.

– Two arguments: Invariant mass squared of the sum of the two momenta.

• M

– Signed square root of M2: positive if M2 > 0, negative if M2 < 0.

• E

– One argument: Energy of the (composite) particle in the argument.

– Two arguments: Sum of the energies of the two momenta.

• Px, Py, Pz

– Like E, but returning the spatial momentum components.

• P

– Like E, returning the absolute value of the spatial momentum.

• Pt, Pl

– Like E, returning the transversal and longitudinal momentum, respectively.

• Theta

– One argument: Absolute polar angle in the lab frame

– Two arguments: Angular distance of two particles in the lab frame.

• Phi

– One argument: Absolute azimuthal angle in the lab frame

– Two arguments: Azimuthal distance of two particles in the lab frame

• Rap, Eta

– One argument: rapidity / pseudorapidity

– Two arguments: rapidity / pseudorapidity difference

• Dist
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– Two arguments: Distance on the η-φ cylinder, i.e.,
√

∆η2 + ∆φ2

There is also an integer-valued observable:

• PDG

– One argument: PDG code of the particle. For a composite particle, the code is
undefined (value 0).

4.5 Physics Models

A physics model is a combination of particles, numerical parameters (masses, couplings, widths),
and Feynman rules. Many physics analyses are done in the context of the Standard Model (SM).
The SM is also the default model for WHIZARD. Alternatively, you can choose a subset of the SM
(QED or QCD), variants of the SM (e.g., with or without nontrivial CKM matrix), or various
extensions of the SM. The complete list is displayed in Table 7.1.

The model definitions are contained in text files with filename extension .mdl, e.g., SM.mdl,
which are located in the share/models subdirectory of the WHIZARD installation. These files
are easily readable, so if you need details of a model implementation, inspect their contents.
The model file contains the complete particle and parameter definitions as well as their default
values. It also contains a list of vertices. This is used only for phase-space setup; the vertices
used for generating amplitudes and the corresponding Feynman rules are stored in different
files within the O’Mega source tree.

In a SINDARIN script, a model is a special object of type model. There is always a current
model. Initially, this is the SM, so on startup WHIZARD reads the SM.mdl model file and assigns
its content to the current model object. (You can change the default model by the --model

option on the command line.) Once the model has been loaded, you can define processes for
the model, and you have all independent model parameters at your disposal. As noted before,
these are intrinsic parameters which need not be declared when you assign them a value, for
instance:

mW = 80.33 GeV

wH = 243.1 MeV

Other parameters are derived. They can be used in expressions like any other parameter, they
are also intrinsic, but they cannot be modified directly at all. For instance, the electromagnetic
coupling ee is a derived parameter. If you change either GF (the Fermi constant), mW (the W
mass), or mZ (the Z mass), this parameter will reflect the change, but setting it directly is an
error. In other words, the SM is defined within WHIZARD in the GF -mW -mZ scheme. (While
this scheme is unusual for loop calculations, it is natural for a tree-level event generator where
the Z and W poles have to be at their experimentally determined location.)

The model also defines the particle names and aliases that you can use for defining processes,
cuts, or analysis.

If you would like to generate a SUSY process instead, for instance, you can assign a different
model (cf. Table 7.1) to the current model object:
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model = MSSM

This assignment has the consequence that the list of SM parameters and particles is replaced
by the corresponding MSSM list (which is much longer). The MSSM contains essentially all
SM parameters by the same name, but in fact they are different parameters. This is revealed
when you say

model = SM

mb = 5.0 GeV

model = MSSM

print (mb)

After the model is reassigned, you will see the MSSM value of mb which still has its default
value, not the one you have given. However, if you revert to the SM later,

model = SM

print (mb)

you will see that your modification of the SM’s mb value has been remembered. If you want
both mass values to agree, you have to set them separately in the context of their respective
model. Although this might seem cumbersome at first, it is nevertheless a sensible procedure
since the parameters defined by the user might anyhow not be defined or available for all chosen
models.

When using two different models which need an SLHA input file, these have to be provided
for both models.

Within a given scope, there is only one current model. The current model can be reset
permanently as above. It can also be temporarily be reset in a local scope, i.e., the option body
of a command or the body of a scan loop. It is thus possible to use several models within the
same script. For instance, you may define a SUSY signal process and a pure-SM background
process. Each process depends only on the respective model’s parameter set, and a change to
a parameter in one of the models affects only the corresponding process.
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4.6 Processes

4.6.1 Process definition

4.6.2 Options

4.6.3 Process libraries

4.6.4 Tayloring WHIZARD

4.7 Beams

4.7.1 Beam setup

4.7.2 LHAPDF

4.7.3 ISR structure functions

4.7.4 Beamstrahlung

4.7.5 Effective photon approximation

4.8 Cross sections

4.8.1 Integration

4.8.2 Cuts

4.8.3 Weight and scale

4.9 Events

4.9.1 Simulation

4.9.2 Analysis

4.10 Analysis

4.10.1 Observables

4.10.2 Histograms

4.10.3 Plots

4.11 Control structures

4.11.1 Conditionals

4.11.2 Loops

4.11.3 Include files

4.11.4 External programs

4.12 Miscellaneous commands

4.12.1 Printing messages



Chapter 5

User Interfaces for WHIZARD

5.1 Command line and SINDARIN input files

5.2 WHISH – The WHIZARD Shell/Interactive mode

WHIZARD can be also run in the interactive mode using its own shell environment. This is called
the WHIZARD Shell (WHISH). For this purpose, one starts with the command

/home/user$ whizard --interactive

or

/home/user$ whizard -i

The WHISH can be closed by the quit command:

whish? quit

5.3 Graphical user interface

This is planned, but not implemented yet.

5.4 WHIZARD as a library

This is planned, but not implemented yet.
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Chapter 6

Examples

In this chapter we discuss the running and steering of WHIZARD with the help of several examples.
These examples can be found in the share/examples directory of your installation.
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Chapter 7

Implemented physics

7.1 The Monte-Carlo integration routine: VAMP

7.2 The Phase-Space Setup

7.3 The hard interaction models

7.3.1 The Standard Model and friends

7.3.2 Beyond the Standard Model
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MODEL TYPE with CKM matrix trivial CKM

Yukawa test model --- Test

QED with e, µ, τ, γ --- QED

QCD with d, u, s, c, b, t, g --- QCD

Standard Model SM CKM SM

SM with anomalous gauge couplings SM ac CKM SM ac

SM with anomalous top couplings --- SM top

SM with K matrix --- SM KM

MSSM MSSM CKM MSSM

MSSM with gravitinos --- MSSM Grav

NMSSM NMSSM CKM NMSSM

extended SUSY models --- PSSSM

Littlest Higgs --- Littlest

Littlest Higgs with ungauged U(1) --- Littlest Eta

Littlest Higgs with T parity --- Littlest Tpar

Simplest Little Higgs (anomaly-free) --- Simplest

Simplest Little Higgs (universal) --- Simplest univ

SM with graviton --- Xdim

UED --- UED

SM with Z ′ --- Zprime

“SQED” with gravitino --- GravTest

Augmentable SM template --- Template

Table 7.1: List of models available in WHIZARD. There are pure test models or models imple-
mented for theoretical investigations, a long list of SM variants as well as a large number of
BSM models.



Chapter 8

Event generation and analysis

In order to perform a physics analysis with WHIZARD one has to generate events. This seems
to be a trivial statement, but as there have been any questions like ”My WHIZARD does not
produce plots – what has gone wrong?” we believe that repeating that rule is worthwile. Of
course, it is not mandatory to use WHIZARD’s own analysis set-up, the user can always choose
to just generate events and use his/her own analysis package like ROOT, or TopDrawer, or you
name it for the analysis.

Accordingly, we first start to describe how to generate events and what options there are
– different event formats, renaming output files, using weighted or unweighted events with
different normalizations. How to re-use and manipulate already generated event samples, how
to limit the number of events per file, etc. etc.

8.1 Event generation

To explain how event generation works, we again take our favourite example, e+e− → µ+µ−,

process eemm = e1, E1 => e2, E2

compile

The command to trigger generation of events is simulate (<proc name>) { <options> }, so
in our case – neglecting any options for now – simply:

simulate (eemm)

When you run this SINDARIN file you will experience a fatal error: FATAL ERROR: Process

’eemm’ must be integrated before simulation.. This is because you have to provide
WHIZARD with the information of the corresponding cross section, phase space parameteri-
zation and grids, i.e. you have to integrate a process before you could generate events. A
corresponding integrate command like

sqrts = 500 GeV

integrate (eemm) { iterations = 3:10000 }
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obviously has to appear before the corresponding simulate command (otherwise you would be
punished by the same error message as before). Putting things in the correct order results in
an output like:

| Loading process library ’processes’

| Process ’eemm’: updating configuration

sqrts = 500.00000000000000

| Integrating process ’eemm’

| Generating phase space configuration ...

| ... found 2 phase space channels, collected in 2 groves.

| Phase space: found 2 equivalences between channels.

| Wrote phase-space configuration file ’eemm.phs’.

Warning: No cuts have been defined.

| Using partonic energy as event scale.

| iterations = 3:10000

| Creating VAMP integration grids:

| Using phase-space channel equivalences.

| 10000 calls, 2 channels, 2 dimensions, 20 bins, stratified = T

|=============================================================================|

| It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] |

|=============================================================================|

1 10000 4.2823916E+02 6.75E-02 0.02 0.02* 40.29

2 10000 4.2823862E+02 4.37E-02 0.01 0.01* 40.29

3 10000 4.2824459E+02 3.38E-02 0.01 0.01* 40.29

|=============================================================================|

3 30000 4.2824192E+02 2.48E-02 0.01 0.01 40.29 0.01 3

|=============================================================================|

| Process ’eemm’:

| time estimate for 10000 unweighted events = 0h 00m 00.469s

|-----------------------------------------------------------------------------|

| Initializating simulation for processes eemm:

| Simulation mode = unweighted, event_normalization = ’1’

| No analysis setup has been provided.

| Simulation finished.

| There were no errors and 1 warning(s).

| WHIZARD run finished.

|=============================================================================|

So, WHIZARD tells you that it has entered simulation mode, but besides this, it has not done
anything. The next step is that you have to demand event generation – there are two ways to
do this: you could either specify a certain number, say 42, of events you want to have generated
by WHIZARD, or you could provide a number for an integrated luminosity of some experiment.
(Note, that if you choose to take both options, WHIZARD will take the one which gives the larger
event sample. This, of course, depends on the given process(es) – as well as cuts – and its
corresponding cross section(s).) The first of these options is set with the command: n events

= <number>, the second with luminosity = <number> <opt. unit>.
Another important point already stated several times in the manual is that WHIZARD follows

the commands in the steering SINDARIN file in a chronological order. Hence, a given number
of events or luminosity after a simulate command will be ignored – or are relevant only for
any simulate command potentially following further down in the SINDARIN file. So, in our
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case, try:

n_events = 500

luminosity = 10

simulate (eemm)

Per default, numbers for integrated luminosity are understood as inverse femtobarn. So, for
the cross section above this would correspond to 4282 events, clearly superseding the demand
for 500 events. After reducing the luminosity number from ten to one inverse femtobarn, 500
is the larger number of events taken by WHIZARD for event generation. Now WHIZARD tells you:

| No analysis setup has been provided.

| Generating 500 events ...

| Writing events in internal format to file ’whizard.evx’

| Event sample corresponds to luminosity [fb-1] = 1.167

I.e., it evaluates the luminosity to which the sample of 500 events would correspond to, which
is now, of course, bigger than the 1fb−1 explicitly given for the luminosity. Furthermore, you
can read off that a file whizard.evx has been generated, containing the demanded 500 events.
Files with the suffix .evx are binary format event files, using a machine-independent WHIZARD-
specific event file format. Before we list the event formats supported by WHIZARD, the next two
section tell you more about unweighted and weighted events as well as different possibilities to
normalize events in WHIZARD.

As already explained for the libraries, as well as the phase space and grid files, WHIZARD is
trying to re-use as much information as possible. The same holds for the event files. There are
special MD5 check sums testing the integrity and compatibility of the event files. If you demand
for a process with an already existing event file less or equally many events as generated before,
WHIZARD will not generate again but re-use the existing events (as will be explained below, the
events are stored in a WHIZARD-own binary event format, i.e. in a so-called .evx file. If you
suppress generation of that file, as will be described in subsection 8.1.3 then WHIZARD has to
generate events all the time). Re-using event files is very practical for doing several different
analyses with the same data, especially if there are many and big data samples. Consider the
case, there is an event file with 200 events, and you now ask WHIZARD to generate 300 events,
then it will re-use the 200 events (if MD5 check sums are OK!), generate the remaining 100
events and append them to the existing file. If the user for some reason, however, wants to
regenerate events (i.e. ignoring possibly existing events), there is the command option whizard

--rebuild-events.

8.1.1 Unweighted and weighted events

WHIZARD is able to generate unweighted events, i.e. events that are distributed uniformly and
each contribute with the same event weight to the whole sample. This is done by mapping out
the phase space of the process under consideration according to its different phase space channels
(which each get their own weights), and then unweighting the sample of weighted events. Only
a sample of unweighted events could in principle be compared to a real data sample from some
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experiment. The seventh column in the WHIZARD iteration/adaptation procedure tells you about
the efficiency of the grids, i.e. how well the phase space is mapped to a flat function. The better
this is achieved, the higher the efficiency becomes, and the closer the weights of the different
phase space channels are to uniformity. This means, for higher efficiency less weighted events
(”calls”) are needed to generate a single unweighted event. An efficiency of 10 % means that
ten weighted events are needed to generate one single unweighted event. After the integration
is done, WHIZARD uses the duration of calls during the adaptation to estimate a time interval
needed to generate 10,000 unweighted events. The ability of the adaptive mult-channel Monte
Carlo decreases with the number of integrations, i.e. with the number of final state particles.
Adding more and more final state particles in general also increases the complexity of phase
space, especially its singularity structure. For a 2 → 2 process the efficiency is roughly of the
order of several tens of per cent. As a rule of thumb, one can say that with every additional
pair of final state particle the average efficiency one can achieve decreases by a factor of five to
ten.

The default of WHIZARD is to generate unweighted events. One can use the logical variable
?unweighted = false to disable unweighting and generate weighted events. (The command
?unweighted = true is a tautology, because true is the default for this variable.) Note that
again this command has to appear before the corresponding simulate command, otherwise it
will be ignored or effective only for any simulate command appearing later in the SINDARIN
file.

Excess events to be done...

8.1.2 Choice on event normalizations

There are basically four different choices to normalize event weights (. . . denotes the average) :

1. 〈wi〉 = 1, 〈
∑

iwi〉 = N

2. 〈wi〉 = σ, 〈
∑

iwi〉 = N × σ

3. 〈wi〉 = 1/N , 〈
∑

iwi〉 = 1

4. 〈wi〉 = σ/N , 〈
∑

iwi〉 = σ

So the four options are to have the average weight equal to unity, to the cross section of the
corresponding process, to one over the number of events, or the cross section over the event
calls. In these four cases, the event weights sum up to the event number, the event number
times the cross section, to unity, and to the cross section, respectively. Note that neither of
these really guarantees that all event weight individually lie in the interval 0 ≤ wi ≤ 1.

The user can steer the normalization of events by using in SINDARIN input files the string
variable $event normalization. The default is $event normalization = "auto", which uses
option 1 for unweighted and 2 for weighted events, respectively. Note that this is also what
the Les Houches Event Format (LHEF) demands for both types of events. This is WHIZARD’s
preferred mode, also for the reason, that event normalizations are independent from the num-
ber of events. Hence, event samples can be cut or expanded without further need to adjust
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Format Type remark ext.
Athena ASCII variant of HEPEVT no
debug ASCII most verbose WHIZARD format no
default ASCII WHIZARD verbose format no
evx binary WHIZARD’s home-brew no
HepMC ASCII HepMC format yes
HEPEVT ASCII WHIZARD 1 style no
LHA ASCII WHIZARD 1/old Madgraph style no
LHEF ASCII Les Houches accord compliant no
long ASCII variant of HEPEVT no
StdHEP (HEPEVT) binary based on HEPEVT common block yes
StdHEP (HEPRUP/EUP) binary based on HEPRUP/EUP common block yes

Table 8.1: Event formats supported by WHIZARD, classified according to ASCII/binary formats
and whether an external program or library is needed to generate a file of this format.

the normalization. The unit normalization (option 1) can be switched on also for weighted
events by setting the event normalization variable equal to "1" or "unity". Option 2 can be
demanded by setting event normalization = "sigma". Options 3 and 4 can be set by "1/n"

and "sigma/n", respectively. WHIZARD accepts small and capital letter for these expressions.

In the following section we show some examples when discussing the different event formats
available in WHIZARD.

8.1.3 Supported event formats

Event formats can either be distinguished whether they they are plain text (i.e. ASCII) formats
or binary formats. Besides this, one can classify event formats according to whether they are
natively supported by WHIZARD or need some external program or library to be linked. Table 8.1
gives a complete list of all event formats available in WHIZARD. The second column shows
whether these are ASCII or binary formats, the third column contains brief remarks about the
corresponding format, while the last column tells whether external programs or libraries are
needed (which is the case only for StdHEP and HepMC formats).

The ”.evx” is WHIZARD’s native binary event format. If you demand event generation and
do not specify anything further, WHIZARD will write out its events exclusively in this binary
format. So in the examples discussed in the previous sections (where we omitted all details
about event formats), in all cases this and only this internal binary format has been generated.
The generation of this raw format can be suppressed (e.g. if you want to have only one specific
event file type) by setting the variable $write raw = false. However, if the raw event file is
not present, WHIZARD is not able to re-use existing events (e.g. from an ASCII file) and will
regenerate events for a given process.

Other event formats can be written out by setting the variable sample format = <format>,
where <format> can be any of the following supported variables:
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• ascii: a quite verbose ASCII format which contains lots of information (an example is
shown in the appendix).
Standard suffix: .evt

• debug: an even more verbose ASCII format intended for debugging which prints out also
information about the internal data structures
Standard suffix: .debug

• hepevt: ASCII format that writes out a specific incarnation of the HEPEVT common
block (WHIZARD 1 back-compatibility)
Standard suffix: .hepevt

• short: abbreviated variant of the previous HEPEVT (WHIZARD 1 back-compatibility)
Standard suffix: .short.evt

• long: HEPEVT variant that contains a little bit more information than the short format
but less than HEPEVT (WHIZARD 1 back-compatibility)
Standard suffix: .long.evt

• athena: HEPEVT variant suitable for read-out in the ATLAS ATHENA software envi-
ronment (WHIZARD 1 back-compatibility)
Standard suffix: .athena.evt

• lha: Implementation of the Les Houches Accord as it was in the old MadEvent and
WHIZARD 1
Standard suffix: .lha

• lhef: Formatted Les Houches Accord implementation that contains the XML headers
Standard suffix: .lhef

• hepmc: HepMC ASCII format (only available if HepMC is installed and correctly linked)
Standard suffix: .hepmc

• stdhep: StdHEP binary format based on the HEPEVT common block (only available if
StdHEP is installed and correctly linked)
Standard suffix: .stdhep

• stdhep up: StdHEP binary format based on the HEPRUP/HEPEUP common blocks
(only available if StdHEP is installed and correctly linked)
Standard suffix: .up.stdhep

Of course, the variable sample format can contain more than one of the above identifiers,
in which case more than one different event file format is generated. The list above also
shows the standard suffixes for these event formats (remember, that the native binary format
of WHIZARD does have the suffix .evx). (The suffix of the different event format can even
be changed by the user by setting the corresponding variable $extension lhef = "foo" or
$extension ascii short = "bread". The dot is automatically included.)
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The name of the corresponding event sample is taken to be the string of the name of the
first process in the simulate statement. Remember, that conventionally the events for all
processes in one simulate statement will be written into one single event file. So simulate

(proc1, proc2) will write events for the two processes proc1 and proc2 into one single event
file with name proc1.evx. The name can be changed by the user with the command $sample

= "<name>".
The commands $sample and sample format are both accepted as optional arguments of a

simulate command, so e.g. simulate (proc) { $sample = "foo" sample format = hepmc

} generates an event sample in the HepMC format for the process proc in the file foo.hepmc.
Examples for event formats (in the sequel, we gave the numbers out as single precision for

better readability), for specifications of the event formats correspond the different accords and
publicatios:

HEPEVT:
The HEPEVT is an ASCII event format that does not contain an event file header. There

is a one-line header for each single event, containing four entries. The number of particles in
the event (ISTHEP), which is four for our example process e+e− → µ+µ−, but could be larger
if e.g. beam remnants are demanded to be included in the event. The second entry and third
entry are the number of outgoing particles and beam remnants, respectively. The event weight
is the last entry. For each particle in the event there are three lines: the first one is the status
according to the HEPEVT format, ISTHEP, the second one the PDG code, IDHEP, then there
are the one or two possible mother particle, JMOHEP, the first and last possible daughter particle,
JDAHEP, and the polarization. The second line contains the three momentum components, px,
py, pz, the particle energy E, and its mass, m. The last line contains the position of the vertex
in the event reconstruction.

4 2 0 1.00000000

2 11 0 0 3 4 0

0.00000000 0.00000000 249.999999 250.000000 5.11003380E-004

0.00000000 0.00000000 0.00000000 0.00000000 0.000000000

2 -11 0 0 3 4 0

0.00000000 0.00000000 -249.999999 250.000000 5.11003380E-004

0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

1 13 1 2 0 0 0

225.985918 -80.1076510 70.8033735 250.000000 0.10565838

0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

1 -13 1 2 0 0 0

-225.985918 80.1076510 -70.8033735 250.000000 0.10565838

0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

ASCII SHORT:
This is basically the same as the HEPEVT standard, but very much abbreviated. The

header line for each event is identical, but first line per particle does only contain the PDG and
the polarization, while the vertex information line is omitted.

4 2 0 1.00000000

11 0

0.00000000 0.00000000 249.999999 250.000000 5.11003380E-004

-11 0

0.00000000 0.00000000 -249.999999 250.000000 5.11003380E-004
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13 0

225.985918 -80.1076510 70.8033735 250.000000 0.10565838

-13 0

-225.985918 80.1076510 -70.8033735 250.000000 0.10565838

ASCII LONG:
Identical to the ASCII short format, but after each event there is a line containg two values:

the value of the sample function to be integrated over phase space, so basically the squared
matrix element including all normalization factors, flux factor, structure functions etc.

4 2 0 1.00000000

11 0

0.00000000 0.00000000 249.999999 250.000000 5.11003380E-004

-11 0

0.00000000 0.00000000 -249.999999 250.000000 5.11003380E-004

13 0

225.985918 -80.1076510 70.8033735 250.000000 0.10565838

-13 0

-225.985918 80.1076510 -70.8033735 250.000000 0.10565838

435.480971 1.00000000

ATHENA:
Quite similar to the HEPEVT ASCII format. The header line, however, does contain only

two numbers: an event counter, and the number of particles in the event. The first line for each
particle lacks the polarization information (irrelevant for the ATHENA environment), but has
as leading entry an ordering number counting the particles in the event. The vertex information
line has only the four relevant position entries.

1 4

1 2 11 0 0 3 4

0.00000000 0.00000000 249.999999 250.000000 5.11003380E-004

0.00000000 0.00000000 0.00000000 0.00000000

2 2 -11 0 0 3 4

0.00000000 0.00000000 -249.999999 250.000000 5.11003380E-004

0.00000000 0.00000000 0.00000000 0.00000000

3 1 13 1 2 0 0

225.985918 -80.1076510 70.8033735 250.000000 0.10565838

0.00000000 0.00000000 0.00000000 0.00000000

4 1 -13 1 2 0 0

-225.985918 80.1076510 -70.8033735 250.000000 0.10565838

0.00000000 0.00000000 0.00000000 0.00000000

LHA:
This is the implementation of the Les Houches Accord, as it was used in WHIZARD 1 and the

old MadEvent. There is a first line containing six entries: 1. the number of particles in the
event, NUP, 2. the subprocess identification index, IDPRUP, 3. the event weight, XWGTUP, 4. the
scale of the process, SCALUP, 5. the value or status of αQED, AQEDUP, 6. the value fr αs, AQCDUP.
The next seven lines contain as many entries as there are particles in the event: the first one
has the PDG codes, IDUP, the next two the first and second mother of the particles, MOTHUP,
the fourth and fifth line the two color indices, ICOLUP, the next one the status of the particle,
ISTUP, and the last line the polarization information, ISPINUP. At the end of the event there
are as lines for each particles with the counter in the event and the four-vector of the particle.
For more information on this event format confer [9].
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4 1 1.0000000000 500.000000 -1.000000 0.117800

11 -11 13 -13

0 0 1 1

0 0 2 2

0 0 0 0

0 0 0 0

-1 -1 1 1

9 9 9 9

1 250.0000000000 0.0000000000 0.0000000000 249.9999999995

2 250.0000000000 0.0000000000 0.0000000000 -249.9999999995

3 250.0000000000 223.6404152843 -102.7925182666 43.8024162280

4 250.0000000000 -223.6404152843 102.7925182666 -43.8024162280

LHEF:
This is the modern version of the Les Houches accord event format (LHEF), for the details

confer the corresponding publication [11].

<LesHouchesEvents version="1.0">

<header>

<generator_name>WHIZARD</generator_name>

<generator_version>2.0.0</generator_version>

</header>

<init>

11 -11 250.000000 250.000000 -1 -1 -1 -1 3 1

0.347536454 1.413672505E-004 1.00000000 1

</init>

<event>

4 1 1.00000000 500.000000 -1.00000000 0.117800000

11 -1 0 0 0 0 0.00000000 0.00000000 249.999999 250.000000 5.110033809E-004 0.00000000 9.00000000

-11 -1 0 0 0 0 0.00000000 0.00000000 -249.999995 250.000000 5.110033807E-004 0.00000000 9.00000000

13 1 1 2 0 0 223.640415 -102.792518 43.8024162 250.000000 0.105699999 0.00000000 9.00000000

-13 1 1 2 0 0 -223.640415 102.792518 -43.8024162 250.000000 0.105699999 0.00000000 9.00000000

</event>

</LesHouchesEvents>

Sample files for the default ASCII format as well as for the debug event format are shown
in the appendix.

8.1.4 Negative weight events
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Chapter 9

Technical details – Advanced Spells

9.0.5 Efficiency and tuning

Since massless fermions and vector bosons (or almost massless states in a certain approximation)
lead to restrictive selection rules for allowed helicity combinations in the initial and final state.
To make use of this fact for the efficiency of the WHIZARD program, we are applying some
sort of heuristics: WHIZARD dices events into all combinatorially possible helicity configuration
during a warm-up phase. The user can specify a helicity threshold which sets the number of
zeros WHIZARD should have got back from a specific helicity combination in order to ignore that
combination from now on. By that mechanism, typically half up to more than three quarters of
all helicity combinations are discarded (and hence the corresponding number of matrix element
calls). This reduces calculation time up to more than one order of magnitude. WHIZARD shows
at the end of the integration those helicity combinations which finally contributed to the process
matrix element.

Note that this list – due to the numerical heuristics – might very well depend on the number
of calls for the matrix elements per iteration, and also on the corresponding random number
seed.
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Chapter 10

New Models via FeynRules
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Appendix A

SINDARIN Reference

This appendix is out-of-date and needs revision.

In the SINDARIN language, there are certain pre-defined constructors or commands that
cannot be used in different context by the user, which are – in alphabetical order – alias, all,
$analysis filename, and, as, any, beams, cmplx, combine, compile, cuts, $description,
echo, else, exec, expect, false, ?fatal beam decay, if, include, int, integrate, iterations,
$label, lhapdf, library, load, luminosity, model, n events, no, observable, or, $physical unit,
plot, process, read slha, real, ?rebuild, ?recompile, record, $restrictions, results,
$sample, sample format, scan, seed, show, simulate, sqrts, then, $title, tolerance, true,
unstable, ?vis channels, write analysis, write slha, $xlabel, and $ylabel. Also units
are fixed, like degree, eV, keV, q MeV, GeV, and TeV. Again, these tags are locked and not user-
redefinable. There functionality will be listed in detail below. Furthermore, a variable with a
preceding question mark, ?, is a logical, while a preceding hash, #, denotes a character string
variable. Also, a lot of unary and binary operators exist, + - \ , = : => < > <= >= ^ ()

[] {} ~~~, as well as quotation marks, ”. Note that the different parentheses and brackets
fulfill different purposes, which will be explained below. Comments in a line can be marked by
a hash, #, or an exclamation mark, !.

• alias

This allows to define a collective expression for a class of particles, e.g. to define a generic
expression for leptons, neutrinos or a jet as alias lepton = e1:e2:e3:E1:E2:E3, alias
neutrino = n1:n2:n3:N1:N2:N3, and alias jet = u:d:s:c:U:D:S:C:g, respectively.

• all

all is a function that works on a logical expression and a list, all <log expr> [<list>],
and returns true if and only if log expr is fulfilled for all entries in list, and false oth-
erwise. Examples: all Pt > 100 GeV [lepton] checks whether all leptons are harder
than 100 GeV, all Dist > 2 [u:U, d:D] checks whether all pairs of corresponding
quarks are separated in R space by more than 2. Logical expressions with all can
be logically combined with and and or. (cf. also any, and, no, and or)

• $analysis filename
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This character variable allows to create a LATEXfile for the user anaylsis, and to specify
its name. If this variable is not set, the analysis will be directed to the screen output.
(cf. also write analysis)

• and

This is the standard two-place logical connective that has the value true if both of its
operands are true, otherwise a value of false. It is applied to logical values, e.g. cut
expressions. (cf. also or).

• as

cf. compile

• ascii

Specifier for the sample format command to demand the generation of the standard
WHIZARD verbose ASCII event files. (cf. also $sample, sample format)

• any

any is a function that works on a logical expression and a list, any <log expr> [<list>],
and returns true if log expr is fulfilled for any entry in list, and false otherwise.
Examples: any PDG == 13 [lepton] checks whether any lepton is a muon, any E > 2 *

mW [jet] checks whether any jet has an energy of twice the W mass. Logical expressions
with any can be logically combined with and and or. (cf. also all, and, no, and or)

• athena

Specifier for the sample format command to demand the generation of the ATHENA
variant for HEPEVT ASCII event files. (cf. also $sample, sample format)

• beams

This specifies the contents and structure of the beams. If this command is absent in the
input file, WHIZARD automatically takes the two incoming partons (or one for decays)
of the corresponding process as beam particles and no structure functions are applied.
Protons and antiprotons as beam particles are predefined as p and pbar, respectively. A
structure function, like lhapdf, ISR, EPA and so on are switched on as e.g. beams = p,

p => lhapdf. (cf. also circe, circe2, lhapdf).

• int checkpoint

Setting this variable to a positive integer n instructs simulate to print out a progress
summary every n events.

• cmplx

Defines a complex variable. (to be finalized still

• combine

The combine [<list1>, <list2>] operation makes a particle list whose entries are the
result of adding (the momenta of) each pair of particles in the two input lists list1, list2.
For example, combine [incoming lepton, lepton] constructs all mutual pairings of an
incoming lepton with an outgoing lepton (an alias for the leptons has to defined, of course).
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• compile

The compile command is mandatory, it invokes the compilation of the process(es) (i.e. the
matrix element file(s)) to be compiled as a shared library. This shared object file has the
standard name processes.so and resides in the .libs subdirectory of the corresponding
user workspace. If the user has defined a different library name lib name with the library
command, then WHIZARD compiles this as the shared object .libs/lib name.so. (This
allows to split process classes and to avoid too large libraries.) Another possibility is to
use the command compile as "static name". This will compile and link the process
library in a static way and create the static executable static name in the user workspace.
(cf. also library, load)

• cuts

This command defines the cuts to be applied to certain processes. The syntax is: cuts =

<log class> <log expr> [<unary or binary particle (list) arg>], where the cut
expression must be initialized with a logical classifier log class like all, any, no. The
logical expression log expr contains the cut to be evaluated. Note that this need not only
be a kinematical cut expression like E > 10 GeV or 5 degree < Theta < 175 degree,
but can also be some sort of trigger expression or event selection, e.g. PDG == 15 would
select a tau lepton. Whether the expression is evaluated on particles or pairs of particles
depends on whether the discriminating variable is unary or binary, Dist being obviously
binary, Pt being unary. Note that some variables are both unary and binary, e.g. the
invariant mass M . Cut expressions can be connected by the logical connectives and and
or. The cuts statement acts on all subsequent process integrations and analyses until a
new cuts statement appears. (cf. also all, any, Dist, E, M, no, Pt).

• debug

Specifier for the sample format command to demand the generation of the very verbose
WHIZARD ASCII event file format intended for debugging. (cf. also $sample, sample format)

• degree

Expression specifying the physical unit of degree for angular variables, e.g. the cut ex-
pression function Theta. (if no unit is specified for angular variables, radians are used).

• $description

String variable that allows to specify a description text for the analysis, $description
= "analysis description text". This line appears below the title of a corresponding
analysis, on top of the respective plot. (cf. analysis, $title)

• echo

Allows to put verbose information on the screen during execution, e.g. echo ("Hello,

world!"). (cf. also show)

• else

cf. if
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• eV

Physical unit, stating that the corresponding number is in electron volt.

• exec

Constructor exec ("<cmd name>") that demands WHIZARD to execute/run the com-
mand cmd name. For this to work that specific command must be present either in the
path of the operating system or as a command in the user workspace.

• expect

The binary function expect compares two numerical expressions whether they are fulfill a
certain ordering condition or are equal up to a specific uncertainty or tolerance which can
bet set by the specifier tolerance, i.e. in principle it checks whether a logical expression
is true. The expect function does actually not just check a value for correctness, but also
records its result. If failures are present when the program terminates, the exit code is
nonzero. The syntax is expect (<num1> <log comp> <num2>), where num1 and num2 are
two numerical values (or corresponding variables) and log comp is one of the following
logical comparators: <, >, <=, >=, ==~, <>, ~~, ~. (cf. also <, >, <=, >=, ==, <>, ~~, ~,
tolerance).

• $extension ascii

String variable that allows via $extension ascii = "<suffix>" to specify the suffix for
the file name.suffix to which events in a the standard WHIZARD verbose ASCII format
are written. If not set, the default file name and suffix is <process name>.evt. (cf. also
sample format, $sample)

• $extension ascii long

String variable that allows via $extension ascii long = "<suffix>" to specify the
suffix for the file name.suffix to which events in the so called long variant of the WHIZARD
1 style HEPEVT ASCII format are written. If not set, the default file name and suffix is
<process name>.long.evt. (cf. also sample format, $sample)

• $extension ascii short

String variable that allows via $extension ascii short = "<suffix>" to specify the
suffix for the file name.suffix to which events in the so called short variant of the WHIZARD
1 style HEPEVT ASCII format are written. If not set, the default file name and suffix is
<process name>.short.evt. (cf. also sample format, $sample)

• $extension debug

String variable that allows via $extension debug = "<suffix>" to specify the suffix for
the file name.suffix to which events in a a long verbose format with debugging informa-
tion are written. If not set, the default file name and suffix is <process name>.debug.
(cf. also sample format, $sample)

• $extension hepevt

String variable that allows via $extension hepevt = "<suffix>" to specify the suffix

<
>
<=
>=
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~~
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~~
~
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for the file name.suffix to which events in the WHIZARD 1 style HEPEVT ASCII format
are written. If not set, the default file name and suffix is <process name>.hepevt. (cf.
also sample format, $sample)

• $extension hepmc

String variable that allows via $extension hepmc = "<suffix>" to specify the suffix
for the file name.suffix to which events in the HepMC format are written. If not set,
the default file name and suffix is <process name>.hepmc. (cf. also sample format,
$sample)

• $extension lhef

String variable that allows via $extension lhef = "<suffix>" to specify the suffix for
the file name.suffix to which events in the LHEF format are written. If not set, the
default file name and suffix is <process name>.lhef. (cf. also sample format, $sample)

• false

Constructor stating that a logical expression or variable is false, e.g. ?<log var> =

false. (cf. also true).

• ?fatal beam decay

Logical variable that let the user decide whether the possibility of a beam decay is treated
as a fatal error or only as a warning. An example is a process bt→ X, where the bottom
quark as an inital state particle appears as a possible decay product of the second incoming
particle, the top quark. This might trigger inconsistencies or instabilities in the phase
space set-up.

• GeV

Physical unit, energies in 109 electron volt. This is the default energy unit of WHIZARD.

• hepevt

Specifier for the sample format command to demand the generation of HEPEVT ASCII
event files. (cf. also $sample, sample format)

• hepmc

Specifier for the sample format command to demand the generation of HepMC ASCII
event files. Note that this is only available if the HepMC package is installed and correctly
linked. (cf. also $sample, sample format)

• if

Conditional clause with the construction if <log expr> then <expr> else <expr>.
Note that there must be an end if statement. For more complicated expressions it is bet-
ter to use expressions in parentheses: if (<log expr>) then {<expr>} else {<expr>}.
Examples are a selection of up quarks over down quarks depending on a logical variable:
if ?ok then u else d, or the setting of an integer variable depending on the rapidity of
some particle: if (eta > 0) then { a = +1} else { a = -1}. The then constructor
is not mandatory and can be omitted.
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• include

The include statement, include ("file.sin") allows to include external SINDARIN
files file.sin into the main WHIZARD input file. A standard example is the inclusion
of the standard cut file default cuts.sin.

• int

This is a constructor to specify integer constants in the input file. Strictly speaking, it is a
unary function setting the value int val of the integer variable int var: int <int var>

= <int val>. (cf. also real and cmplx)

• integrate

The integrate (<proc name>) { <integrate options> } command invokes the inte-
gration (phase-space grid generation and Monte-Carlo sampling of the process proc name

(which can also be a list of processes) with the integration options <integrate options.
Right now the only option is to specify the number of iterations and calls per integration
during the Monte-Carlo phase-space integration via iterations = <n iterations>:<n calls>.
Note that this can be list, separated by colons, which breaks up the integration process
into units of the specified number of integrations and calls each.

• iterations

Option to set the number of iterations and calls per iteration during the Monte-Carlo
phase-space integration process, cf. integrate.

• keV

Physical unit, energies in 103 electron volt.

• $label

This is a string variable, $label = "label name" that allows to specify a label label name

for analysis plots on the x axis. It is only taken into account if the variable $xlabel has
not been set, in which case it is overwritten by the string value of that variable. (cf. also
xlabel, ylabel).

• lha

Specifier for the sample format command to demand the generation of the WHIZARD
1 LHA ASCII event format files. (cf. also $sample, sample format)

• lhapdf

This is a specifier to demand calling LHAPDF parton densities to integrate processes in
hadron collisions. (cf. beams)

• lhef

Specifier for the sample format command to demand the generation of the Les Houches
Accord (LHEF) event format files, with the XML headers. (cf. also $sample, sample format)

• library

The command library = "<lib name>" allows to specify a separate shared object li-
brary archive lib name.so, not using the standard library processes.so. Those libraries
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(when using shared libraries) are located in the .libs subdirectory of the user workspace.
Specifying a separate library is useful for splitting up large lists of processes, or to restrict
a larger number of different loaded model files to one specific process library. (cf. also
compile, load)

• load

The load command allows to load again a library if some details have been changed
(processes added, redefined or maybe changed. (cf. also compile, library)

• long

Specifier for the sample format command to demand the generation of the long variant
of HEPEVT ASCII event files. (cf. also $sample, sample format)

• luminosity This specifier luminosity = <num> sets the integrated luminosity for the
event generation of the processes in the SINDARIN input files. Note that WHIZARD
itself chooses the number from the luminosity or from the n events specifier, whichever
would give the larger number of events. As this depends on the cross section under
consideration, it might be different for different processes in the process list. Furthermore,
the luminosity or n events command has to be invoked after the corresponding logical
variable which tells WHIZARD to write an event file in a specific format. (cf. n events,
$sample, sample format)

• MeV

Physical unit, energies in 106 electron volt.

• model

With this specifier, model = <MODEL NAME>, one sets the hard interaction physics model
for the processes defined after this model specification. The list of available models can
be found in Table 7.1. Note that the model specification can appear arbitrarily often
in a SINDARIN input file, e.g. for compiling and running processes defined in different
physics models.

• no

no is a function that works on a logical expression and a list, no <log expr> [<list>],
and returns true if and only if log expr is fulfilled for none of the entries in list, and
false otherwise. Examples: no Pt < 100 GeV [lepton] checks whether no lepton is
softer than 100 GeV. It is the logical opposite of the function all. Logical expressions
with no can be logically combined with and and or. (cf. also all, any, and, and or)

• n events

This specifier n events = <num> sets the number of events for the event generation of
the processes in the SINDARIN input files. Note that WHIZARD itself chooses the
number from the n events or from the luminosity specifier, whichever would give the
larger number of events. As this depends on the cross section under consideration, it
might be different for different processes in the process list. Furthermore, the n events
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or luminosity command has to be invoked after the corresponding logical variable which
tells WHIZARD to write an event file in a specific format. (cf. luminosity, $sample,
sample format)

• observable

With this, observable = <obs spec>, the user is able to define a variable specifier
obs spec for observables. These can be reused in the analysis, e.g. as a record, as
functions of the fundamental kinematical variables of the processes. (cf. analysis,
record)

• or

This is the standard two-place logical connective that has the value true if one of its
operands is true, otherwise a value of false. It is applied to logical values, e.g. cut
expressions. (cf. also and).

• $physical unit

This is a string variable, $physical unit = "<unit name>’’, that allows to set a LATEXname
unit name for the physical unit of a label of an analysis plot. This unit is then also used
for calculations within the analysis set-up.

• plot

(cf. record)

• process

Allows to set a hard interaction process, either for a decay process decay proc as process
<decay proc> = <mother> => <daughter1>, <daughter2>, ..., or for a scattering pro-
cess scat proc as <incoming1>, <incoming2> => <outgoing1>, <outgoing2>, ....
Note that there can be arbitrarily many processes to be defined in a SINDARIN input
file. (cf. also restrictions)

• read slha

Tells WHIZARD to read in an input file in the SUSY Les Houches accord (SLHA), as
read slha ("slha file.slha"). Note that the files for the use in WHIZARD should
have the suffix .slha. (cf. also write slha)

• real

This is a constructor to specify real constants in the input file. Strictly speaking, it
is a unary function setting the value real val of the integer variable real var: real

<real var> = <real val>. (cf. also int and cmplx)

• real epsilon

Predefined real; the relative uncertainty instrinsic to the floating point type used by
WHIZARD.
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• int real precision

Predefined integer; the decimal precision of the floating point type used by WHIZARD.

• int range

Predefined integer; the decimal range of the floating point type used by WHIZARD.

• real tiny

Predefined real; the smallest number which can be represented by the floating point type
used by WHIZARD.

• ?rebuild

The logical variable ?rebuild = true/false specifies whether the matrix element code
for processes is re-generated by the matrix element generator O’Mega (e.g. if the process
has been changed, but not its name). This can also be set as a command-line option
whizard --rebuild. The default is false, i.e. code is never re-generated if it is present
and the MD5 checksum is valid. (cf. also recompile).

• ?recompile

The logical variable ?recompile = true/false specifies whether the matrix element
code for processes is re-compiled (e.g. if the process code has been manually modified by
the user). This can also be set as a command-line option whizard --recompile. The
default is false, i.e. code is never re-compiled if its corresponding object file is present.
(cf. also rebuild)

• record

The record constructor provides an internal data structure in SINDARIN input files.
Its syntax is in general record <record name> (<cmd expr>). The <cmd expr> could
be the definition of a tuple of points for a histogram or an eval constructor that tells
WHIZARD e.g. by which rule to calculate an observable to be stored in the record
record name. (cf. also eval)

• $restrictions

This is an optional argument for process definitions. It defines a string variable, process
<process name> = <particle1>, <particle2> => <particle3>, <particle4>, ...

{ $restrictions = "<restriction def>" }. The string argument restriction def

is directly transferred during the code generation to the matrix element generator O’Mega.
It has to be of the form n1 + n2 + ... ~ <particle (list)>, where n1 and so on
are the numbers of the particles above in the process definition. The tilde specifies
a certain intermediate state to be equal to the particle(s) in particle (list). An ex-
ample is process eemm z = e1, E1 => e2, E2 { $restrictions = "1+2 ~ Z" } re-
stricts the code to be generated for the process e−e+ → µ−µ+ to the s-channel Z-boson
exchange. (cf. also process)

• results

Only used in the combination show(results). Forces WHIZARD to print out a results
summary for the integrated processes. (cf. also show)

~
~
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• $sample

String variable to set the (base) name of the event output format, e.g. $sample = "foo"

will result in an intrinsic binary format event file foo.evx. (cf. also sample format,
simulate, hepevt, ascii, athena, debug, long, short, hepmc, lhef, lha, stdhep,
stdhep up)

• sample format

Variable that allows the user to specify additional event formats beyond the WHIZARD

native binary event format. Its syntax is sample format = <format>, where <format>

can be any of the following specifiers: hepevt, ascii, athena, debug, long, short, hepmc,
lhef, lha, stdhep, stdhep up. (cf. also $sample, simulate, hepevt, ascii, athena,
debug, long, short, hepmc, lhef, lha, stdhep, stdhep up)

• scan

Constructor to perform loops over variables or scan over processes in the integration pro-
cedure. The syntax is scan <var> <var name> (<value list> or <value init> =>

<value fin> /<incrementor> <increment>) { <scan cmd> }. The variable var can
be specified if it is not a real, e.g. an integer. var name is the name of the variable
which is also allowed to be a predefined one like seed. For the scan, one can either
specify an explicit list of values value list, or use an initial and final value and a
rule to increment. The scan cmd can either be just a show to print out the scanned
variable or the integration of a process. Examples are: scan seed (32 => 1 / / 2) {
show (seed value) } , which runs the seed down in steps 32, 16, 8, 4, 2, 1 (division
by two). scan mW (75 GeV, 80 GeV => 82 GeV /+ 0.5 GeV, 83 GeV => 90 GeV /*

1.2) { show (sw) } scans over the W mass for the values 75, 80, 80.5, 81, 81.5, 82, 83
GeV, namely one discrete value, steps by adding 0.5 GeV, and increase by 20 % (the latter
having no effect as it already exceeds the final value). It prints out the corresponding
value of the effective mixing angle which is defined as a dependent variable in the model
input file(s). scan sqrts (500 GeV => 600 GeV /+ 10 GeV) { integrate (proc) }
. integrates the process proc in eleven increasing 10 GeV steps in center-of-mass energy
from 500 to 600 GeV.

• seed

Integer variable seed = <num> that allows to set a specific random seed num. If not set,
WHIZARD takes the time from the system clock to determine the random seed.

• short

Specifier for the sample format command to demand the generation of the short variant
of HEPEVT ASCII event files. (cf. also $sample, sample format)

• show

This is a unary function that is operating on specific constructors in order to print them
out in the WHIZARD screen output as well as the log file whizard.log. Examples
are show(<parameter name>) to issue a specific parameter from a model or a constant
defined in a SINDARIN input file, show(integral(<proc name>)), show(library),
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show(results), or show(¡var¿) for any arbitrary variable. (cf. also echo, library,
results)

• simulate

This command invokes the generation of events for the process proc by means of simulate
(<proc>).
Optional arguments: $sample, sample format, checkpoint
(cf. also integrate, luminosity, n events, $sample, sample format, checkpoint)

• sqrts

Real variable in order to set the center-of-mass energy for the collisions (collider energy√
s, not hard interaction energy sqrtŝ): sqrts = <num> <phys unit>. The physical unit

can be one of the following eV, keV, MeV, GeV, and TeV. If absent, WHIZARD takes GeV

as its standard unit.

• stable

This constructor allows particles in the final states of processes in decay cascade set-up
to be set as stable, and not letting them decay. The syntax is stable <particle name.
(cf. also unstable)

• stdhep

Specifier for the sample format command to demand the generation of binary StdHEP
event files based on the HEPEVT common block. Note that this is only available if the
StdHEP package is installed and correctly linked. (cf. also $sample, sample format)

• stdhep up

Specifier for the sample format command to demand the generation of binary StdHEP
event files based on the HEPRUP/HEPEUP common blocks. Note that this is only
available if the StdHEP package is installed and correctly linked. (cf. also $sample,
sample format)

• TeV

Physical unit, for energies in 1012 electron volt.

• then

Alternative option inside a conditional clause, not mandatory, hence maybe be omitted,
cf. if.

• $title

This string variable sets the title of a plot in a WHIZARD analysis setup, e.g. a histogram
or an observable. The syntax is $title = "<your title>". This title appears as a
section header in the analysis file, but not in the screen output of the analysis. (cf. also
$description, $label, $xlabel, $ylabel).

• tolerance

Real variable that defines the tolerance with which the (logical) function expect accepts
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process zee = Z => e1, E1

process zuu = Z => u, U

process zz = e1, E1 => Z, Z

compile

integrate (zee) { iterations = 1:100 }

integrate (zuu) { iterations = 1:100 }

sqrts = 500 GeV

integrate (zz) { iterations = 3:5000, 2:5000 }

unstable Z (zee, zuu)

Figure A.1: SINDARIN input file for unstable particles and inclusive decays.

equality or inequality: tolerance = <num>. This can e.g. be used for cross-section tests
and backwards compatibility checks. (cf. also expect)

• true

Constructor stating that a logical expression or variable is true, e.g. ?<log var> = true.
(cf. also false).

• unstable

This constructor allows to let final state particles of the hard interaction undergo a subse-
quent (cascade) decay (in the on-shell approximation). For this the user has to define the
list of desired Decay channels as unstable <mother> (<decay1>, <decay2>, ....),
where mother is the mother particle, and the argument is a list of decay channels. Note
that these have to be provided by the user as in the example in Fig. A.1. First, the Z
decays to electrons and up quarks are generated, then ZZ production at a 500 GeV ILC
is called, and then both Zs are decayed according to the probability distribution of the
two generated decay matrix elements. This obviously allows also for inclusive decays. (cf.
also stable)

• ?vis channels

Optional logical argument for the integrate command that demands WHIZARD to generate
a PDF or postscript output showing the classification of the found phase space channels
according to their properties: integrate (foo) iterations=3:10000 ?vis channels.
(cf. also integrate)

• write analysis

The write analysis statement tells WHIZARD to write the analysis setup by the user
for the SINDARIN input file under consideration. If no $analysis filename is provided,
the analysis (including the histograms) are printed out on the screen, otherwise they are
written to a file defined by that specific string variable. (cf. also $analysis filename)

• write slha
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Demands WHIZARD to write out a file in the SUSY Les Houches accord (SLHA). (cf.
also read slha)

• $xlabel

String variable, $xlabel = "<LaTeX code>", that sets the x axis label in a plot or his-
togram in a WHIZARD analysis. (cf. also label and $ylabel)

• $ylabel

String variable, $ylabel = "<LaTeX code>", that sets the y axis label in a plot or his-
togram in a WHIZARD analysis. (cf. also label and $xlabel)
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