WHIZARD 2.3

A generic
Monte-Carlo integration and event generation package
for multi-particle processes

MANUAL !

WOLFGANG KILIAN,? THORSTEN OHL,> JURGEN REUTER," WITH CONTRIBUTIONS FROM
FABIAN BACH, ° BIJAN CHOKOUFE NEJAD, ® SEBASTIAN SCHMIDT, CHRISTIAN
SPECKNER ’, FLORIAN STAUB °

Universitat Siegen, Emmy-Noether-Campus, Walter-Flex-Str. 3, D-57068 Siegen, Germany
Universitat Wiirzburg, Emil-Hilb-Weg 22, D-97074 Wiirzburg, Germany
Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22603 Hamburg, Germany

!This work is supported by Helmholtz-Alliance “Physics at the Terascale”. In former stages this
work has also been supported by the Helmholtz-Gemeinschaft VH-NG-005

when using WHIZARD please cite:
W. Kilian, T. Ohl, J. Reuter,
WHIZARD: Simulating Multi-Particle Processes at LHC and ILC),
Eur.Phys.J.C71 (2011) 1742, arXiv: 0708.4233 [hep-ph];
M. Moretti, T. Ohl, J. Reuter,
O’Mega: An Optimizing Matrix Element Generator,
arXiv: hep-ph/0102195

0 N O Ut kW N

e-mail:
e-mail:
e-mail:
e-mail:
e-mail:
e-mail:
e-mail:

kilian@hep.physik.uni-siegen.de
ohl@physik.uni-wuerzburg.de
juergen.reuter@desy.de
fabian.bach@desy.de
bijan.chokoufe@desy.de
cnspeckn@googlemail.com
fnstaub@th.physik.uni-bonn.de

ABSTRACT

WHIZARD is a program system designed for the efficient calculation of multi-
particle scattering cross sections and simulated event samples. The generated
events can be written to file in various formats (including HepMC, LHEF,
STDHEP, LCIO, and ASCII) or analyzed directly on the parton or hadron
level using a built-in IXTEX-compatible graphics package.

Complete tree-level matrix elements are generated automatically for arbi-
trary partonic multi-particle processes by calling the built-in matrix-element
generator 0°Mega. Beyond hard matrix elements, WHIZARD can generate (cas-
cade) decays with complete spin correlations. Various models beyond the SM
are implemented, in particular, the MSSM is supported with an interface to
the SUSY Les Houches Accord input format. Matrix elements obtained by
alternative methods (e.g., including loop corrections) may be interfaced as
well.

The program uses an adaptive multi-channel method for phase space inte-
gration, which allows to calculate numerically stable signal and background
cross sections and generate unweighted event samples with reasonable effi-
ciency for processes with up to eight and more final-state particles. Polariza-
tion is treated exactly for both the initial and final states. Quark or lepton
flavors can be summed over automatically where needed.

For hadron collider physics, we ship the package with the most recent PDF
sets from the MSTW/MMHT and CTEQ/CT10/CJ12/CT14 collaborations.
Furthermore, an interface to the LHAPDF library is provided.

For Linear Collider physics, beamstrahlung (CIRCE1, CIRCE2), Compton and
ISR spectra are included for electrons and photons, including the most recent
ILC and CLIC collider designs. Alternatively, beam-crossing events can be
read directly from file.

For parton showering and matching/merging with hard matrix elements ,
fragmenting and hadronizing the final state, a first version of two different
parton shower algorithms are included in the WHIZARD package. This also
includes infrastructure for the MLM matching and merging algorithm. For
hadronization and hadronic decays, PYTHIA and HERWIG interfaces are pro-
vided which follow the Les Houches Accord. In addition, the last and final
version of (Fortran) PYTHIA is included in the package.

The WHIZARD distribution is available at
http://projects.hepforge.org/whizard

where also the svn repository is located.

http://projects.hepforge.org/whizard

Contents

1 Introduction

2

1.1
1.2
1.3
1.4

Disclaimer e e
OVEIVIEW o e
Historical remarks e
About examples in this manual

Installation

2.1
2.2

2.3

24

2.5

Package Structureo
Prerequisites
2.2.1 No Binary Distribution 0o oo
2.2.2 Tarball Distribution oo o
2.2.3 SVN Repository Version 0oL
2.2.4 Fortran Compilers
2.2.5 LHAPDFE e
2.2.6 HOPPET e
227 HepMC
2.2.8 PYTHIAS e
229 Fastdeto
2.2.10 STDHEP
2211 LCIO . . . o e
Installation L
2.3.1 Central Installation o0 L
2.3.2 Installation in User Space
2.3.3 Configure Options
2.3.4 Details on the Configure Process
2.3.5 WHIZARD self tests/checks
Working With WHIZARD
2.4.1 Working on a Single Computer
2.4.2 Stopping And Resuming WHIZARD Jobs
2.4.3 Submitting Batch Jobs With WHIZARD I / Relocation of WHIZARD

2.4.4 Submitting Batch Jobs With WHIZARD IT
Troubleshooting
2.5.1 Possible (uncommon) build problems o 000

5

6 CONTENTS
2.5.2 What happens if WHIZARD throws an error? 36

2.5.3 Debugging, testing, and validation. 42

3 Getting Started 43
3.1 Hello World e 43
3.2 A Simple Calculation 45

4 Steering WHIZARD: SINDARIN Overview 49
4.1 The command language for WHIZARD 49
4.2 SINDARIN Scripts o o i s s e e 50
4.3 EITOrs e 51
4.4 Statements. 52
4.4.1 Process Configuration L 52

4.4.2 Parameters e 53

4.4.3 Integration L L 55

4.4.4 Events e 56

4.5 Control Structures L 58
4.5.1 Conditionals 59

4.5.2 Loops e 59

4.5.3 Including Files o o 61

4.6 EXpressions e e 61
4.6.1 Numeric e 61

4.6.2 Logical and Stringo 61

4.6.3 Special 62

4.7 Variables e 62

5 Detailed WHIZARD Steering: SINDARIN 65
5.1 Data and expressions e 65
5.1.1 Real-valued objects o 65

5.1.2 Integer-valued objects oL 67

5.1.3 Complex-valued objects oL 67

5.1.4 Logical-valued objects L 68

5.1.5 String-valued objects and string operations 68

5.2 Particles and (sub)events 69
5.2.1 Particle aliases e 69

5.2.2 Subevents 69

5.2.3 Subevent functionso L 70

5.2.4 Calculating observables oL 74

5.2.5 Cuts and event selection oL 74

5.2.6 More particle functions oL 75

5.3 Physics Modelso 7
5.4 Processes e 78

5.4.1 Process definition 79

CONTENTS 7

5.9

5.6

2.7

5.8

5.9

5.4.2 Particlenames 79
5.4.3 Options for processes e 82
5.4.4 Process components 84
54.5 Compilationo 86
5.4.6 Process libraries Lo 87
5.4.7 Stand-alone WHIZARD with precompiled processes 87
Beams e 88
5.50.1 Beamsetup 88
5.5.2 Asymmetric beams and Crossing angles 89
5.5.3 LHAPDF 90
554 Built-in PDFs 92
5.5.5 HOPPET b parton matching 92
5.5.6 Lepton Collider ISR structure functions 94
5.5.7 Lepton Collider Beamstrahlung 95
5.5.8 Beamevents L 98
5.5.9 Gaussian beam-energy spread 98
5.5.10 Equivalent photon approximation 98
5.5.11 Effective W approximation 100
5.5.12 Energy scans using structure functions 101
5.5.13 Photon collider spectra oL 101
5.5.14 Concatenation of several structure functions 102
5.5.15 User-defined structure functions 103
Polarization e 104
5.6.1 Initial state polarization 104
5.6.2 Final state polarizationo o Lo 109
Cross seCtions o i e e e 110
5.7.1 Integration L 110
5.7.2 Imtegrationrun IDso oo 115
5.7.3 Controlling iterations 115
574 Phasespace e 116
5.7 Cuts . . .o 118
5.7.6 QCD scale and coupling L 119
5.7.7 Reweighting factor o L 120
Events e 121
5.8.1 Simulation 121
0.82 Decayso 123
5.8.3 Event formats 126
Analysis and Visualizationo 126
5.9.1 Observables e 126
5.9.2 The analysis expression 127
5.9.3 Histograms L 129
594 Plots e e 130

5.9.5 Analysis Output 130

8 CONTENTS

5.10 Custom Input/Output 131
5.10.1 Output Files. oo 131

5.10.2 Printing Datao 132

5.11 WHIZARD next-to-leading order mode 133
5.11.1 Prerequisites. e 133

5.11.2 NLO cross sections it i it 135

5.11.3 Fixed-order NLO events 135

5.11.4 Powheg matching o 135

6 Random number generators 137
6.1 General remarks. e 137
6.2 The TAO Random Number Generator 137

7 Integration Methods 139
7.1 The Monte-Carlo integration routine: VAMP 139

8 Phase space parameterizations 141
8.1 General remarks 141
8.2 The default method: wood 141

9 Methods for Hard Interactions 143
9.1 Internal unit matrix elements 143
9.2 Template matrix elements L Lo Lo 143
9.3 The O'Mega matrix element generator 143
9.4 Interface to GoSam e 143

10 Implemented physics 145
10.1 The hard interaction models 145
10.1.1 The Standard Model and friends 145

10.1.2 Beyond the Standard Model 145

10.2 The SUSY Les Houches Accord (SLHA) interface 147
10.3 Lepton Collider Beam Spectra 147
10.3.1 CIRCEL o o e e 148

10.3.2 CIRCE2 o i e e e e e e e e e e 148

10.3.3 Photon Collider Spectra 150

11 More on Event Generation 151
11.1 Event generation L 151
11.2 Unweighted and weighted events 154
11.3 Choice on event normalizations 155
11.4 Event selection e 156
11.5 Supported event formats L 156
11.6 Interfaces to Parton Showers, Matching and Hadronization 162

11.6.1 Parton Showers and Hadronization 162

CONTENTS

11.6.2 Parton shower — Matrix Element Matching
11.7 Rescanning and recalculating events Lo L.
11.8 Negative weight events o

12 User Code Plug-Ins

12.1 The plug-in mechanism
12.2 Data Types Used for Communication
12.3 User-defined Observables and Functions

12.3.1 Cut function .

12.3.2 Event-shape function oL

12.3.3 Observable . .
12.3.4 Examples . .

12.4 Spectrum or Structure Function L.

12.4.1 Definition . .
12.4.2 Example . . .

12.5 User Code and Static Executables

13 Data Visualization
13.1 GAMELAN

13.1.1 User-specific changes

13.2 Histogram Display .
13.3 Plot Display
13.4 Graphs
13.5 Drawing options . . .

14 User Interfaces for WHIZARD
14.1 Command Line and SINDARIN Input Files
14.2 WHISH - The WHIZARD Shell/Interactive mode
14.3 Graphical user interface oL
14.4 WHIZARD as alibrary

15 Examples
15.1 Z lineshape at LEP 1
15.2 W pairs at LEP 1T .

15.3 Higgs search at LEP I o o
15.4 Deep Inelastic Scattering at HERA

15.5 W endpoint at LHC

15.6 SUSY Cascades at LHC

15.7 Polarized WW at ILC

16 Technical details — Advanced Spells

16.1 Efficiency and tuning

164
165
168

169
169
170
171
171
172
173
173
175
175
178
180

181
181
182
183
183
183
185

189
189
191
191
191

193
193
196
199
204
204
204
204

205

10 CONTENTS

17 New External Physics Models 207
17.1 New physics models via SARAH 207
17.1.1 WHIZARD/O0’Mega model files from SARAH 208

17.1.2 Linking SPheno and WHIZARD 209

17.1.3 BSM Toolbox o 210

17.2 New physics models via FeynRules 211
17.2.1 Installation and Usage of the WHIZARD-FeynRules interface 211

17.2.2 Options of the WHIZARD-FeynRules interface 215

17.2.3 Validation of the interface oo 216

17.2.4 Examples for the WHIZARD-/FeynRules interface 216

A SINDARIN Reference 223

Chapter 1

Introduction

1.1 Disclaimer

This is a preliminary version of the WHIZARD manual. Many parts are still missing or
incomplete, and some parts will be rewritten and improved soon. To find updated versions of
the manual, visit the WHIZARD website

http://whizard.event-generator.org

or consult the current version in the sun repository on http: //whizard. hepforge. org di-
rectly. Note, that the most recent version of the manual might contain information about features
of the current svn version, which are not contained in the last official release version!

For information that is not (yet) written in the manual, please consult the examples in the
WHIZARD distribution. You will find these in the subdirectory share/examples of the main
directory where WHIZARD is installed. More information about the examples can be found on the
WHIZARD Wiki page

http://projects.hepforge.org/whizard/trac/wiki.

11

http://whizard.event-generator.org
http://whizard.hepforge.org
http://projects.hepforge.org/whizard/trac/wiki

12 CHAPTER 1. INTRODUCTION

1.2 Overview

WHIZARD is a multi-purpose event generator that covers all parts of event generation (unweighted
and weighted), either through intrinsic components or interfaces to external packages. Real-
istic collider environments are covered through sophisticated descriptions for beam structures
at hadron colliders, lepton colliders, lepton-hadron colliders, both circular and linear machines.
Other options include scattering processes e.g. for dark matter annihilation or particle de-
cays. WHIZARD contains its in-house generator for (tree-level) high-multiplicity matrix elements,
0’Mega that supports the whole Standard Model (SM) of particle physics and basically all pos-
sibile extensions of it. QCD parton shower describe high-multiplicity partonic jet events that
can be matched with matrix elements. At the moment, only hadron collider parton distribution
functions (PDFs) and hadronization are handled by packages not written by the main authors.

This manual is organized mainly along the lines of the way how to run WHIZARD: this is
done through a command language, SINDARIN (Scripting INtegration, Data Analysis, Results
display and INterfaces.) Though this seems a complication at first glance, the user is rewarded
with a large possibility, flexibility and versatility on how to steer WHIZARD.

After some general remarks in the follow-up sections, in Chap. 2 we describe how to get the
program, the package structure, the prerequisites, possible external extensions of the program
and the basics of the installation (both as superuser and locally). Also, a first technical overview
how to work with WHIZARD on single computer, batch clusters and farms are given. Furthermore,
some rare uncommon possible build problems are discussed, and a tour through options for
debugging, testing and validation is being made.

A first dive into the running of the program is made in Chap. 3. This is following by an
extensive, but rather technical introduction into the steering language SINDARIN in Chap. 4.
Here, the basic elements of the language like commands, statements, control structures, ex-
pressions and variables as well as the form of warnings and error messages are explained in
detail.

Chap. 5 contains the application of the SINDARIN command language to the main tasks in
running WHIZARD in a physics framework: the defintion of particles, subevents, cuts, and event
selections. The specification of a particular physics models is discussed, while the next sections
are devoted to the setup and compilation of code for particular processes, the specification of
beams, beam structure and polarization. The next step is the integration, controlling the inte-
gration, phase space, generator cuts, scales and weights, proceeding further to event generation
and decays. At the end of this chapter, WHIZARD’s internal data analysis methods and graphical
visualization options are documented.

The following chapters are dedicated to the physics implemented in WHIZARD: methods for
hard matrix interactions in Chap. 9. Then, in Chap. 10, implemented methods for adaptive
multi-channel integration, particularly the integrator VAMP are explained, together with the
algorithms for the generation of the phase-space in WHIZARD. Finally, an overview is given over
the physics models implemented in WHIZARD and its matrix element generator 0’Mega, together
with possibilities for their extension. After that, the next chapter discusses parton showering,
matching and hadronization as well as options for event normalizations and supported event
formats. Also weighted event generation is explained along the lines with options for negative

1.3. HISTORICAL REMARKS 13

: WHIZARD core
: user interface, steering, phase space

O’Mega VAMP

matrix elements Monte-Carlo integration

USER
process setup, cuts, analysis definitions, etc.

Figure 1.1: General structure of the WHIZARD package.

weights. Then, in Chap. 12, options for user to plug-in self-written code into the WHIZARD
framework are detailed, e.g. for observables, selections and cut functions, or for spectra and
structure functions. Also, static executables are discussed.

Chap. 13 is a stand-alone documentation of GAMELAN, the interal graphics support for
the visualization of data and analysis. The next chapter, Chap. 14 details user interfaces:
how to use more options of the WHIZARD command on the command line, how to use WHIZARD
interactively, and how to include WHIZARD as a library into the user’s own program.

Then, an extensive list of examples in Chap. 15 documenting physics examples from the
LEP, SLC, HERA, Tevatron, and LHC colliders to future linear and circular colliders. This
chapter is a particular good reference for the beginning, as the whole chain from choosing a
model, setting up processes, the beam structure, the integration, and finally simulation and
(graphical) analysis are explained in detail.

More technical details about efficiency, tuning and advance usage of WHIZARD are collected
in Chap. 16. Then, Chap. 17 shows how to set up your own new physics model with the help
of external programs like SARAH or FeynRules program and include it into the WHIZARD event
generator.

In the appendices, we e.g. give an exhaustive reference list of SINDARIN commands and
built-in variables.

Please report any inconsistencies, bugs, problems or simply pose open questions to our
contact whizard@desy.de.

1.3 Historical remarks

This section gives a historical overview over the development of WHIZARD and can be easily
skipped in a (first) reading of the manual. WHIZARD has been developed in a first place as a tool
for the physics at the then planned linear electron-positron collider TESLA around 1999. The
intention was to have a tool at hand to describe electroweak physics of multiple weak bosons
and the Higgs boson as precise as possible with full matrix elements. Hence, the acronym:
WHiZard, which stood for W, Higgs, Z, and respective decays.

whizard@desy.de

14 CHAPTER 1. INTRODUCTION

Several components of the WHIZARD package that are also available as independent sub-
packages have been published already before the first versions of the WHIZARD generator it-
self: the multi-channel adaptive Monte-Carlo integration package VAMP has been released mid
1998 [5]. The dedicated packages for the simulation of linear lepton collider beamstrahlung and
the option for a photon collider on Compton backscattering (CIRCE1/2) date back even to mid
1996 [6]. Also parts of the code for WHIZARD’s internal graphical analysis (the gamelan module)
came into existence already around 1998.

After first inofficial versions, the official version 1 of WHIZARD was release in the year 2000.
The development, improvement and incorporation of new features continued for roughly a
decade. Major milestones in the development were the full support of all kinds of beyond the
Standard Model (BSM) models including spin 3/2 and spin 2 particles and the inclusion of
the MSSM, the NMSSM, Little Higgs models and models for anomalous couplings as well as
extra-dimensional models from version 1.90 on. In the beginning, several methods for matrix
elements have been used, until the in-house matrix element generator 0’Mega became available
from version 1.20 on. It was included as a part of the WHIZARD package from version 1.90 on.
The support for full color amplitudes came with version 1.50, but in a full-fledged version from
2.0 on. Version 1.40 brought the necessary setups for all kinds of collider environments, i.e.
asymmetric beams, decay processes, and intrinsic py in structure functions.

Version 2.0 was released in April 2010 as an almost complete rewriting of the original
code. It brought the construction of an internal density-matrix formalism which allowed the
use of factorized production and (cascade) decay processes including complete color and spin
correlations. Another big new feature was the command-line language SINDARIN for steering
all parts of the program. Also, many performance improvement have taken place in the new
release series, like OpenMP parallelization, speed gain in matrix element generation etc. Version
2.2 came out in May 2014 as a major refactoring of the program internals but keeping (almost

everywhere) the same user interface. New features are inclusive processes, reweighting, and
more interfaces for QCD environments (BLHA/HOPPET).

The following tables shows some of the major steps (physics implementation and/or tech-
nical improvements) in the development of WHIZARD:

1.4. ABOUT EXAMPLES IN THIS MANUAL 15

0.99 | 08/1999 | Beta version

1.00 | 12/2000 | First public version

1.10 | 03/2001 | Libraries; PYTHIA6 interface

1.11 | 04/2001 | PDF support; anomalous couplings

1.20 | 02/2002 | 0’Mega matrix elements; CIRCE support

1.22 1 03/2002 | QED ISR; beam remnants, phase space improvements

1.25 | 05/2003 | MSSM; weighted events; user-code plug-in

1.28 | 04/2004 | Improved phase space; SLHA interface; signal catching

1.30 | 09/2004 | Major technical overhaul

1.40 | 12/2004 | Asymmetric beams; decays; pr in structure functions

1.50 | 02/2006 | QCD support in 0’Mega (color flows); LHA format

1.51 | 06/2006 | Hgg, Hvy; Spin 3/2 + 2; BSM models

1.90 | 11/2007 | 0’Mega included; LHAPDF support; Z’; WW scattering

1.92 | 03/2008 | LHE format; UED; parton shower beta version

1.93 | 04/2009 | NMSSM; SLHA2 accord; improved color /flavor sums

1.95 | 02/2010 | MLM matching; development stop in version 1

1.97 | 05/2011 | Manual for version 1 completed.

2.0.0 | 04/2010 | Major refactoring: automake setup; dynamic libraries
improved speed; cascades; OpenMP; SINDARIN steering language

2.0.3 | 07/2010 | QCD ISR+FSR shower; polarized beams

2.0.5 | 05/2011 | Builtin PDFs; static builds; relocation scripts

2.0.6 | 12/2011 | Anomalous top couplings; unit tests

2.1.0 | 06/2012 | Analytic ISR+FSR parton shower; anomalous Higgs couplings

2.2.0 | 05/2014 | Major technical refactoring: abstract object-orientation; 2HDM;
reweighting; LHE v2/3; BLHA; HOPPET interface; inclusive processes

2.2.1 | 05/2014 | CJ12 PDFs; FastJet interface

2.2.2 | 07/2014 | LHAPDFG support; correlated LC beams; GuineaPig interface

2.2.3 | 11/2014 | O’Mega virtual machine; lepton collider top pair threshold; Higgs singlet extension

2.2.4 | 02/2015 | LCIO support; progress on NLO; many technical bug fixes

2.2.7 | 08/2015 | progress on POWHEG; fixed-order NLO events; revalidation of ILC event chain

2.2.8 | 11/2015 | support for quadruple precision; StdHEP included; SM dim 6 operators supported

For a detailed overview over the historical development of the code confer the ChangeLog
file and the commit messages in our revision control system repository.

1.4 About examples in this manual

Although WHIZARD has been designed as a Monte Carlo event generator for LHC physics, several
elementary steps and aspects of its usage throughout the manual will be demonstrated with
the famous textbook example of ete~ — puTp~. This is the same process, the textbook by
Peskin/Schroeder [53] uses as a prime example to teach the basics of quantum field theory.

16 CHAPTER 1. INTRODUCTION

We use this example not because it is very special for WHIZARD or at the time being a relevant
physics case, but simply because it is the easiest fundamental field theoretic process without
the complications of structured beams (which can nevertheless be switched on like for ISR and
beamstrahlung!), the need for jet definitions/algorithms and flavor sums; furthermore, it easily
accomplishes a demonstration of polarized beams. After the basics of WHIZARD usage have been
explained, we move on to actual physics cases from LHC (or Tevatron).

Chapter 2

Installation

2.1 Package Structure

WHIZARD is a software package that consists of a main executable program (which is called
whizard), libraries, auxiliary executable programs, and machine-independent data files. The
whole package can be installed by the system administrator, by default, on a central location
in the file system (/usr/local with its proper subdirectories). Alternatively, it is possible to
install it in a user’s home directory, without administrator privileges, or at any other location.

A WHIZARD run requires a workspace, i.e., a writable directory where it can put generated
code and data. There are no constraints on the location of this directory, but we recommend
to use a separate directory for each WHIZARD project, or even for each WHIZARD run.

Since WHIZARD generates the matrix elements for scattering and decay processes in form of
Fortran code that is automatically compiled and dynamically linked into the running program,
it requires a working Fortran compiler not just for the installation, but also at runtime.

The previous major version WHIZARD1 did put more constraints on the setup. In a nutshell,
not just the matrix element code was compiled at runtime, but other parts of the program as
well, so the whole package was interleaved and had to be installed in user space. The workflow
was controlled by make and PERL scripts. These constraints are gone in the present version in
favor of a clean separation of installation and runtime workspace.

2.2 Prerequisites

2.2.1 No Binary Distribution

WHIZARD is currently not distributed as a binary package, nor is it available as a debian or RPM
package. This might change in the future. However, compiling from source is very simple (see
below). Since the package needs a compiler also at runtime, it would not work without some
development tools installed on the machine, anyway.

Note, however, that we support an install script, that downloads all necessary prerequisites,

and does the configuration and compilation described below automatically. This is called
the “instant WHIZARD” and is accessible through the WHIZARD webpage from version

17

18 CHAPTER 2. INSTALLATION

2.1.1 on: http://whizard.hepforge.org/versions/install/install-whizard-2.X.X.sh.
Download this shell script, make it executable by

chmod +x install-whizard-2.X.X.sh

and execute it. Note that this also involves compilation of the required Fortran compiler
which takes 1-3 hours depending on your system. Darwin operating systems (a.k.a. as Mac
0S X) have a very similar general system for all sorts of software, called MacPorts (http:
//www.macports.org). This offers to install WHIZARD as one of its software ports, and is very
similar to “instant WHIZARD” described above.

2.2.2 Tarball Distribution

This is the recommended way of obtaining WHIZARD. You may download the current stable
distribution from the WHIZARD webpage, hosted at the HepForge webpage

http://whizard.hepforge.org

The distribution is a single file, say whizard-2.3.0.tgz for version 2.3.0.
You need the additional prerequisites:

e GNU tar (or gunzip and tar) for unpacking the tarball.

e The make utility. Other standard Unix utilities (sed, grep, etc.) are usually installed by
default.

e A modern Fortran compiler (see Sec. 2.2.4 for details).

e The OCaml system. 0OCaml is a functional and object-oriented language. Version 3.12 or
later is required to compile all components of WHIZARD. The package is freely available
either as a debian/RPM package on your system (it might be necessary to install it from
the usual repositories), or you can obtain it directly from

http://caml.inria.fr

and install it yourself. If desired, the package can be installed in user space without
administrator privileges'.

The following optional external packages are not required, but used for certain purposes. Make
sure to check whether you will need any of them, before you install WHIZARD.

e IXTEX and MetaPost for data visualization. Both are part of the TEX program fam-
ily. These programs are not absolutely necessary, but WHIZARD will lack the tools for
visualization without them.

! Unfortunately, the version of the 0Caml compiler from 3.12.0 broke backwards compatibility. Therefore,
versions of 0’Mega/WHIZARD up to 2.0.2 only compile with older versions (3.11.x works). This has been fixed in
versions 2.0.3 and later. See also Sec. 2.5.1.

http://whizard.hepforge.org/versions/install/install-whizard-2.X.X.sh
http://www.macports.org
http://www.macports.org
http://whizard.hepforge.org
http://caml.inria.fr

2.2. PREREQUISITES 19

e The LHAPDF structure-function library. See Sec. 2.2.5.

The HOPPET structure-function matching tool. See Sec. 2.2.6.

The HepMC event-format package. See Sec. 2.2.7.

The FastJet jet-algorithm package. See Sec. 2.2.9.

The LCIO event-format package. See Sec. 2.2.11.

Until version v2.2.7 of WHIZARD, the event-format package STDHEP used to be available as an
external package. As their distribution is frozen with the final version v5.06.01, and it used
to be notoriously difficult to compile and link STDHEP into WHIZARD, it was decided to include
STDHEP into WHIZARD. This is the case from version v2.2.8 of WHIZARD on. Linking against an
external version of STDHEP is precluded from there on. Nevertheless, we list some explanations
in Sec. 2.2.10. Once these prerequisites are met, you may unpack the package in a directory of
your choice

some-directory> tar xzf whizard-2.3.0.tgz

and proceed.?

For using external physics models that are directly supported by WHIZARD and 0’Mega, the
user can use tools like SARAH or FeynRules. There installation and linking to WHIZARD will be
explained in Chap. 17.

The directory will then contain a subdirectory whizard-2.3.0 where the complete source
tree is located. To update later to a new version, repeat these steps. Each new version will
unpack in a separate directory with the appropriate name.

2.2.3 SVN Repository Version

If you want to install the latest development version, you have to check it out from the WHIZARD
SVN repository.
In addition to the prerequisites listed in the previous section, you need:

e The subversion package (svn), the tool for dealing with SVN repositories.
e The autoconf package, part of the autotools development system.

e The noweb package, a light-weight tool for literate programming. This package is nowa-
days often part of Linux distributions®. You can obtain the source code from*

http://www.cs.tufts.edu/~nr/noweb/

2Without GNU tar, this would read gunzip -c whizard-2.3.0.tgz | tar xz -

3In Ubuntu from version 10.04 on, and in Debian since squeeze. For Mac 0S X, noweb is available via the
MacPorts system.

4Please, do not use any of the binary builds from this webpage. Probably all of them are quite old and
broken.

http://www.cs.tufts.edu/~nr/noweb/

20 CHAPTER 2. INSTALLATION

To start, go to a directory of your choice and execute
your-src-directory> svn checkout http://whizard.hepforge.org/svn/trunk/ .

The SVN source tree will appear in the current directory. To update later, you just have to
execute

your-src-directory> svn update

within that directory.
After checking out the sources, run®

your-src-directory> autoreconf

This will generate a configure script.

2.2.4 Fortran Compilers

WHIZARD is written in modern Fortran. To be precise, it uses a subset of the Fortran2003
standard. At the time of this writing, this subset is supported by, at least, the following
compilers:

e gfortran (GNU, Open Source). You will need version 4.7.4 or higher®. gcc 4.7.1-3 suffer
from too many bugs in the object-orientation.

e nagfor (NAG). You will need version 5.2 or higher.

e ifort (Intel). You will need version 16.0.0 or higher. In order to be sure that everything
works properly, use FCFLAGS=-standard-semantics.

There are some commercial compilers that might be able to compile WHIZARD 2.2 in the near
future, but at the time of writing, all of the compilers listed below contained compiler bugs.
Consult the WHIZARD website for updates on this situation.

e pgfortran (PGI). You will need a more modern version than 15.10.

e ckopath. You will need a more modern version than 4.0.

5 At least, version 2.65 of the autoconf package is required.

6Note that WHIZARD versions 2.0.0 until 2.1.1 compiled with gfortran 4.5.x and 4.6.x, but the object-oriented
refactoring of the WHIZARD code from 2.2 on made a switch to gfortran 4.7.4 or higher necessary. gcc 4.7.0
contains a major bug in the static 1ibstdc++ library which prevented static builds of WHIZARD with external
C++ libraries.

2.2. PREREQUISITES 21

2.2.5 LHAPDF

For computing scattering processes at hadron colliders such as the LHC, WHIZARD has a small set
of standard structure-function parameterizations built in, cf. Sec. 5.5.4. For many applications,
this will be sufficient, and you can skip this section.

However, if you need structure-function parameterizations that are not in the default set
(e.g. PDF error sets), you can use the LHAPDF structure-function library, which is an external
package. It has to be linked during WHIZARD installation. For use with WHIZARD, version 5.3.0
or higher of the library is required”. The LHAPDF package has undergone a major rewriting
from Fortran version 5 to C++ version 6. While still maintaining the interface for the LHAPDF
version H series, from version 2.2.2 of WHIZARD on, the new release series of LHAPDF, version 6.0
and higher, is also supported.

If LHAPDF is not yet installed on your system, you can download it from

http://lhapdf.hepforge.org
for the most recent LHAPDF version 6 and newer, or
http://lhapdf.hepforge.org/lhapdfb

for version 5 and older, and install it. The website contains comprehensive documentation on
the configuring and installation procedure. Make sure that you have downloaded and installed
not just the package, but also the data sets. Note that LHAPDF version 5 needs both a Fortran
and a C++ compiler.

During WHIZARD configuration, WHIZARD looks for the script lhapdf (which is present in
LHAPDF series 6) first, and then for 1hapdf-config (which is present since LHAPDF version 4.1.0):
if those are in an executable path (or only the latter for LHAPDF version 5), the environment
variables for LHAPDF are automatically recognized by WHIZARD, as well as the version number.
This should look like this in the configure output (for LHAPDF version 6 or newer),

configure: -----—————------———————————— - ————
configure: --- LHAPDF --—-

configure:

checking for lhapdf... /usr/local/bin/lhapdf

checking for lhapdf-config... /usr/local/bin/lhapdf-config

checking the LHAPDF version... 6.1.3

checking the major version... 6
checking the LHAPDF pdfsets path... /usr/local/share/LHAPDF
checking the standard PDF sets... all standard PDF sets installed

checking if LHAPDF is functional (may take a while)... yes
checking LHAPDF... yes
configure: ------——————------———————————— - ——————

while for LHAPDF version 5 and older it looks like this:

7 Note that PDF sets which contain photons as partons are only supported with WHIZARD for LHAPDF version
5.7.1 or higher

http://lhapdf.hepforge.org
http://lhapdf.hepforge.org/lhapdf5

22 CHAPTER 2. INSTALLATION

configure: ——————————————-———-—-——— -
configure: --- LHAPDF ---

configure:

checking for lhapdf... no

checking for lhapdf-config... /usr/local/bin/lhapdf-config

checking the LHAPDF version... 5.9.1

checking the major version... 5
checking the LHAPDF pdfsets path... /usr/local/share/lhapdf/PDFsets
checking the standard PDF sets... all standard PDF sets installed

checking for getxminm in -1LHAPDF... yes
checking for has_photon in -1LHAPDF... yes
configure: -—--—-—————————————————— -

If you want to use a different LHAPDF (e.g. because the one installed on your system by
default is an older one), the preferred way to do so is to put the 1hapdf (and/or lhapdf-config)
scripts in an executable path that is checked before the system paths, e.g. <home>/bin.

For the old series, LHAPDF version 5, a possible error could arise if LHAPDF had been compiled
with a different Fortran compiler than WHIZARD, and if the run-time library of that Fortran
compiler had not been included in the WHIZARD configure process. The output then looks like
this:

configure: ------————-—-----—————————— - ——————
configure: --- LHAPDF --—-

configure:

checking for lhapdf... no

checking for lhapdf-config... /usr/local/bin/lhapdf-config

checking the LHAPDF version... 5.9.1

checking the major version... 5

checking the LHAPDF pdfsets path... /usr/local/share/lhapdf/PDFsets
checking for standard PDF sets... all standard PDF sets installed
checking for getxminm in -1LHAPDF... no

checking for has_photon in -1LHAPDF... no

configure: -------——-------———————————— - ——————

So, the WHIZARD configure found the LHAPDF distribution, but could not link because it
could not resolve the symbols inside the library. In case of failure, for more details confer the
config.log.

If LHAPDF is installed in a non-default directory where WHIZARD would not find it, set the
environment variable LHAPDF DIR to the correct installation path when configuring WHIZARD.

The check for the standard PDF sets are those sets that are used in the default WHIZARD
self tests in the case LHAPDF is enabled and correctly linked. If some of them are missing, then
this test will result in a failure. They are the CT10 set for LHAPDF version 6 (for version 5,
cteq61.LHpdf, cteq6ll.LHpdf, cteqbl.LHgrid, and GSG961.LHgrid are demanded). If you
want to use LHAPDF inside WHIZARD please install them such that WHIZARD could perform all its
sanity checks with them. The last check is for the has_photon flag, which tests whether photon
PDFs are available in the found LHAPDF installation.

2.2. PREREQUISITES 23

2.2.6 HOPPET

HOPPET (not Hobbit) is a tool for the QCD DGLAP evolution of PDFs for hadron colliders. It
provides possibilities for matching algorithms for 4- and 5-flavor schemes, that are important
for precision simulations of b-parton initiated processes at hadron colliders. If you are not
interested in those features, you can skip this section. Note that this feature is not enabled by
default (unlike e.g. LHAPDF), but has to be explicitly during the configuration (see below):

your-build-directory> your-src-directory/configure --enable-hoppet

If you configure messages like the following:

configure: ------——————————————— - ————
configure: --- HOPPET ---

configure:

checking for hoppet-config... /usr/local/bin/hoppet-config

checking for hoppetAssign in -lhoppet_vl... yes

configure: --—-----———————————————————

then you know that HOPPET has been found and was correctly linked. If that is not the case,
you have to specify the location of the HOPPET library, e.g. by adding

HOPPET=<hoppet_directory>/1lib

to the configure options above. For more details, please confer the HOPPET manual.

2.2.7 HepMC

HepMC is a C++ class library for handling collider scattering events. In particular, it provides a
portable format for event files. If you want to use this format, you should link WHIZARD with
HepMC, otherwise you can skip this section.

If it is not already installed on your system, you may obtain HepMC from one of these two
webpages:

http://lcgapp.cern.ch/project/simu/HepMC/
or
https://sft.its.cern.ch/jira/browse/HEPMC

If the HepMC library is linked with the installation, WHIZARD is able to read and write files in
the HepMC format.

Detailed information on the installation and usage can be found on the HepMC homepage.
We give here only some brief details relevant for the usage with WHIZARD: For the compilation of
HepMC one needs a C++ compiler. Then the procedure is the same as for the WHIZARD package,
namely configure HepMC:

configure --with-momentum=GEV --with-length=MM --prefix=<install dir>

http://lcgapp.cern.ch/project/simu/HepMC/
https://sft.its.cern.ch/jira/browse/HEPMC

24 CHAPTER 2. INSTALLATION

Note that the particle momentum and decay length flags are mandatory, and we highly rec-
ommend to set them to the values GEV and MM, respectively. After configuration, do make, an
optional make check (which might sometimes fail for non-standard values of momentum and
length), and finally make install.

A WHIZARD configuration for HepMC looks like this:

configure: ————————————————————————————— oo —————
configure: --- HepMC ---

configure:

checking the HepMC version... 2.06.09

checking for GenEvent class in -1HepMC... yes

configure: ———————————————————————— - —————

If HepMC is installed in a non-default directory where WHIZARD would not find it, set the
environment variable HEPMC DIR to the correct installation path when configuring WHIZARD.
Furthermore, the environment variable CXXFLAGS allows you to set specific C/C++ preprocessor
flags, e.g. non-standard include paths for header files.

2.2.8 PYTHIAS

NOTE: This is at the moment not yet supported, but merely a stub with the only purpose to be
recognized by the build system.

PYTHIAS8 is a C++ class library for handling hadronization, showering and underlying event.
If you want to use this feature (once it is fully supported in WHIZARD), you should link WHIZARD
with PYTHIA8, otherwise you can skip this section.

If it is not already installed on your system, you may obtain PYTHIA8 from

http://home.thep.lu.se/~torbjorn/Pythia.html

If the PYTHIAS library is linked with the installation, WHIZARD will be able to use its hadroniza-
tion and showering, once this is fully supported within WHIZARD.
To link a PYTHIAS8 installation to WHIZARD, you should specify the flag

--enable-pythia8

to configure. If PYTHIAS is installed in a non-default directory where WHIZARD would not find
it, specify also

--with-pythia8=<your-pythia8-installation-path>
A successful WHIZARD configuration should produce a screen output similar to this:

configure: -------———————————— -
configure: --- SHOWERS PYTHIA6 PYTHIA8 MPI ---

configure:

[....]

checking for pythia8-config... /usr/local/bin/pythia8-config

checking if PYTHIA8 is functional... yes

checking PYTHIAS8... yes

configure: WARNING: PYTHIA8 configure is for testing purposes at the moment.
configure: -------———————---————————— - ————

http://home.thep.lu.se/~torbjorn/Pythia.html

2.2. PREREQUISITES 25

2.2.9 FastJet

NOTE: This is an experimental feature.

FastJet is a C++ class library for handling jet clustering. If you want to use this feature,
you should link WHIZARD with FastJet, otherwise you can skip this section.

If it is not already installed on your system, you may obtain FastJet from

http://fastjet.fr

If the FastJet library is linked with the installation, WHIZARD is able to call the jet algorithms
provided by this program for the purposes of applying cuts and analysis.
To link a FastJet installation to WHIZARD, you should specify the flag

--enable-fastjet

to configure. If FastJet is installed in a non-default directory where WHIZARD would not find
it, specify also

--with-fastjet=<your-fastjet-installation-path>

A successful WHIZARD configuration should produce a screen output similar to this:

configure: ----------——---—-—————————— - ————
configure: --- FASTJET ---

configure:

checking for fastjet-config... /usr/local/bin/fastjet-config

checking if FastJet is functional... yes

checking FastJet... yes

configure: ---------———----————————————— - ——————

2.2.10 STDHEP

STDHEP is a library for handling collider scattering events. In particular, it provides a portable
format for event files. Until version 2.2.7 of WHIZARD, STDHEP that was maintained by Fermilab,
could be linked as an externally compiled library. As the STDHEP package is frozen in its final
release v5.06.1 and no longer maintained, it has from version 2.2.8 been included WHIZARD.
This eases many things, as it was notoriously difficult to compile and link STDHEP in a way
compatible with WHIZARD. Not the full package has been included, but only the libraries for
file I/O (mcfio, the library for the XDR conversion), while the various translation tools for
PYTHIA, HERWIG, etc. have been abandoned. Note that STDHEP has largely been replaced in
the hadron collider community by the HepMC format, and in the lepton collider community by
LCIO. WHIZARD might serve as a conversion tools for all these formats, but other tools also exist,

of course.
If the STDHEP library is linked with the installation, WHIZARD is able to write files in the
STDHEP format, the corresponding configure output notifies you that STDHEP is always included:

configure: --------———------———————————— - ————
configure: -—- STDHEP --—-

configure:

configure: StdHEP v5.06.01 is included internally

configure: ------——————-----—————————— - ————

http://fastjet.fr

26 CHAPTER 2. INSTALLATION

2.2.11 LCIO

LCIO is a C++ class library for handling collider scattering events. In particular, it provides a
portable format for event files. If you want to use this format, you should link WHIZARD with
LCIO, otherwise you can skip this section.

If it is not already installed on your system, you may obtain LCIO from:

http://lcio.desy.de
or
https://sft.its.cern.ch/jira/browse/HEPMC

If the HepMC library is linked with the installation, WHIZARD is able to read and write files in
the HepMC format.

Detailed information on the installation and usage can be found on the HepMC homepage.
We give here only some brief details relevant for the usage with WHIZARD: For the compilation of
HepMC one needs a C++ compiler. Then the procedure is the same as for the WHIZARD package,
namely configure HepMC:

configure --with-momentum=GEV --with-length=MM --prefix=<install dir>

Note that the particle momentum and decay length flags are mandatory, and we highly rec-
ommend to set them to the values GEV and MM, respectively. After configuration, do make, an
optional make check (which might sometimes fail for non-standard values of momentum and

length), and finally make install.
A WHIZARD configuration for LCIO looks like this:

configure: ------————————-———————— - ————
configure: --- LCIO ---

configure:

checking the LCIO version... 2.4.2

checking for LCEventImpl class in -llcio... yes

configure: ------—-———————-——————————— -

If LCIO is installed in a non-default directory where WHIZARD would not find it, set the
environment variable LCIO_DIR to the correct installation path when configuring WHIZARD. Fur-
thermore, the environment variable CXXFLAGS allows you to set specific C/C++ preprocessor
flags, e.g. non-standard include paths for header files.

Installation bug of LCIO0: when using cmake v3, it is (at least with most known LCIO
versions) not possible to specify the installation path. Instead, files are installed into the source
directory of LCIO. So the binaries in bin, the libraries in 1ib, and the headers in include have
to be copied by hand to the desired prefix.

2.3 Installation

Once you have unpacked the source (either the tarball or the SVN version), you are ready to
compile it. There are several options.

http://lcio.desy.de
https://sft.its.cern.ch/jira/browse/HEPMC

2.3. INSTALLATION 27

2.3.1 Central Installation

This is the default and recommended way, but it requires adminstrator privileges. Make sure
that all prerequisites are met (Sec. 2.2).

1. Create a fresh directory for the WHIZARD build. It is recommended to keep this separate
from the source directory.

2. Go to that directory and execute
your-build-directory> your-src-directory/configure

This will analyze your system and prepare the compilation of WHIZARD in the build di-
rectory. Make sure to set the proper options to configure, see Sec. 2.3.3 below.

3. Call make to compile and link WHIZARD:

your-build-directory> make

4. If you want to make sure that everything works, run
your-build-directory> make check
This will take some more time.
5. Become superuser and say

your-build-directory> make install

WHIZARD should now installed in the default locations, and the executable should be available
in the standard path. Try to call whizard --help in order to check this.

2.3.2 Installation in User Space

You may lack administrator privileges on your system. In that case, you can still install and
run WHIZARD. Make sure that all prerequisites are met (Sec. 2.2).

1. Create a fresh directory for the WHIZARD build. It is recommended to keep this separate
from the source directory.

2. Reserve a directory in user space for the WHIZARD installation. It should be empty, or yet
non-existent.

3. Go to that directory and execute

your-build-directory> your-src-directory/configure
—--prefix=your-install-directory

28

6.

CHAPTER 2. INSTALLATION

This will analyze your system and prepare the compilation of WHIZARD in the build di-
rectory. Make sure to set the proper additional options to configure, see Sec. 2.3.3
below.

Call make to compile and link WHIZARD:

your-build-directory> make

If you want to make sure that everything works, run
your-build-directory> make check

This will take some more time.

Install:

your-build-directory> make install

WHIZARD should now be installed in the installation directory of your choice. If the installation
is not in your standard search paths, you have to account for this by extending the paths
appropriately, see Sec. 2.4.1.

2.3.3 Configure Options

The configure script accepts environment variables and flags. They can be given as arguments
to the configure program in arbitrary order. You may run configure --help for a listing;
only the last part of this long listing is specific for the WHIZARD system. Here is an example:

configure FC=gfortran-4.8 FCFLAGS="-g -03" --enable-fc-openmp

The most important options are

FC (variable): The Fortran compiler. This is necessary if you need a compiler different
from the standard compiler on the system, e.g., if the latter is too old.

FCFLAGS (variable): The flags to be given to the Fortran compiler. The main use is to
control the level of optimization.

--prefix=(directory-name): Specify a non-default directory for installation.

--enable-fc-openmp: Enable parallel executing via OpenMP on a multi-processor /multi-
core machine. This works only if OpenMP is supported by the compiler (e.g., gfortran).
When running WHIZARD, the number of processors that are actually requested can be
controlled by the user. Without this option, WHIZARD will run in serial mode on a single
core. See Sec. 5.4.3 for further details.

LHADPF DIR (variable): The location of the optional LHAPDF package, if non-default.

HOPPET DIR (variable): The location of the optional HOPPET package, if non-default.

2.3. INSTALLATION 29

e HEPMC DIR (variable): The location of the optional HepMC package, if non-default.
e LCIODIR (variable): The location of the optional LCIO package, if non-default.

Other flags that might help to work around possible problems are the flags for the C' and
C + + compilers as well as the Fortran77 compiler, or the linker flags and additional libraries
for the linking process.

e CC (variable): C compiler command

e F77 (variable): Fortran77 compiler command

e CXX (variable): C++ compiler command

e CPP (variable): C preprocessor

e CXXCPP (variable): C++ preprocessor

e CFLAGS (variable): C compiler flags

e FFLAGS (variable): Fortran77 compiler flags

e CXXFLAGS (variable): C++ compiler flags

e LIBS (variable): libraries to be passed to the linker as -11ibrary
e LDFLAGS (variable): non-standard linker flags

For other options (like e.g. ——with-precision=... etc.) please see the configure --help
option.

2.3.4 Details on the Configure Process

The configure process checks for the build and host system type; only if this is not detected
automatically, the user would have to specify this by himself. After that system-dependent files
are searched for, LaTeX and Acroread for documentation and plots, the Fortran compiler is
checked, and finally the 0Caml compiler. The next step is the checks for external programs like
LHAPDF and HepMC. Finally, all the Makefiles are being built.

The compilation is done by invoking make and finally make install. You could also do a
make check in order to test whether the compilation has produced sane files on your system.
This is highly recommended.

Be aware that there be problems for the installation if the install path or a user’s home
directory is part of an AFS file system. Several times problems were encountered connected
with conflicts with permissions inside the OS permission environment variables and the AFS
permission flags which triggered errors during the make install procedure. Also please avoid
using make -j options of parallel execution of Makefile directives as AFS filesystems might
not be fast enough to cope with this.

30 CHAPTER 2. INSTALLATION

For specific problems that might have been encountered in rare circumstances for some FOR-
TRAN compilers confer the webpage http://projects.hepforge.org/whizard/compilers.
html.

Note that the PYTHIA bundle for showering and hadronization (and some other external
legacy code pieces) do still contain good old Fortran77 code. These parts should better be
compiled with the very same Fortran2003 compiler as the WHIZARD core. There is, however,
one subtlety: when the configure flag FC gets a full system path as argument, 1ibtool is not
able to recognize this as a valid (GNU) Fortran77 compiler. It then searches automatically for
binaries like £77, g77 etc. or a standard system compiler. This might result in a compilation
failure of the Fortran77 code. A viable solution is to define an executable link and use this
(not the full path!) as FC flag.

It is possible to compile WHIZARD without the 0Caml parts of 0’Mega, namely by using
the --disable-omega option of the configure. This will result in a built of WHIZARD with
the 0’Mega Fortran library, but without the binaries for the matrix element generation. All
selftests (cf. 2.3.5) requiring 0’Mega matrix elements are thereby switched off. Note that you
can install such a built (e.g. on a batch system without 0Caml installation), but the try to
build a distribution (all make distxxx targets) will fail.

2.3.5 WHIZARD self tests/checks

WHIZARD has a number of self-consistency checks and tests which assure that most of its features
are running in the intended way. The standard procedure to invoke these self tests is to perform
a make check from the build directory. If src and build directories are the same, all relevant
files for these self-tests reside in the tests subdirectory of the main WHIZARD directory. In that
case, one could in principle just call the scripts individually from the command line. Note, that
if src and build directory are different as recommended, then the input files will have been
installed in prefix/share/whizard/test, while the corresponding test shell scripts remain in
the srcdir/test directory. As the main shell script run whizard.sh has been built in the
build directory, one now has to copy the files over by and set the correct paths by hand, if
one wishes to run the test scripts individually. make check still correctly performs all WHIZARD
self-consistency tests. The tests itself fall into two categories, unit self test that individually
test the modular structure of WHIZARD, and tests that are run by SINDARIN files. In future
releases of WHIZARD, these two categories of tests will be better separated than in the 2.2.1
release.

There are additional, quite extensiv numerical tests for validation and backwards compat-
ibility checks for SM and MSSM processes. As a standard, these extended self tests are not
invoked. However, they can be enabled by executing the corresponding specific make check
operations in the subdirectories for these extensive tests.

As the new WHIZARD testsuite does very thorough and scrupulous tests of the whole WHIZARD
structure, it is always possible that some tests are failing due to some weird circumstances
or because of numerical fluctuations. In such a case do not panic, contact the developers
(whizard@desy.de) and provide them with the logfiles of the failing test as well as the setup
of your configuration.

http://projects.hepforge.org/whizard/compilers.html
http://projects.hepforge.org/whizard/compilers.html

2.4. WORKING WITH WHIZARD 31

2.4 Working With WHIZARD

2.4.1 Working on a Single Computer

After installation, WHIZARD is ready for use. There is a slight complication if WHIZARD has been
installed in a location that is not in your standard search paths.
In that case, to successfully run WHIZARD, you may either

e manually add your-install-directory/bin to your execution PATH
and your-install-directory/1lib to your library search path (LD_LIBRARY_PATH),
or

e whenever you start a project, execute
your-workspace> . your-install-directory/bin/whizard-setup.sh
which will enable the paths in your current environment, or
e source whizard-setup.sh script in your shell startup file.

In either case, try to call whizard --help in order to check whether this is done correctly.
For a new WHIZARD project, you should set up a new (empty) directory. Depending on the
complexity of your task, you may want to set up separate directories for each subproblem that
you want to tackle, or even for each separate run. The location of the directories is arbitrary.
To run, WHIZARD needs only a single input file, a SINDARIN command script with extension
.sin (by convention). Running WHIZARD is as simple as

your-workspace> whizard your-input.sin

No other configuration files are needed. The total number of auxiliary and output files generated
in a single run may get quite large, however, and they may clutter your workspace. This is the
reason behind keeping subdirectories on a per-run basis.

Basic usage of WHIZARD is explained in Chapter 3, for more details, consult the following
chapters. In Sec. 14.1 we give an account of the command-line options that WHIZARD accepts.

2.4.2 Stopping And Resuming WHIZARD Jobs

On a Unix-like system, it is possible to prematurely stop running jobs by a kil1(1) command,
or by entering Ctrl-C on the terminal.

If the system supports this, WHIZARD traps these signals. It also traps some signals that
a batch operating system might issue, e.g., for exceeding a predefined execution time limit.
WHIZARD tries to complete the calculation of the current event and gracefully close open files.
Then, the program terminates with a message and a nonzero return code. Usually, this should
not take more than a fraction of a second.

If, for any reason, the program does not respond to an interrupt, it is always possible to kill
it by kill -9. A convenient method, on a terminal, would be to suspend it first by Ctrl-Z
and then to kill the suspended process.

32 CHAPTER 2. INSTALLATION

The program is usually able to recover after being stopped. Simply run the job again
from start, with the same input, all output files generated so far left untouched. The results
obtained so far will be quickly recovered or gathered from files written in the previous run,
and the actual time-consuming calculation is resumed near the point where it was interrupted.®
If the interruption happened during an integration step, it is resumed after the last complete
iteration. If it was during event generation, the previous events are taken from file and event
generation is continued.

The same mechanism allows for efficiently redoing a calculation with similar, somewhat
modified input. For instance, you might want to add a further observable to event analysis, or
write the events in a different format. The time for rerunning the program is determined just
by the time it takes to read the existing integration or event files, and the additional calculation
is done on the recovered information.

By managing various checksums on its input and output files, WHIZARD detects changes
that affect further calculations, so it does a real recalculation only where it is actually needed.
This applies to all steps that are potentially time-consuming: matrix-element code generation,
compilation, phase-space setup, integration, and event generation. If desired, you can set
command-line options or SINDARIN parameters that explicitly discard previously generated
information.

2.4.3 Submitting Batch Jobs With WHIZARD I / Relocation of
WHIZARD

For long-running calculations, you may want to submit a WHIZARD job to a remote machine.
The challenge lies in the fact that WHIZARD needs a complete installation with all auxiliary
programs and data files to run, including a Fortran compiler.

If the submitting machine where WHIZARD has been compiled is binary- or OS-incompatible
with the batch machine, there is no way around doing the complete WHIZARD installation and
compilation on the batch machine, possibly as part of the batch job.

In this section, we describe batch-job preparation in the case that the batch machine has
a compatible operating system, and the necessary system tools are available, albeit possibly
in different locations. In that case, an existing WHIZARD installation can be transferred to the
remote machine without recompilation.

The option to completely relocate a configured, compiled and pre-installed WHIZARD instal-
lation to another location cannot only be used for the setup of WHIZARD on batch clusters, but
also for automated installations, for testing purposes, for tutorial installations etc. It does not
play a role whether the relocation is on the same machine, or on a different computer, as long
as the other machine is OS-compatible, compiler and compiler paths are available on the other
machine, and external libraries (like HepMC, LHAPDF) are being found in the same locations.

We assume that it is possible to transfer files from and to the batch machine, and that the
batch job is controlled by some script. You (interactively) or the script should perform the

8This holds for simple workflow. In case of scans and repeated integrations of the same process, there may be
name clashes on the written files which prevent resuming. A future WHIZARD version will address this problem.

2.4. WORKING WITH WHIZARD 33

following steps, as far as necessary.
To relocate a WHIZARD installation, perform the following steps:

1.
2.

Pack the complete WHIZARD installation including all subdirectories (bin, include, 1ib,
share, var and the 1ibtool script) and unpack it on an arbitrary location, say reloc-dir.
Pack the complete WHIZARD installation including all subdirectories and unpack it on the
batch machine in an arbitrary location, say reloc-dir. [only for relocation to a different
computer]

Copy the SINDARIN script file (say, run.sin) to the batch machine in the projected
working directory [only relocation to a different computer]

Check whether the correct (compatible!) Fortran compiler is available in the standard
path. If not, create a symbolic link or extend PATH accordingly. [only for relocation to
a different computer]

. Check whether the correct (compatible!) Fortran runtime library is available in the stan-

dard load path, and has priority over any conflicting libraries. If not, create symbolic links
or extend LD_LIBRARY _PATH accordingly. [only for relocation to a different computer]

Do the same for any external libraries as far as they have been linked with the original
installation (e.g., LHAPDF, HepMC). You should verify that the stdc++ library can be loaded.
lonly for relocation to a different computer]

Check whether the batch machine has a working KTEX and MetaPost installation. If it
doesn’t, this is not a severe problem, you just may get some extra error messages, and
there won’t be graphical output from analysis requests. [only for relocation to a different
computer

Execute the relocation script in the bin directory of the unpacked WHIZARD installation
with a prefix option pointing to the new location:

reloc-dir/bin/whizard-relocate.sh --whizard_prefix reloc-dir

The reloc-dir is the path of the relocated WHIZARD installation, i.e. the directory that
contains at least a bin subdirectory, and in case the WHIZARD libraries are not found in
an accessible path, i.e 1ib, include, share paths.

This relocation script does the following steps, that can also be run individually:

8a. Run
reloc-dir/bin/whizard-setup.sh --prefix reloc-dir

where reloc-dir is the directory where you unpacked the WHIZARD installation, to
add WHIZARD’s bin and 1ib directories to the run and load path, respectively. Note
that without the prefix this script adds the paths of the install directory of the
original build, i.e. /usr/local or the path set in the original configure.

34

9.

10.

CHAPTER 2. INSTALLATION

8b. The WHIZARD installation is self-contained, but the steering files for the dynamically
loaded libraries contain paths that will likely be wrong on the batch system. Fix
this with

libtool-relocate.sh --prefix reloc-dir

If you need LHAPDF, and the library is not in the same location as on your host, run
instead

libtool-relocate.sh --prefix reloc-dir --lhapdf directory-of-liblhapdf

8c. The next obstacle might be WHIZARD’s libtool script. Libtool is a standard tool, but
contains machine-specific configurations. If there is — or might be — a problem, run

libtool-config.sh --prefix reloc-dir

This will create a tailored 1ibtool in the current working directory.

Now, the WHIZARD binary can be successfully launched. If WHIZARD doesn’t even start,
there is something wrong with the preceding steps.

Still, WHIZARD has to be told where to find its files. This is taken care of by the script
whizard.sh. Please do not call the whizard binary directly, use this shell wrapper
whizard.sh instead. You might want to add a line like:

alias "whizard=reloc-dir/bin/whizard.sh"

to a .bash profile or .bashrc file.

Alternatively, one can run the WHIZARD binary directly with the —-prefix option
whizard --prefix=reloc-dir run.sin

You may want to catch standard output and standard error. This depends on your batch
system.

If you had to rebuild libtool (see above), you need the additional option
--libtool=my-libtool

where my-1ibtool is the tailored 1ibtool that you created, e.g., $pwd/libtool.
If you need LHAPDF, and its location is different, you need the additional option

—--lhapdf-dir=directory-where-lhapdf-is-installed
If these switches are not set correctly, WHIZARD will fail while running.

If all works well, WHIZARD will run as requested. Copy back all files of interest in the
working directory, and you are done.

As a rule, the more similar the batch machine is to the local machine, the more steps can be
omitted or are trivial. However, with some trial and error it should be able to run batch jobs
even if there are substantial differences.

2.4. WORKING WITH WHIZARD 35

2.4.4 Submitting Batch Jobs With WHIZARD 11

There is another possibility that avoids some of the difficulties discussed above. You can suggest
WHIZARD to make a statically linked copy of itself, which includes all processes that you want
to study, hard-coded. The external libraries (Fortran, and possibly HepMC and stdc++) must
be available on the target system, and it must be binary-compatible, but there is no need
for transferring the complete WHIZARD installation or relocating paths. The drawback is that
generating, compiling and linking matrix element code is done on the submitting host.

Since this procedure is accomplished by SINDARIN commands, it is explained below in
Sec. 5.4.7.

36 CHAPTER 2. INSTALLATION

2.5 Troubleshooting

In this section, we list known issues or problems and give advice on what can be done in case
something does not work as intended.

2.5.1 Possible (uncommon) build problems
OCaml versions and 0’Mega builds

For the matrix element generator 0’Mega of WHIZARD the functional programming language
0Caml is used. Unfortunately, the versions of the 0Caml compiler from 3.12.0 on broke backwards
compatibility. Therefore, versions of 0’Mega/WHIZARD up to v2.0.2 only compile with older
versions (3.04 to 3.11 works). This has been fixed in all WHIZARD versions from 2.0.3 on.

Identical Build and Source directories

There is a problem that only occurred with version 2.0.0 and has been corected for all follow-up
versions. It can only appear if you compile the WHIZARD sources in the source directory. Then
an error like this may occur:

libtool: compile: gfortran -I../misc -I../vamp -g -02 -c processes.f90 -fPIC -o
.libs/processes.o

libtool: compile: gfortran -I../misc -I../vamp -g -02 -c processes.f90 -o
processes.o >/dev/null 2>&1

make[2]: ***x No rule to make target ‘limits.lo’, needed by ‘decays.lo’. Stop.

make: *** [all-recursive] Error 1

In this case, please unpack a fresh copy of WHIZARD and configure it in a separate directory
(not necessarily a subdirectory). Then the compilation will go through:

$ zcat whizard-2.0.0.tar.gz | tar xf -
$ cd whizard-2.0.0

$ mkdir _build

$ cd _build

$../configure FC=gfortran

$ make

The developers use this setup to be able to test different compilers. Therefore building in the
same directory is not as thoroughly tested. This behavior has been patched from version 2.0.1
on. But note that in general it is always adviced to keep build and source directory apart from
each other.

2.5.2 What happens if WHIZARD throws an error?

Particle name special characters in process declarations

Trying to use a process declaration like

2.5. TROUBLESHOOTING
process foo = e-, e+ => mu-, mu+t

will lead to a SINDARIN syntax error:

37

process foo = e-, e+ => mu-, mut

| Found token: KEYWORD: 1=

3k 3k 3k 3k ok >k 3k Sk ok ok >k >k 3k 3k 3k ok >k >k 3k Sk sk >k >k >k 3k Sk ok ok %k 3k Sk 5k >k >k >k 3k Sk ok ok >k >k >k 5k sk ok %k >k 3k Sk 5k >k >k 3k 3k sk ok ok 5k 3k Sk ok ok >k %k 3k Sk ok ok %k %k k ok ok ok %k >k sk k
KKK KA A KK KK KK KK KKK KKK K KKK KK KK KK KK KKK oK K ok KK KKK ok KoK KKk ok K ok KK KoK o
xx* FATAL ERROR: Syntax error (at or before the location indicated above)
KKK KoK Kok KoK KK K oK Kok K ok KoK oK K oK K ok Kook oK o oK K ok K ok ok ok oK K ok K ok ok ook ok ok K ok K ok ok ook oK ok K ok oK ok ok ok ok K o

>k >k >k 5k 5k ok ok ok 5k 5k k >k >k >k >k >k >k >k 5k ok 5k 5k 5k 5k >k >k >k >k %k >k >k >k 5k 5k 5k 5k 5k %k >k >k >k %k >k >k >k >k 5k 5k 5k %k >k >k >k >k >k %k >k >k >k >k >k 5k >k >k >k >k >k >k %k >k >k >k >k >k >k >k >k >k

| Expected syntax: SEQUENCE <cmd_process> = process <process_id> ’=’ <process_p

WHIZARD tries to interpret the minus and plus signs as operators (KEYWORD: ’-’); so you have

to quote the particle names: process foo = "e-", "e+" => "mu-", "mu+".

Missing collider energy

This happens if you forgot to set the collider energy in the integration of a scattering process:

skt ok skskok ok ok sk sk ok sksksk sk ok sksk sk sk ok sksk sk sk ok stk sk sk ok sksksk sk ok sk ok sksksk sk ok sksksk ok ok sksksk ok sksksk sk sk sk sk sk ok sk ok
sk sk o o o sk ok ok o ok ok ok o o ok ok ok ok o sk ok sk o o sk sk o sk o ok sk ok sk o ok sk sk sk o ok sk ok ok o sk sk sk ok o sk sk ok o ok sk sk ok ok o sk ok sk o sk ok ok ok o ok ok
x*%*x FATAL ERROR: Colliding beams: sqrts is zero (please set sqrts)

sk sk sk o ke ok sk sk ok o ok sk ok sk ok ok sk sk sk e ok sk sk ok s ok sk ok sk ke ok sk sk e ok sksk s s ke ok sk sk s e ok sksk sk e sk sk ok s ok sk sk sk ek sk sk sk e ke sk sk ok sk ok sk ok
sk sk o ok ok sk sk ok o ok sk sk sk ok ok sk sk sk o ok sk sk sk s ok sk sk s sk ok sksk sk ke ok sk sk sk sk ke ok sk sk ok sksk sk o sk sk sk ke sk sk sk sk ke ok sk sk sk ok sk sk sk sk ok ok sk ok

This will solve your problem:

sqrts = <your_energy>

Missing process declaration

If you try to integrate or simulate a process that has not declared before (and is also not

available in a library that might be loaded), WHIZARD will complain:

st sk sk sk oK oK oK oK oK ok ok ok ok o o o ok kK oK oK oK oK oK oK ok ok ok ok o o o o kK koK oK ok oK ok ok ok ok ok ok ok o o o ok sk sk sk sk sk ok ok ok ok ok ok ok ok ok o o ok sk kK K oK
st sk sk sk sk sk ok ok ok ok ok ok ok o o o o ok sk sk sk sk sk sk sk ok ok ok ok sk sk sk o o o ok sk sk sk sk sk sk sk sk ok ok ok ok sk sk s o o ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk o ok ok sk sk ok ok ok
%x%x FATAL ERROR: Process library doesn’t contain process ’£00’

sk sk sk sk sk sk sk sk ok ok sk sk ok o o o sk ok ok sk sk sk sk sk sk sk sk sk sk sk sk o o o ks ok ok sk sk sk sk sk sk sk sk sk sk sk sk o o ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok
KK KKK oK oK oK oK oK oK oK oK o o o o K K K KKK oK oK oK oK oK ok ok oK o o o o K K K K K 3K oK oK oK oK oK ok ok ok ok o o o K K K K K oK oK oK oK oK oK ok ok ok ok ok o o K K K K

Note that this could sometimes be a simple typo, e.g. in that case an integrate (£00) instead

of integrate (foo)

38 CHAPTER 2. INSTALLATION

Ambiguous initial state without beam declaration

When the user declares a process with a flavor sum in the initial state, e.g.

process qqaa = u:d, U:D => A, A
sqrts = <your_energy>
integrate (qqaa)

then a fatal error will be issued:

skt o ok sk sk ok ok ok sk ok sksksk sk ok sksk sk sk ok sk sk sk ok stk sk ok sk sk sk ok stk ok sksksk sk ok sk sk ok ok sk ok sk sk sk sk ok sk sk sk sk ok sk ok
sk sk o o o sk ok ok o ok ok ok o o ok ok ok ok o sk ok ok o o sk sk o sk o ok sk ok ok o ok sk sk ok o o ok sk ok o o sk sk sk ok o sk sk ok o o sk sk ok ok o sk ok ok o sk ok ok ok ok ok ok
*xx FATAL ERROR: Setting up process ’qqaa’:

L et et e
*okk Inconsistent initial state. This happens if either

*okok several processes with non-matching initial states

kK have been added, or for a single process with an

*okok initial state flavor sum. In that case, please set beams
*okok explicitly [singling out a flavor / structure function.]

>k >k >k 3K 3K 3K 3k 5k 5k 3k 3k 5k 5k 5k >k %k >k 3k 3k 3k 3k 3k 5k 3k 3k 5k 5k >k %k %k >k >k 5k 3K 3k 3k 3k %k %k >k >k %k % K 5K 5K 5K 5k 5k 3k %k %k >k >k >k %k % K >k 3k 5k 5k 5k 3k %k >k %k >k %k %k %k >k >k > >k %k %k k
>k >k >k 3K 3k 5k ok ok 5k 5k >k >k %k %k %k %k >k >k 5k >k 5k 5k 5k 5k >k >k 5k %k %k >k >k >k >k >k 5k 5k %k %k >k >k %k >k >k >k >k >k >k 5k 5k 5k %k >k >k >k >k %k >k >k >k >k >k >k >k %k >k >k >k >k >k %k >k >k >k >k >k >k >k k

What now? Either a structure function providing a tensor structure in flavors has to be provided

like

beams = p, pbar => pdf_builtin

or, if the partonic process was intended, a specific flavor has to be singled out,

beams = u, U

which would take only the up-quarks. Note that a sum over process components with varying
initial states is not possible.

Invalid or unsupported beam structure

An error message like

KKK KK KK KKK KK KKK KK K oK KK KKK ok K KKK ok K ok KKKk ok KKK KKKk ok KR K Kok o
KA AR KK KKK KKK KKK K SRR KKK SR KKK KKK oK K ok KK KKK K ok KoK KKK ok K ok KK KoK o
x** FATAL ERROR: Beam structure: [.......] not supported

KA KK ok K KKK K oK Kok oK ok KoK oK K oK K ok ok ook oK K oK K ok oK ok ok ok oK K ok K ok ok ook ok ok K ok K ok ok ook ok ok oK ok oK ook ok ok o o
KKK KoK KoK KKK KoK Kok K ok KoK oK K ok oK ok KooK oK o oK oK ok K ok ok oK oK o ok oK ok ok ook oK ok o ok Kok ok ook oK ok K ok oK ok ok oK oK K o

This happens if you try to use a beam structure with is either not supported by WHIZARD
(meaning that there is no phase-space parameterization for Monte-Carlo integration available
in order to allow an efficient sampling), or you have chosen a combination of beam structure
functions that do not make sense physically. Here is an example for the latter (lepton collider
ISR applied to protons, then proton PDFs):

beams = p, p => isr => pdf_builtin

2.5. TROUBLESHOOTING 39

Mismatch in beams

Sometimes you get a rather long error output statement followed by a fatal error:

Evaluator product
First interaction
Interaction: 6
Virtual:
Particle 1

[momentum undefined]

State matrix: norm = 1.000000000000E+00
[f(2212)]
£(1D)]
[£(92) c(1)]
[f(-6) c(-1)] => ME(1) = (0.000000000000E+00, 0.000000000000E+00)

sk sk o o o sk ok ok o ok ok ok o o koK ok ok o sk ok ok o sk sk o sk o ok sk ok sk o ok sk sk ok o ok sk ok o o sk sk sk ok o sk sk ok o ok sk sk ok sk o sk ok sk o sk ok ok ok o ok ok
sk sk sk ok o sk sk ok o ok sk ok o ok ok sk sk sk o sk sk ok s sk sk o sk e ok sk sk sk e ok sk sk ok s ok sk sk ok o ok sk sk ok e sk sk ok s ke sk sk sk sk e sk sk sk sk e sk sk ok sk ok sk ok
*%x*x FATAL ERROR: Product of density matrices is empty

et
*kk This happens when two density matrices are convoluted
*kk but the processes they belong to (e.g., production
*okok and decay) do not match. This could happen if the

*okk beam specification does not match the hard

*okk process. Or it may indicate a WHIZARD bug.

>k >k >k 3k 5k 5k 5k ok 5k 5k 3k >k >k %k %k >k >k >k 5k 5k 5k 5k 5k 5k >k >k 5k %k %k >k >k >k 5k 5k 5k 5k 5k >k >k >k %k %k >k >k >k >k >k 5k 5k 5k %k %k >k >k >k %k >k >k >k >k >k >k 5k >k >k >k >k >k >k >k >k >k >k >k >k >k >k k
>k >k >k 5k 5k ok ok ok ok 5k >k >k >k >k >k >k >k >k 5k >k 5k 5k 5k 5k >k >k >k %k %k >k >k >k 5k 5k 5k 5k 5k >k >k %k >k %k >k >k >k >k 5K 5k 5k 5k >k >k >k >k %k %k >k >k >k >k >k 5k >k >k >k >k >k >k >k %k >k >k >k >k >k >k >k >k

As WHIZARD indicates, this could have happened because the hard process setup did not match
the specification of the beams as in:

process neutral_current_DIS = el, u => el, u
beams_momentum = 27.5 GeV, 920 GeV

beams = p, e => pdf_builtin, none

integrate (neutral_current_DIS)

In that case, the order of the beam particles simply was wrong, exchange proton and elec-
tron (together with the structure functions) into beams = e, p => none, pdf_builtin, and
WHIZARD will be happy.

Unstable heavy beam particles

If you try to use unstable particles as beams that can potentially decay into the final state
particles, you might encounter the following error message:

sk sk sk sk sk sk sk sk ok ok sk sk ok o o ok ok sk ok ok sk sk sk sk sk sk sk sk sk sk sk sk o o o sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk o o sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok ok sk ok
KK KKK oK oK oK oK oK oK oK oK o o o o K K K KK KoK oK oK oK oK ok ok ok o o o o K K K K K oK oK oK oK oK oK ok ok ok ok o o o K K K K K oK oK oK oK ok oK ok ok ok ok o o K KK K
*%x FATAL ERROR: Phase space: Initial beam particle can decay

st sk sk sk sk ok ok ok ok ok ok ok ok o o o o sk sk sk sk sk sk ok ok ok ok ok sk sk sk o o o ko sk sk sk sk sk sk sk ok ok ok ok sk sk s o o ok sk sk sk sk sk sk sk sk ok ok ok ok ok sk sk o ok sk sk ok ok ok
sk sk sk sk sk sk sk sk ok ok ok ok ok o o o o ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk o o o sk sk ok sk sk sk sk sk sk sk sk ok sk sk s o ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ke ks sk ok ok ok

40 CHAPTER 2. INSTALLATION

This happens basically only for processes in testing/validation (like t# — bb). In principle,
it could also happen in a real physics setup, e.g. when simulating electron pairs at a muon
collider:

process mmee = "mu-", "mu+" => "e-", "e+"

However, WHIZARD at the moment does not allow a muon width, and so WHIZARD is not able to
decay a muon in a scattering process. A possibile decay of the beam particle into (part of) the
final state might lead to instabilities in the phase space setup. Hence, WHIZARD do not let you
perform such an integration right away. When you nevertheless encounter such a rare occasion
in your setup, there is a possibility to convert this fatal error into a simple warning by setting
the flag:

?fatal_beam_decay = false

Impossible beam polarization

If you specify a beam polarization that cannot correspond to any physically allowed spin density
matrix, e.g.,

beams = el, E1
beams_pol_density = @(-1), @(1:1:.5, -1, 1:-1)

WHIZARD will throw a fatal error like this:

Trace of matrix square = 1.4444444444444444

Polarization: spin density matrix
spin type =
multiplicity
massive =
chirality =
pol.degree =
pure state =
@(+1: +1: (3.333333333333E-01, 0.000000000000E+00))
@(-1: -1: (6.666666666667E-01, 0.000000000000E+00))
e(-1: +1: (6.666666666667E-01, 0.000000000000E+00))

stk sk sk sk sk sk sk sk sk sk sk ok o o ok koo ok sk sk sk sk sk sksksk sk sk sk sk o ok sk sk ok ok ok sk sk sk sk sk sksksk sk sk sk sk o ke ske sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok ke kokok ok ok ok

.0000000

= O TNN

sk sk sk ok e ok sk sk ok o ok sk sk sk ke ok sk sk sk e ok sk sk ok s ok sk s sk ke ok sk sk e ok sk sk s s ok sk s ke ok sksk sk e ok sk sk sk s ke sk sk sk sk ke sk sk sk sk s ok sk sk sk sk ok sk ok
**xx FATAL ERROR: Spin density matrix: not permissible as density matrix

skt ok sk sk ok ok sk sk ok skskosk s ok sksk sk sk ok sk sk sk sk ok sksk sk ok sksksk sk ok sk ok sksksk sk sk sksk ok ok sk ok sksk sk sk sk sk sk sk ok ok sk ok
3k 5k 3k 5k >k 5k >k 5k 5k 5k 5k 5k 5k >k 3k >k 5k 5k 5k 5k %k 5k >k 5k 5k 3k 5k 5k 5k >k 3k >k 5k 5k 5k 5k >k 5k >k 5k >k 5k 5k >k 5k >k 3k >k 3k 5k 3k 5k >k 5k >k 5k 5k 5k 5k %k 5k >k >k >k %k 5k >k 5k %k 5k %k >k >k %k >k k >k %k

Beams with crossing angle

Specifying a crossing angle (e.g. at a linear lepton collider) without explicitly setting the beam
momenta,

sqrts = 1 TeV
beams = el, El1
beams_theta = 0, 10 degree

triggers a fatal:

2.5. TROUBLESHOOTING 41

skt ok sk sk ok ok ks ok ok sksksk sk ok stk sk sk ok sksksk sk ok stk sk sk ok sk sk sk ok sk ok ok sk sk sk ok sksksk ok ok skskok ok sksk sk sk sk sk sk sk ok sk ok
sk sk o ok o sk ok ok o ok sk ok o o ok sk ok sk o sk ok sk o sk sk o sk o ok sk ok sk o ok sk sk ok s ok sk ok ok o sk sk sk ok o sk sk ok s ok sk sk sk sk o sk ok ok o sk sk ok sk o kok ok
x** FATAL ERROR: Beam structure: angle theta/phi specified but momentum/a p undefined
sk sk ok e ok sk sk ok o ok sk ok sk ok ok sk sk sk e ok sk sk sk s sk sk ok sk ok sksk sk e ok sk sk s sk ke ok sk sk ok sk sk sk e ok sk sk sk s ke ok sk sk sk ke ok sk sk sk ok sk sk ok sk ok sk ok
sk stk o ok sk sk o ok sk sk ok ok sk sk sk ok ok sk sk sk sk ok sk sk sk ke ok sksk sk ok sksksk sk ke ok sk sk ke ok sksksk s sk sk sk sk sksksk ok sk sk sk sk ok sk sk sk sk ok sk ok

In that case the single beam momenta have to be explicitly set:

beams = el, El
beams_momentum = 500 GeV, 500 GeV
beams_theta = 0, 10 degree

Phase-space generation failed

Sometimes an error might be issued that WHIZARD could not generate a valid phase-space
parameterization:

| Phase space: ... failed. Increasing phs_off_shell
| Phase space: ... failed. Increasing phs_off_shell
| Phase space: ... failed. Increasing phs_off_shell
| Phase space: ... failed. Increasing phs_off_shell

stk ok ok ok sk ok stk kst ke stk sk kol sk ok sk sk sk stk kst etk sk ok ok sk ok sk sk sk stk kst sk sk ok ok sk ok sk sk stk ke sk sk ok ok sk ook
stk ko ook o stk ok stk stk sk ok ok sk ok sk ko sk kst stk sk ok ok sk sk sk sk stk s ko sk ook sk sk sk stk stk sk ok ok ok ok
*x*x FATAL ERROR: Phase-space: generation failed

stk ok sk sk sk sk sk sk sk ok sk sk ok sk sk sk sk sk sk ek sk s ok sk sk ok sk sk sk sk sk sk sk s ok sk sk sk sk sk sk sk sk ok sk sk ok ok
stk sk sk sk kst ksl ok sk sk ok sk sk kst sk ks ke ksl sk ok sk sk ok sk sk sk sk ek sk ki sk ok sk sk ok sk sk sk sk ksl sk ok sk sk ook

You see that WHIZARD tried to increase the number of off-shell lines that are taken into account
for the phase-space setup. The second most important parameter for the phase-space setup,
phs_t_channel, however, is not increased automatically. Its default value is 6, so e.g. for the
process ete™ — 8y you will run into the problem above. Setting

phs_off_shell = <n>-1

where <n> is the number of final-state particles will solve the problem.

Non-converging process integration

There could be several reasons for this to happen. The most prominent one is that no cuts have
been specified for the process (WHIZARD2 does not apply default cuts), and there are singular
regions in the phase space over which the integration stumbles. If cuts have been specified,
it could be that they are not sufficient. E.g. in pp — jj a distance cut between the two jets
prevents singular collinear splitting in their generation, but if no py cut have been set, there is
still singular collinear splitting from the beams.

42 CHAPTER 2. INSTALLATION

Why is there no event file?

If no event file has been generated, WHIZARD stumled over some error and should have told
you, or, you simply forgot to set a simulate command for your process. In case there was a
simulate command but the process under consideration is not possible (e.g. a typo, el, E1l
=> e2, E3instead of el, E1 => e3, E3), then you get an error like that:

>k >k >k 3k 3K 3K 3k 5k 5k 3k 3k 3k 5k 5k %k %k >k >k 3k 3k 5k 3k 5k 5k 3k 3k 5k 5k %k %k >k >k 5k 3k 3k 3k 3k %k %k %k %k %k %k K >k 5K 5k 5k 5k 3k %k %k >k >k >k %k % K 3K >k 5k 5k 5k 3k %k %k >k >k %k %k %k >k >k >k >k %k %k k

**%%x ERROR: Simulate: no process has a valid matrix element.
skt ok sk sk ok ok sk sk ok sksksk sk ok stk sk sk ok sk ks sk ok sksk sk s ok sksksk sk ok sk ok ok stk sk ok sksksk ok ok skskok ok sk sk sk sk sk sk sk sk ok sk ok

Why is the event file empty?

In order to get events, you need to set either a desired number of events:

n_events = <integer>

or you have to specify a certain integrated luminosity (the default unit being inverse femtobarn:

luminosity = <real> / 1 fbarn

In case you set both, WHIZARD will take the one that leads to the higher number of events.

2.5.3 Debugging, testing, and validation
Catching/tracking arithmetic exceptions

Catching arithmetic exceptions is not automatically supported by Fortran compilers. In
general, flags that cause the compiler to keep track of arithmetic exceptions are diminish-
ing the maximally possible performance, and hence they should not be used in production
runs. Hence, we refrained from making these flags a default. They can be added using the
FCFLAGS = <flags> settings during configuration. For the NAG Fortran compiler we use the
flags -C=all -nan -gline for debugging purposes. For the gfortran compilers, the flags
-ffpe-trap=invalid,zero,overflow are the corresponding debugging flags. For tests, de-
bugging or first sanity checks on your setup, you might want to make use of these flags in
order to track possible numerical exceptions in the produced code. Some compilers started
to include IEEE exception handling support (Fortran 2008 status), but we do not use these
implementations in the WHIZARD code (yet).

Chapter 3

Getting Started

WHIZARD can run as a stand-alone program. You (the user) can steer WHIZARD either interactively
or by a script file. We will first describe the latter method, since it will be the most common
way to interact with the WHIZARD system.

3.1 Hello World

The script is written in SINDARIN. This is a DSL — a domain-specific scripting language that
is designed for the single purpose of steering and talking to WHIZARD. Now since SINDARIN is
a programming language, we honor the old tradition of starting with the famous Hello World
program. In SINDARIN this reads simply

The legacy version series 1 of the program relied on a bunch of input files that the user
had to provide in some obfuscated format. This approach is sufficient for straightforward
applications. However, once you get experienced with a program, you start thinking about uses
that the program’s authors did not foresee. In case of a Monte Carlo package, typical abuses
are parameter scans, complex patterns of cuts and reweighting factors, or data analysis without
recourse to external packages. This requires more flexibility.

Instead of transferring control over data input to some generic scripting language like PERL
or PYTHON (or even C++), which come with their own peculiarities and learning curves, we
decided to unify data input and scripting in a dedicated steering language that is particularly
adapted to the needs of Monte-Carlo integration, simulation, and simple analysis of the re-
sults. Thus we discovered what everybody knew anyway: that W(h)izards communicate in
SINDARIN, Scripting INtegration, Data Analysis, Results display and INterfaces.

printf "Hello World!"

Open your favorite editor, type this text, and save it into a file named hello.sin.

Now we assume that you — or your kind system administrator — has installed WHIZARD in
your executable path. Then you should open a command shell and execute (we will come to
the meaning of the -r option later.)

/home/user$ whizard -r hello.sin

43

CHAPTER 3. GETTING STARTED

— T ——- — — — — — e

Writing log to ’whizard.log’

WW WW WW WW WW WWWWWW WW WWWWW WWWW
WW wWw WW WW WW WW WW WWWW WW WW WW WW
WW WW WW WW WWWWWWW WW WW WW WW WWWWW WWo WW
WWWW WWWW WW WW WW WW WWWWWWWW WW WW WW WW
WW WW WW o WW WW WWWWWW WW WW WW o WW WWWW

sW
Ww
sWW
WWW
wWWW
wWWWW
WW WW
WW WW
wWW WW
wWW WW
WW o WW
WW o WW
Ww WW
Ww Ww
WW WW
WW Ww
WWWWWW WW WW
WWWWWww WW WW
WWWWWwwwww Ww WW
WWWWwwwwwWW WW
WWWWWWWWWWWwWWW Ww
wWWWWW wW WWWWWWW
WWWW wW WW wWWWWWWWwww
WWWW WWWWWWWWwwww
WWWW WWWW WWw
WWWWww WWWW
WWWwwww WWWw
wWWWWwww wWWWWW
WwwwwwwwwWWW

by: Wolfgang Kilian, Thorsten Ohl, Juergen Reuter
with contributions from Christian Speckner
Contact: <whizard@desy.de>

if you use WHIZARD please cite:
W. Kilian, T. Ohl, J. Reuter, Eur.Phys.J.C71 (2011) 1742
[arXiv: 0708.4233 [hep-ph]]
M. Moretti, T. Ohl, J. Reuter, arXiv: hep-ph/0102195

WHIZARD 2.3.0

Reading model file °’/usr/local/share/whizard/models/SM.mdl’
Preloaded model: SM

Process library ’default_lib’: initialized

Preloaded library: default_lib

Reading commands from file ’hello.sin’

ello World!

WHIZARD run finished.

Figure 3.1: Qutput of the "Hello world!" SINDARIN script.

3.2. A SIMPLE CALCULATION 45

and if everything works well, you get the output (the complete output including the WHIZARD
banner is shown in Fig. 3.1)

| Writing log to ’whizard.log’

[... here a banner is displayed]

WHIZARD 2.3.0

Preloaded model: SM
Process library ’default_lib’: initialized
Preloaded library: default_lib
Reading commands from file ’hello.sin’
Hello World!
| WHIZARD run finished.
I I

|
|
|
| Reading model file ’/usr/local/share/whizard/models/SM.mdl’
|
!
!
|

If this has just worked for you, you can be confident that you have a working WHIZARD instal-
lation, and you have been able to successfully run the program.

3.2 A Simple Calculation

You may object that WHIZARD is not exactly designed for printing out plain text. So let us
demonstrate a more useful example.

Looking at the Hello World output, we first observe that the program writes a log file named
(by default) whizard.log. This file receives all screen output, except for the output of external
programs that are called by WHIZARD. You don’t have to cache WHIZARD’s screen output yourself.

After the welcome banner, WHIZARD tells you that it reads a physics model, and that it
initializes and preloads a process library. The process library is initially empty. It is ready for
receiving definitions of elementary high-energy physics processes (scattering or decay) that you
provide. The processes are set in the context of a definite model of high-energy physics. By
default this is the Standard Model, dubbed SM.

Here is the SINDARIN code for defining a SM physics process, computing its cross section,
and generating a simulated event sample in Les Houches event format:

process ee = el, E1 => e2, E2
sqrts = 360 GeV

n_events = 10

sample_format = lhef

simulate (ee)

As before, you save this text in a file (named, e.g., ee.sin) which is run by

/home/user$ whizard -r ee.sin

46 CHAPTER 3. GETTING STARTED

(We will come to the meaning of the -r option later.) This produces a lot of output which
looks similar to this:

| Writing log to ’whizard.log’
[... banner ...]

WHIZARD 2.3.0

|

|

I

| Reading model file ’/usr/local/share/whizard/models/SM.mdl’
| Preloaded model: SM

| Process library ’default_lib’: initialized

| Preloaded library: default_lib

| Reading commands from file ’ee.sin’

| Process library ’default_lib’: recorded process ’ee’
sqrts = 3.600000000000E+02

n_events = 10

| Starting simulation for process ’ee’

| Simulate: process ’ee’ needs integration

| Integrate: current process library needs compilation

| Process library ’default_lib’: compiling ...

| Process library ’default_lib’: writing makefile

| Process library ’default_lib’: removing old files

rm -f default_lib.la

rm -f default_lib.lo default_lib_driver.mod opr_ee_il.mod ee_il.lo

rm -f ee_i1.£90

| Process library ’default_lib’: writing driver

| Process library ’default_lib’: creating source code

rm -f ee_i1.£90

rm -f opr_ee_il.mod

rm -f ee_il.lo

/usr/local/bin/omega_SM.opt -o ee_i1l.f90 -target:whizard
-target:parameter_module parameters_SM -target:module opr_ee_il
-target :mdbsum ’70DB728462039A6DC1564328E2F3C3A5° -fusion:progress
-scatter ’e- e+ -> mu- mu+’

[1/1] e- e+ -> mu- mu+ ... allowed. [time: 0.00 secs, total: 0.00 secs, remaining: 0.00 secs]

all processes done. [total time: 0.00 secs]

SUMMARY: 6 fusions, 2 propagators, 2 diagrams

| Process library ’default_lib’: compiling sources

| Process library ’default_lib’: loading

| Process library ’default_lib’: ... success.

| Integrate: compilation done

| RNG: Initializing TAO random-number generator

| RNG: Setting seed for random-number generator to 9616
| Initializing integration for process ee:

| Process [scattering]: ’ee’
| Library name = ’default_lib’

3.2. A SIMPLE CALCULATION

| Process index = 1
| Process components:
| 1: ’ee_il’: e-, e+ => mu-, mut+ [omega]

Beam structure: [any particles]
Beam data (collision):
e- (mass = 5.1099700E-04 GeV)
et (mass = 5.1099700E-04 GeV)
sqrts = 3.600000000000E+02 GeV
Phase space: generating configuration ...
Phase space: ... success.
Phase space: writing configuration file ’ee_il.phs’
Phase space: 2 channels, 2 dimensions
Phase space: found 2 channels, collected in 2 groves.
Phase space: Using 2 equivalences between channels.
Phase space: wood
Warning: No cuts have been defined.

Starting integration for process ’ee’

Integrate: iterations not specified, using default
Integrate: iterations = 3:1000:"gw", 3:10000:""
Integrator: 2 chains, 2 channels, 2 dimensions
Integrator: Using VAMP channel equivalences

Integrator: 1000 initial calls, 20 bins, stratified =T
Integrator: VAMP

It Calls Integrall[fb] Error([fb]l Err[%] Acc Eff[%] Chi2 N[It]
1 784 8.3282892E+02 1.68E+00 0.20 0.06* 39.99

2 784 8.3118961E+02 1.23E+00 0.15 0.04x 76.34

3 784 8.3278951E+02 1.36E+00 0.16 0.05 54.45

3 2352 8.3211789E+02 8.01E-01 0.10 0.05 54.45 0.50
e
4 9936 8.3331732E+02 1.22E-01 0.01 0.01x 54.51
5 9936 8.3341072E+02 1.24E-01 0.01 0.01 54 .52
6 9936 8.3331151E+02 1.23E-01 0.01 0.01x 54.51
e
6 29808 8.3334611E+02 7.10E-02 0.01 0.01 54.51 0.20
|
.....]

Simulate: integration done
Simulate: using integration grids from file ’ee_ml.vg’
RNG: Initializing TAO random—number generator
RNG: Setting seed for random-number generator to 9617
Simulation: requested number of events = 10

corr. to luminosity [fb-1] = 1.2000E-02
Events: writing to LHEF file ’ee.lhe’
Events: writing to raw file ’ee.evx’

47

48 CHAPTER 3. GETTING STARTED

Events: generating 10 unweighted, unpolarized events ...
Events: event normalization mode ’1°
. event sample complete.
Events: closing LHEF file ’ee.lhe’
Events: closing raw file ’ee.evx’
There were no errors and 1 warning(s).
WHIZARD run finished.

The final result is the desired event file, ee.lhe.

Let us discuss the output quickly to walk you through the procedures of a WHIZARD run: after
the logfile message and the banner, the reading of the physics model and the initialization of a
process library, the recorded process with tag ’ee’ is recorded. Next, user-defined parameters
like the center-of-mass energy and the number of demanded (unweighted) events are displayed.
As a next step, WHIZARD is starting the simulation of the process with tag ’ee’. It recognizes
that there has not yet been an integration over phase space (done by an optional integrate
command, cf. Sec. 5.7.1), and consequently starts the integration. It then acknowledges, that
the process code for the process ’ee’ needs to be compiled first (done by an optional compile
command, cf. Sec. 5.4.5). So, WHIZARD compiles the process library, writes the makefile for its
steering, and as a safeguard against garbage removes possibly existing files. Then, the source
code for the library and its processes are generated: for the process code, the default method —
the matrix element generator 0’Mega is called (cf. Sec. 9.3); and the sources are being compiled.

The next steps are the loading of the process library, and WHIZARD reports the completion
of the integration. For the Monte-Carlo integration, a random number generator is initialized.
Here, it is the default generator, TAO (for more details, cf. Sec. 6.2, while the random seed is
set to a value initialized by the system clock, as no seed has been provided in the SINDARIN
input file.

Now, the integration for the process ’ee’ is initialized, and information about the process
(its name, the name of its process library, its index inside the library, and the process compo-
nents out of which it consists, cf. Sec. 5.4.4) are displayed. Then, the beam structure is shown,
which in that case are symmetric partonic electron and positron beams with the center-of-mass
energy provided by the user (360 GeV). The next step is the generation of the phase space,
for which the default phase space method wood (for more details cf. Sec. 8.2) is selected. The
integration is performed, and the result with absolute and relative error, unweighting efficiency,
accuracy, x? quality is shown.

The final step is the event generation (cf. Chap. 11). The integration grids are now be-
ing used, again the random number generator is initialized. Finally, event generation of ten
unweighted events starts (WHIZARD let us know to which integrated luminosity that would cor-
respond), and events are written both in an internal (binary) event format as well as in the
demanded LHE format. This concludes the WHIZARD run.

After a more comprehensive introduction into the SINDARIN steering language in the next
chapter, Chap. 4, we will discuss all the details of the different steps of this introductory
example.

Chapter 4

Steering WHIZARD: SINDARIN
Overview

4.1 The command language for WHIZARD

A conventional physics application program gets its data from a set of input files. Alternatively,
it is called as a library, so the user has to write his own code to interface it, or it combines
these two approaches. WHIZARD 1 was built in this way: there were some input files which were
written by the user, and it could be called both stand-alone or as an external library.

WHIZARD 2 is also a stand-alone program. It comes with its own full-fledged script language,
called SINDARIN. All interaction between the user and the program is done in SINDARIN
expressions, commands, and scripts. Two main reasons led us to this choice:

e In any nontrivial physics study, cuts and (parton- or hadron-level) analysis are of central
importance. The task of specifying appropriate kinematics and particle selection for a
given process is well defined, but it is impossible to cover all possiblities in a simple format
like the cut files of WHIZARD 1.

The usual way of dealing with this problem is to write analysis driver code (often in C++),
using external libraries for Lorentz algebra etc. However, the overhead of writing correct
C++ or Fortran greatly blows up problems that could be formulated in a few lines of text.

e While many problems lead to a repetitive workflow (process definition, integration, simu-
lation), there are more involved tasks that involve parameter scans, comparisons of differ-
ent processes, conditional execution, or writing output in widely different formats. This
is easily done by a steering script, which should be formulated in a complete language.

The SINDARIN language is built specifically around event analysis, suitably extended to sup-
port steering, including data types, loops, conditionals, and 1/0.

It would have been possible to use an established general-purpose language for these tasks.
For instance, 0Caml which is a functional language would be a suitable candidate, and the
matrix-element generator 0’Mega is written in that language. Another candidate would be a
popular scripting language such as PYTHON.

49

20 CHAPTER 4. STEERING WHIZARD: SINDARIN OVERVIEW

We started to support interfaces for commonly used languages: prime examples for C,
C++, and PYTHON are found in the share/interfaces subdirectory. However, introducing a
special-purpose language has the three distinct advantages: First, it is compiled and executed
by the very Fortran code that handles data and thus accesses it without interfaces. Second, it
can be designed with a syntax especially suited to the task of event handling and Monte-Carlo
steering, and third, the user is not forced to learn all those features of a generic language that
are of no relevance to the application he/she is interested in.

4.2 SINDARIN scripts

A SINDARIN script tells the WHIZARD program what it has to do. Typically, the script is
contained in a file which you (the user) create. The file name is arbitrary; by convention, it has
the extension ‘.sin’. WHIZARD takes the file name as its argument on the command line and
executes the contained script:

/home/user$ whizard script.sin

Alternatively, you can call WHIZARD interactively and execute statements line by line; we de-
scribe this below in Sec.14.2.

A SINDARIN script is a sequence of statements, similar to the statements in any imperative
language such as Fortran or C. Examples of statements are commands like integrate, variable
declarations like logical 7flag or assigments like mH = 130 GeV.

The script is free-form, i.e., indentation, extra whitespace and newlines are syntactically

insignificant. In contrast to most languages, there is no statement separator. Statements
simply follow each other, just separated by whitespace.

statementl statement2
statement3
statement4

Nevertheless, for clarity we recommend to write one statement per line where possible, and to

use proper indentation for longer statements, nested and bracketed expressions.
A command may consist of a keyword, a list of arguments in parantheses (...), and an
option script which itself is a sequence of statements.

command

command_with_args (argl, arg2)

command_with_option { option }

command_with_options (arg) {
option_statementl
option_statement2

}

As a rule, parentheses () enclose arguments and expressions, as you would expect. Arguments
enclosed in square brackets [] also exist. They have a special meaning, they denote subevents
(collections of momenta) in event analysis. Braces {} enclose blocks of SINDARIN code. In
particular, the option script associated with a command is a block of code that may contain

4.3. ERRORS ol

local parameter settings, for instance. Braces always indicate a scoping unit, so parameters will

be restored their previous values when the execution of that command is completed.
The script can contain comments. Comments are initiated by either a # or a ! character
and extend to the end of the current line.

statement
This is a comment
statement ! This is also a comment

4.3 Errors

Before turning to proper SINDARIN syntax, let us consider error messages. SINDARIN distin-

guishes syntax errors and runtime errors.
Syntax errors are recognized when the script is read and compiled, before any part is exe-
cuted. Look at this example:

process foo = u, ubar => d, dbar
md = 10
integrade (foo)

WHIZARD will fail with the error message

sqrts = 1 TeV

integrade (foo)

| Expected syntax: SEQUENCE <cmd_num> = <var_name> ’=’ <expr>

| Found token: KEYWORD: >

stk o ok o K ok o oK ok oK oK o oK ok oK oK o K ok o oK o K oK oK ok oK oK o oK ok o oK o K ok oK ok K oK o K ok R K ok K ok sk ok o oK o K ok o ok ok ok oK ok Kok o oK ok oK ok Kok
stk Kok ok Kok oK ok oK oK oK ok K oK o K ok o oK ok oK ok K ok oK oK o Kok o ok ok K ok ok ok K ok o ok ok o ok ok K ok sk ok o ok o Kok ok ok ok ok ok K ok o K ok ok ok Kok
x*x* FATAL ERROR: Syntax error (at or before the location indicated above)

stk KoK ok Kok oK ok oK oK oK ok o oK o K ok oK ok K oK oK ok oK oK o K ok o ok ok K ok ok ok oK ok o K ok o ok ok K ok sk ok o ok o Kok o ok ok ok ok ok K ok o K ok ok ok Kok
3ok ok o oK ok oKk ok oK oK K ok K oK o oK oK oK ok oK ok K ok K ok Kok ok ok oK ok Kk ok K ok Kok K ok K ok Kk ok sk o Kok sk ok K ok ok ok K ok Kok ok ok K ok
WHIZARD run aborted.

which tells you that you have misspelled the command integrate, so the compiler tried to
interpret it as a variable.
Runtime errors are categorized by their severity. A warning is simply printed:

Warning: No cuts have been defined.

This indicates a condition that is suspicious, but may actually be intended by the user.
When an error is encountered, it is printed with more emphasis

3k 3k 3k 5k >k >k 3k 3k 3k >k >k >k 5k 5k 3k >k %k >k 3k 5k >k >k %k 5k 5k 5k >k >k 5k 5k 3k 5k >k >k 5k >k 3k >k %k >k >k >k >k >k >k 3k 5k >k >k >k >k 5k 5k >k >k >k %k >k 3k >k >k >k %k >k >k >k >k %k >k > >* %k %k %k > % Xk %

**xx ERROR: Variable ’md’ set without declaration
sk sk ok ok ok ok ok ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok ok ok ok ok s ok ok ok ok s ok ok s ok ok s ok ok s ok ok ok ok ok sk sk ok ok sk ok sk sk ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok ok

and the program tries to continue. However, this usually indicates that there is something
wrong. (The d quark is defined massless, so md is not a model parameter.) WHIZARD counts
errors and warnings and tells you at the end

52 CHAPTER 4. STEERING WHIZARD: SINDARIN OVERVIEW

| There were 1 error(s) and no warnings.

just in case you missed the message.
Other errors are considered fatal, and execution stops at this point.

>k 3k 3k 5k ok >k 3k 3k 5k 5k >k >k 3k 5k 5k >k >k >k 3k 5k 5k >k >k >k 5k 5k >k >k 3k k 5k 5k >k >k 3k 5k 5k >k >k >k 3k 5k >k >k >k >k 3k 5k >k >k >k 3k 5k >k >k >k >k 5k 5k >k >k >k 5k 5k >k >k >k >k 3k >k >k %k >k %k >k >k % %k
3k 3k 5k 3k >k >k 3k 5k 3k 5k >k %k 5k 5k 3k >k %k >k 3k 5k >k >k %k %k 5k 5k >k >k 5k 5k 5k >k >k >k 5k >k 3k >k >k >k >k >k >k >k >k 5k 3k 5K >k >k >k 5k 3k >k >k >k %k >k 3k >k %k >k >k >k >k >k %k %k >k > >* %k %k % % % *k %

xx* FATAL ERROR: Colliding beams: sqrts is zero (please set sqrts)
sk sk sk sk ok ok oK ok ok oK oK oK ok ok ok ok ok ok ok o o o o o o sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok o o o o o o ok sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok
KK KKK oK oK oK oK oK oK oK oK oK oK ok oK ok ok o o o o o o K K K K KK K oK oK oK oK oK oK oK oK oK oK ok ok ok oK ok o o o o o K K K K K K oK oK oK oK oK oK oK oK oK oK oK oK ok ok oK ok ok

Here, WHIZARD was unable to do anything sensible. But at least (in this case) it told the user
what to do to resolve the problem.

4.4 Statements

SINDARIN statements are executed one by one. For an overview, we list the most common
statements in the order in which they typically appear in a SINDARIN script, and quote the basic
syntax and simple examples. This should give an impression on the WHIZARD’s capabilities and
on the user interface. The list is not complete. Note that there are no mandatory commands
(although an empty SINDARIN script is not really useful). The details and options are explained
in later sections.

4.4.1 Process Configuration
model

model = (model-name)

This assignment sets or resets the current physics model. The Standard Model is already
preloaded, so the model assignment applies to non-default models. Obviously, the model must
be known to WHIZARD. Example:

model = MSSM

See Sec. 5.3.

alias
alias (alias-name) = (alias-definition)

Particles are specified by their names. For most particles, there are various equivalent names.
Names containing special characters such as a + sign have to be quoted. The alias assignment
defines an alias for a list of particles. This is useful for setting up processes with sums over
flavors, cut expressions, and more. The alias name is then used like a simple particle name.
Example:

alias jet = u:d:s:U:D:S:g
See Sec. 5.2.1.

4.4. STATEMENTS 53

process
process (tag) = (incoming) => (outgoing)

Define a process. You give the process a name (tag) by which it is identified later, and specify
the incoming and outgoing particles, and possibly options. You can define an arbitrary number
of processes as long as they are distinguished by their names. Example:

process w_plus_jets = g, g => "W+", jet, jet

See Sec. 5.4.

sqrts

sqrts = (energy-value)

Define the center-of-mass energy for collision processes. The default setup will assume head-on
central collisions of two beams. Example:

sqrts = 500 GeV

See Sec. 5.5.1.

beams

beams = (beam-particles)
beams = (beam-particles) => (structure-function-setup)

Declare beam particles and properties. The current value of sqrts is used, unless specified
otherwise. Example:

beams = u:d:s, U:D:S => lhapdf

With options, the assignment allows for defining beam structure in some detail. This includes
beamstrahlung and ISR for lepton colliders, precise structure function definition for hadron
colliders, asymmetric beams, beam polarization, and more. See Sec. 5.5.

4.4.2 Parameters
Parameter settings

(parameter) = (value)
(type) (user-parameter)
(type) (user-parameter) = (value)

Specify a value for a parameter. There are predefined parameters that affect the behavior of
a command, model-specific parameters (masses, couplings), and user-defined parameters. The
latter have to be declared with a type, which may be int (integer), real, complex, logical,
string, or alias. Logical parameter names begin with a question mark, string parameter
names with a dollar sign. Examples:

o4 CHAPTER 4. STEERING WHIZARD: SINDARIN OVERVIEW

mb = 4.2 GeV

?rebuild_grids = true

real mass_sum = mZ + mW

string $message = "This is a string"

The value need not be a literal, it can be an arbitrary expression of the correct type. See
Sec. 4.7.

read_slha

read_slha ((filename))

This is useful only for supersymmetric models: read a parameter file in the SUSY Les Houches
Accord format. The file defines parameter values and, optionally, decay widths, so this com-
mand removes the need for writing assignments for each of them.

read_slha ("spsla.slha")

See Sec. 10.2.

show

show ((data-objects))

Print the current value of some data object. This includes not just variables, but also models,
libraries, cuts, etc. This is rather a debugging aid, so don’t expect the output to be concise in
the latter cases. Example:

show (mH, wH)

See Sec. 5.10.

printf

printf (format-string) ({data-objects))

Pretty-print the data objects according to the given format string. If there are no data objects,
just print the format string. This command is borrowed from the C programming language;
it is actually an interface to the system’s printf(3) function. The conversion specifiers are
restricted to d,i,e,f,g,s, corresponding to the output of integer, real, and string variables.
Example:

printf "The Higgs mass is %f GeV" (mH)

See Sec. 5.10.

4.4. STATEMENTS %)

4.4.3 Integration
cuts

cuts = (logical-cut-ezpression)

The cut expression is a logical macro expression that is evaluated for each phase space point
during integration and event generation. You may construct expressions out of various ob-
servables that are computed for the (partonic) particle content of the current event. If the
expression evaluates to true, the matrix element is calculated and the event is used. If it
evaluates to false, the matrix element is set zero and the event is discarded. Note that for
collisions the expression is evaluated in the lab frame, while for decays it is evaluated in the
rest frame of the decaying particle. In case you want to impose cuts on a factorized process,
i.e. a combination of a production process and one or more decay processes, you have to use
the selection keyword instead.
Example for the keyword cuts:

cuts = all Pt > 20 GeV [jet]
and all mZ - 10 GeV < M < mZ + 10 GeV [lepton, lepton]
and no abs (Eta) < 2 [jet]

See Sec. 5.2.5.

integrate

integrate ((process-tags))

Compute the total cross section for a process. The command takes into account the definition
of the process, the beam setup, cuts, and parameters as defined in the script. Parameters may

also be specified as options to the command.

Integration is necessary for each process for which you want to know total or differential cross
sections, or event samples. Apart from computing a value, it sets up and adapts phase space
and integration grids that are used in event generation. If you just need an event sample, you
can omit an explicit integrate command; the simulate command will call it automatically.
Example:

integrate (w_plus_jets, z_plus_jets)

See Sec. 5.7.1.

?phs_only/n_calls_test

integrate ((process-tag)) { 7phs_only = true n_calls test = 1000 }

These are just optional settings for the integrate command discussed just a second ago. The
7phs_only = true (note that variables starting with a question mark are logicals) option tells
WHIZARD to prepare a process for integration, but instead of performing the integration, just
to generate a phase space parameterization. n_calls test = <num> evaluates the sampling
function for random integration channels and random momenta. VAMP integration grids are
neither generated nor used, so the channel selection corresponds to the first integration pass,

26 CHAPTER 4. STEERING WHIZARD: SINDARIN OVERVIEW

before any grids or channel weights are adapted. The number of sampling points is given by
<num>. The output contains information about the timing, number of sampling points that
passed the kinematics selection, and the number of matrix-element values that were actually
evaluated. This command is useful mainly for debugging and diagnostics. Example:

integrate (some_large_process) { 7phs_only = true n_calls_test = 1000 }

(Note that there used to be a separate command matrix_element_test until version 2.1.1 of
WHIZARD which has been discarded in order to simplify the SINDARIN syntax.)

4.4.4 Events

histogram

histogram (tag) ((lower-bound), (upper-bound))

histogram (tag) ((lower-bound), (upper-bound), (step))
Declare a histogram for event analysis. The histogram is filled by an analysis expression, which
is evaluated once for each event during a subsequent simulation step. Example:

histogram pt_distribution (0, 150 GeV, 10 GeV)

See Sec. 5.9.3.

plot

plot (tag)

Declare a plot for displaying data points. The plot may be filled by an analysis expression that
is evaluated for each event; this would result in a scatter plot. More likely, you will use this
feature for displaying data such as the energy dependence of a cross section. Example:

plot total_cross_section

See Sec. 5.9.4.

selection
selection = (selection-ezpression)

The selection expression is a logical macro expression that is evaluated once for each event. It is
applied to the event record, after all decays have been executed (if any). It is therefore intended
e.g. for modelling detector acceptance cuts etc. For unfactorized processes the usage of cuts or
selection leads to the same results. Events for which the selection expression evaluates to false
are dropped; they are neither analyzed nor written to any user-defined output file. However,
the dropped events are written to WHIZARD’s native event file. For unfactorized processes it is
therefore preferable to implement all cuts using the cuts keyword for the integration, see cuts
above. Example:

selection = all Pt > 50 GeV [lepton]

The syntax is generically the same as for the cuts expression, see Sec. 5.2.5. For more
information see also Sec. 5.9.

4.4. STATEMENTS 57

analysis

analysis = (analysis-expression)

The analysis expression is a logical macro expression that is evaluated once for each event that
passes the integration and selection cuts in a subsequent simulation step. The expression has
type logical in analogy with the cut expression; however, its main use will be in side effects
caused by embedded record expressions. The record expression books a value, calculated
from observables evaluated for the current event, in one of the predefined histograms or plots.
Example:

analysis = record pt_distribution (eval Pt [photon])
and record mval (eval M [lepton, lepton])

See Sec. 5.9.

unstable

unstable (particle) ((decay-channels))

Specify that a particle can decay, if it occurs in the final state of a subsequent simulation step.
(In the integration step, all final-state particles are considered stable.) The decay channels
are processes which should have been declared before by a process command (alternatively,
there are options that WHIZARD takes care of this automatically; cf. Sec. 5.8.2). They may be
integrated explicitly, otherwise the unstable command will take care of the integration before
particle decays are generated. Example:

unstable Z (z_ee, z_jj)

Note that the decay is an on-shell approximation. Alternatively, WHIZARD is capable of gener-
ating the final state(s) directly, automatically including the particle as an internal resonance
together with irreducible background. Depending on the physical problem and on the complex-
ity of the matrix-element calculation, either option may be more appropriate.

See Sec. 5.8.2.

n_events

n events = (integer)

Specify the number of events that a subsequent simulation step should produce. By default,
simulated events are unweighted. (Unweighting is done by a rejection operation on weighted
events, so the usual caveats on event unweighting by a numerical Monte-Carlo generator do
apply.) Example:

n_events = 20000

See Sec. 5.8.1.

o8 CHAPTER 4. STEERING WHIZARD: SINDARIN OVERVIEW

simulate

simulate ({process-tags))

Generate an event sample. The command allows for analyzing the generated events by the
analysis expression. Furthermore, events can be written to file in various formats. Optionally,
the partonic events can be showered and hadronized, partly using included external (PYTHIA)
or truly external programs called by WHIZARD. Example:

simulate (w_plus_jets) { sample_format = lhef }

See Sec. 5.8.1 and Chapter 11.

graph
graph ((tag)) = (histograms-and-plots)

Combine existing histograms and plots into a common graph. Also useful for pretty-printing
single histograms or plots. Example:

graph comparison {
$title = "$p_T$ distribution for two different values of m_h"
} = histl & hist2

See Sec. 13.4.

write_analysis
write analysis ((analysis-objects))

Writes out data tables for the specified analysis objects (plots, graphs, histograms). If the
argument is empty or absent, write all analysis objects currently available. The tables are
available for feeding external programs. Example:

write_analysis

See Sec. 5.9.

compile_analysis
compile_analysis ({analysis-objects))

Analogous to write_analysis, but the generated data tables are processed by KTEX and
gamelan, which produces Postscript and PDF versions of the displayed data. Example:

compile_analysis

See Sec. 5.9.

4.5 Control Structures

Like any complete programming language, SINDARIN provides means for branching and looping
the program flow.

4.5. CONTROL STRUCTURES 59

4.5.1 Conditionals
if

if (logical_ezpression) then (statements)
elsif (logical_ezpression) then (statements)
else (statements)

endif

Execute statements conditionally, depending on the value of a logical expression. There may
be none or multiple elsif branches, and the else branch is also optional. Example:

if (sqrts > 2 * mtop) then

integrate (top_pair_production)
else

printf "Top pair production is not possible"
endif

The current SINDARIN implementation puts some restriction on the statements that can appear
in a conditional. For instance, process definitions must be done unconditionally.

4.5.2 Loops

scan

scan (variable) = ((value-list)) { (statements) }

Execute the statements repeatedly, once for each value of the scan variable. The statements
are executed in a local context, analogous to the option statement list for commands. The
value list is a comma-separated list of expressions, where each item evaluates to the value that

is assigned to (variable) for this iteration.
The type of the variable is not restricted to numeric, scans can be done for various object
types. For instance, here is a scan over strings:

scan string $str = ("%.3g", "%.4g", "%.5g") { printf $str (mW) }

The output:

[user variable] $str = ".3g"
80.4
[user variable] $str
80.42
[user variable] $str

80.419

ll%.4gll

ll%. 5gll

For a numeric scan variable in particular, there are iterators that implement the usual func-
tionality of for loops. If the scan variable is of type integer, an iterator may take one of the
forms

60 CHAPTER 4. STEERING WHIZARD: SINDARIN OVERVIEW

(start-value) => (end-value)

(start-value) => (end-value) /+ (add-step)
(start-value) => (end-value) /- (subtract-step)
(start-value) => (end-value) /* (multiplicator)
(start-value) => (end-value) // (divisor)

The iterator can be put in place of an expression in the (value-1ist). Here is an example:
scan int i = (1, (83 => 5), (10 => 20 /+ 4))

which results in the output

[user variable] i = 1
[user variable] i 3
[user variable] i = 4
[user variable] i = 5
[user variable] i = 10
[user variable] i = 14
[user variable] i = 18

[Note that the (statements) part of the scan construct may be empty or absent.|
For real scan variables, there are even more possibilities for iterators:

(start-value) => (end-value)

{
(start-value) => (end-value) /+ (add-step)
(start-value) => (end-value) /- (subtract-step)
(start-value) => (end-value) /* (multiplicator)
(start-value) => (end-value) // (divisor)
(start-value) => (end-value) /+/ (n-points-linear)
(start-value) => (end-value) /*/ (n-points-logarithmic)

The first variant is equivalent to /+ 1. The /+ and /- operators are intended to add or subtract
the given step once for each iteration. Since in floating-point arithmetic this would be plagued
by rounding ambiguities, the actual implementation first determines the (integer) number of
iterations from the provided step value, then recomputes the step so that the iterations are
evenly spaced with the first and last value included.

The /* and // operators are analogous. Here, the initial value is intended to be multiplied
by the step value once for each iteration. After determining the integer number of iterations,
the actual scan values will be evenly spaced on a logarithmic scale.

Finally, the /+/ and /*/ operators allow to specify the number of iterations (not counting
the initial value) directly. The (start-value) and (end-value) are always included, and the
intermediate values will be evenly spaced on a linear (/+/) or logarithmic (/*/) scale.

Example:

scan real mh = (130 GeV,
(140 GeV => 160 GeV /+ 5 GeV),
180 GeV,
(200 GeV => 1 TeV /*/ 10))
{ integrate (higgs_decay) }

4.6. EXPRESSIONS 61

4.5.3 Including Files
include
include ({file-name))

Include a SINDARIN script from the specified file. The contents must be complete commands;
they are compiled and executed as if they were part of the current script. Example:

include ("default_cuts.sin")

4.6 Expressions

SINDARIN expressions are classified by their types. The type of an expression is verified when
the script is compiled, before it is executed. This provides some safety against simple coding
errors.

Within expressions, grouping is done using ordinary brackets (). For subevent expressions,
use square brackets [].

4.6.1 Numeric
The language supports the classical numeric types
e int for integer: machine-default, usually 32 bit;
e real, usually double precision or 64 bit;
e complex, consisting of real and imaginary part equivalent to a real each.

SINDARIN supports arithmetic expressions similar to conventional languages. In arithmetic
expressions, the three numeric types can be mixed as appropriate. The computation essentially
follows the rules for mixed arithmetic in Fortran. The arithmetic operators are +, -, *, /, ~.
Standard functions such as sin, sqrt, etc. are available. See Sec. 5.1.1 to Sec. 5.1.3.

Numeric values can be associated with units. Units evaluate to numerical factors, and their
use is optional, but they can be useful in the physics context for which WHIZARD is designed.
Note that the default energy/mass unit is GeV, and the default unit for cross sections is fbarn.

4.6.2 Logical and String

The language also has the following standard types:
e logical (a.k.a. boolean). Logical variable names have a ? (question mark) as prefix.
e string (arbitrary length). String variable names have a $ (dollar) sign as prefix.

There are comparisons, logical operations, string concatenation, and a mechanism for format-
ting objects as strings for output.

62 CHAPTER 4. STEERING WHIZARD: SINDARIN OVERVIEW

4.6.3 Special

Furthermore, SINDARIN deals with a bunch of data types tailored specifically for Monte Carlo
applications:

e alias objects denote a set of particle species.

e subevt objects denote a collection of particle momenta within an event. They have their
uses in cut and analysis expressions.

e process object are generated by a process statement. There are no expressions involving
processes, but they are referred to by integrate and simulate commands.

e model: There is always a current object of type and name model. Several models can
be used concurrently by appropriately defining processes, but this happens behind the
scenes.

e beams: Similarly, the current implementation allows only for a single object of this type
at a given time, which is assigned by a beams = statement and used by integrate.

In the current implementation, SINDARIN has no container data types derived from basic
types, such as lists, arrays, or hashes, and there are no user-defined data types. (The subevt
type is a container for particles in the context of events, but there is no type for an individual
particle: this is represented as a one-particle subevt). There are also containers for inclusive
processes which are however simply handled as an expansion into several components of a
master process tag.

4.7 Variables

SINDARIN supports global variables, variables local to a scoping unit (the option body of a
command, the body of a scan loop), and variables local to an expression.

Some variables are predefined by the system (intrinsic variables). They are further sepa-
rated into independent variables that can be reset by the user, and derived or locked variables
that are automatically computed by the program, but not directly user-modifiable. On top of
that, the user is free to introduce his own variables (user variables).

The names of numerical variables consist of alphanumeric characters and underscores. The
first character must not be a digit. Logical variable names are furthermore prefixed by a ?
(question mark) sign, while string variable names begin with a $ (dollar) sign.

Character case does matter. In this manual we follow the convention that variable names
consist of lower-case letters, digits, and underscores only, but you may also use upper-case
letters if you wish.

Physics models contain their own, specific set of numeric variables (masses, couplings).
They are attached to the model where they are defined, so they appear and disappear with the
model that is currently loaded. In particular, if two different models contain a variable with the

4.7. VARIABLES 63

same name, these two variables are nevertheless distinct: setting one doesn’t affect the other.
This feature might be called, in computer-science jargon, a mixin.

User variables — global or local — are declared by their type when they are introduced, and
acquire an initial value upon declaration. Examples:

int i = 3

real my_cut_value = 10 GeV

complex ¢ = 3 - 4 *x I

logical 7top_decay_allowed = mH > 2 * mtop
string $hello = "Hello world!"

alias q = d:u:s:c

An existing user variable can be assigned a new value without a declaration:

and it may also be redeclared if the new declaration specifies the same type, this is equivalent
to assigning a new value.
Variables local to an expression are introduced by the let ... in contruct. Example:

real a = let int n = 2 in
Xx™n + y'n

The explicit int declaration is necessary only if the variable n has not been declared before.
An intrinsic variable must not be declared: let mtop = 175.3 GeV in ...

let constructs can be concatenated if several local variables need to be assigned: let a =
3 in let b = 4 in expression.

Variables of type subevt can only be defined in let constructs.

Exclusively in the context of particle selections (event analysis), there are observables as
special numeric objects. They are used like numeric variables, but they are never declared
or assigned. They get their value assigned dynamically, computed from the particle momen-
tum configuration. Hence, they may be understood as (intrinsic and predefined) macros. By
convention, observable names begin with a capital letter.

Further macros are

e cuts and analysis. They are of type logical, and can be assigned an expression by the
user. They are evaluated once for each event.

e scale, factorization_scale and renormalization_scale are real numeric macros which
define the energy scale(s) of an event. The latter two override the former. If no scale is
defined, the partonic energy is used as the process scale.

e weight is a real numeric macro. If it is assigned an expression, the expression is evaluated
for each valid phase-space point, and the result multiplies the matrix element.

64

CHAPTER 4. STEERING WHIZARD: SINDARIN OVERVIEW

Chapter 5

Detailed WHIZARD Steering:
SINDARIN

5.1 Data and expressions

5.1.1 Real-valued objects

Real literals have their usual form, mantissa and, optionally, exponent:
0. 3.14 -.5 2.345e-3 .890E-023

Internally, real values are treated as double precision. The values are read by the Fortran
library, so details depend on its implementation.

A special feature of SINDARIN is that numerics (real and integer) can be immediately
followed by a physical unit. The supported units are presently hard-coded, they are

meV eV keV MeV GeV TeV
nbarn pbarn fbarn abarn
rad mrad degree

h

If a number is followed by a unit, it is automatically normalized to the corresponding default
unit: 14.TeV is transformed into the real number 14000. Default units are GeV, fbarn, and
rad. The % sign after a number has the effect that the number is multiplied by 0.01. Note that
no checks for consistency of units are done, so you can add 1 meV + 3 abarn if you absolutely
wish to. Omitting units is always allowed, in that case, the default unit is assumed.

Units are not treated as variables. In particular, you can’t write theta / degree, the
correct form is theta / 1 degree.

There is a single predefined real constant, namely 7 which is referred to by the keyword pi.
In addition, there is a single predefined complex constant, which is the complex unit 4, being
referred to by the keyword I.

The arithmetic operators are

65

66 CHAPTER 5. DETAILED WHIZARD STEERING: SINDARIN

+-%x/"

with their obvious meaning and the usual precedence rules.
SINDARIN supports a bunch of standard numerical functions, mostly equivalent to their
Fortran counterparts:

abs sgn mod modulo
sqrt exp 1log 1loglO
sin cos tan asin acos atan
sinh cosh tanh

(Unlike Fortran, the sgn function takes only one argument and returns 1., or —1.) The function
argument is enclosed in brackets: sqrt (2.), tan (11.5 degree).
There are two functions with two real arguments:

max min

Example: real lighter_mass = min (mZ, mH)
The following functions of a real convert to integer:

int nint floor ceiling
and this converts to complex type:
complex
Real values can be compared by the following operators, the result is a logical value:

> < >= <=

In SINDARIN, it is possible to have more than two operands in a logical expressions. The
comparisons are done from left to right. Hence,

115 GeV < mH < 180 GeV

is valid SINDARIN code and evaluates to true if the Higgs mass is in the given range.

Tests for equality and inequality with machine-precision real numbers are notoriously un-
reliable and should be avoided altogether. To deal with this problem, SINDARIN has the
possibility to make the comparison operators “fuzzy” which should be read as “equal (unequal)
up to a tolerance”, where the tolerance is given by the real-valued intrinsic variable tolerance.
This variable is initially zero, but can be set to any value (for instance, tolerance = 1.e-13
by the user. Note that for non-zero tolerance, operators like == and <> or < and > are not
mutually exclusive!.

'In older versions of WHIZARD, until v2.1.1, there used to be separate comparators for the comparisons up to
a tolerance, namely ==~ and <>~. These have been discarded from v2.2.0 on in order to simplify the syntax.

5.1. DATA AND EXPRESSIONS 67

5.1.2 Integer-valued objects

Integer literals are obvious:
1 -98765 0123

Integers are always signed. Their range is the default-integer range as determined by the
Fortran compiler.

Like real values, integer values can be followed by a physical unit: 1 TeV, 30 degree. This
actually transforms the integer into a real.

Standard arithmetics is supported:

+-%x/"

It is important to note that there is no fraction datatype, and pure integer arithmetics does
not convert to real. Hence 3/4 evaluates to 0, but 3 GeV / 4 GeV evaluates to 0.75.

Since all arithmetics is handled by the underlying Fortran library, integer overflow is not
detected. If in doubt, do real arithmetics.

Integer functions are more restricted than real functions. We support the following:

abs sgn mod modulo
max min

and the conversion functions
real complex

Comparisons of integers among themselves and with reals are possible using the same set of
comparison operators as for real values. This includes the operators with a finite tolerance.

5.1.3 Complex-valued objects

Complex variables and values are currently not yet used by the physics models implemented in
WHIZARD. There complex input coupling constants are always split into their real and imaginary
parts (or modulus and phase). They are exclusively available for arithmetic calculations.

There is no form for complex literals. Complex values must be created via an arithmetic
expression,

complex ¢ = 1 + 2 *x I

where the imaginary unit I is predefined as a constant.

The standard arithmetic operations are supported (also mixed with real and integer). Sup-
port for functions is currently still incomplete, among the supported functions there are sqrt,
log, exp.

68 CHAPTER 5. DETAILED WHIZARD STEERING: SINDARIN

5.1.4 Logical-valued objects

There are two predefined logical constants, true and false. Logicals are not equivalent to
integers (like in C) or to strings (like in PERL), but they make up a type of their own. Only
in printf output, they are treated as strings, that is, they require the %s conversion specifier.

The names of logical variables begin with a question mark ?. Here is the declaration of a
logical user variable:

logical 7higgs_decays_into_tt = mH > 2 * mtop
Logical expressions use the standard boolean operations
or and not

The results of comparisons (see above) are logicals.
There is also a special logical operator with lower priority, concatenation by a semicolon:

lexprl ; lexprl

This evaluates lexprl and throws its result away, then evaluates lexpr2 and returns that result.
This feature is to used with logical expressions that have a side effect, namely the record
function within analysis expressions.

The primary use for intrinsic logicals are flags that change the behavior of commands. For
instance, 7unweighted = true and 7unweighted = false switch the unweighting of simulated
event samples on and off.

5.1.5 String-valued objects and string operations

String literals are enclosed in double quotes: "This is a string." The empty string is "".
String variables begin with the dollar sign: $. There is only one string operation, concatenation

string $foo = "abc" & "def"

However, it is possible to transform variables and values to a string using the sprintf
function. This function is an interface to the system’s C function sprintf with some restrictions
and modifications. The allowed conversion specifiers are

%4 %i (integer)
he %t kg KE UF %G (real)
%s (string and logical)

The conversions can use flag parameter, field width, and precision, but length modifiers are not
supported since they have no meaning for the application. (See also Sec. 5.10.)
The sprintf function has the syntax

sprintf format-string (arg-list)

5.2. PARTICLES AND (SUB)EVENTS 69

This is an expression that evaluates to a string. The format string contains the mentioned
conversion specifiers. The argument list is optional. The arguments are separated by commas.
Allowed arguments are integer, real, logical, and string variables, and numeric expressions.
Logical and string expressions can also be printed, but they have to be dressed as anonymous
variables. A logical anonymous variable has the form ?(logical_expr) (example: ?(mH > 115
GeV)). A string anonymous variable has the form $(string-expr).

Example:

string $unit = "GeV"
string $str = sprintf "mW = %f %s" (mW, $unit)

The related printf command with the same syntax prints the formatted string to standard
output?.

5.2 Particles and (sub)events

5.2.1 Particle aliases

A particle species is denoted by its name as a string: "W+". Alternatively, it can be addressed
by an alias. For instance, the W™ boson has the alias Wp. Aliases are used like variables in a
context where a particle species is expected, and the user can specify his/her own aliases.

An alias may either denote a single particle species or a class of particles species. A colon
: concatenates particle names and aliases to yield multi-species aliases:

alias quark = u:d:s
alias wboson = "W+":"W-"

Such aliases are used for defining processes with summation over flavors, and for defining classes
of particles for analysis.

Each model files define both names and (single-particle) aliases for all particles it contains.
Furthermore, it defines the class aliases colored and charged which are particularly useful for
event analysis.

5.2.2 Subevents

Subevents are sets of particles, extracted from an event. The sets are unordered by default,
but may be ordered by appropriate functions. Obviously, subevents are meaningful only in a
context where an event is available. The possible context may be the specification of a cut,
weight, scale, or analysis expression.

To construct a simple subevent, we put a particle alias or an expression of type particle
alias into square brackets:

2In older versions of WHIZARD, until v2.1.1, there also used to be a sprintd function and a printd command
for default formats without a format string. They have been discarded in order to simplify the syntax from
version v2.2.0 on.

70 CHAPTER 5. DETAILED WHIZARD STEERING: SINDARIN

["W+"] [u:d:s] [colored]

These subevents evaluate to the set of all W™ bosons (to be precise, their four-momenta), all
u, d, or s quarks, and all colored particles, respectively.

A subevent can contain pseudoparticles, i.e., particle combinations. That is, the four-
momenta of distinct particles are combined (added conmponent-wise), and the results become
subevent elements just like ordinary particles.

The (pseudo)particles in a subevent are non-overlapping. That is, for any of the particles in
the original event, there is at most one (pseudo)particle in the subevent in which it is contained.

Sometimes, variables (actually, named constants) of type subevent are useful. Subevent
variables are declared by the subevt keyword, and their names carry the prefix €. Subevent
variables exist only within the scope of a cuts (or scale, analysis, etc.) macro, which is
evaluated in the presence of an actual event. In the macro body, they are assigned via the let
construct:

cuts =
let subevt Q@jets = select if Pt > 10 GeV [colored]
in
all Theta > 10 degree [Q@jets, Q@jets]
In this expression, we first define @jets to stand for the set of all colored partons with pr >
10 GeV. This abbreviation is then used in a logical expression, which evaluates to true if all
relative angles between distinct jets are greater than 10 degree.

We note that the example also introduces pairs of subevents: the square bracket with two
entries evaluates to the list of all possible pairs which do not overlap. The objects within square
brackets can be either subevents or alias expressions. The latter are transformed into subevents
before they are used.

As a special case, the original event is always available as the predefined subevent @evt.

5.2.3 Subevent functions

There are several functions that take a subevent (or an alias) as an argument and return a new
subevent. Here we describe them:

collect

collect [particles]
collect if condition [particles]

collect if condition [particles, ref_particles]

First version: collect all particle momenta in the argument and combine them to a single four-
momentum. The particles argument may either be a subevt expression or an alias expression.
The result is a one-entry subevt. In the second form, only those particles are collected which
satisfy the condition, a logical expression. Example: collect if Pt > 10 GeV [colored]
The third version is useful if you want to put binary observables (i.e., observables constructed
from two different particles) in the condition. The ref particles provide the second argument

5.2. PARTICLES AND (SUB)EVENTS 71

for binary observables in the condition. A particle is taken into account if the condition is
true with respect to all reference particles that do not overlap with this particle. Example:
collect if Theta > 5 degree [photon, charged]: combine all photons that are separated
by 5 degrees from all charged particles.

cluster

NOTE: This is an experimental feature, available from version 2.2.1 on.

cluster [particles]

cluster if condition [particles]

First version: collect all particle momenta in the argument and cluster them to a set of jets.
The particles argument may either be a subevt expression or an alias expression. The result
is a one-entry subevt. In the second form, only those particles are clustered which satisfy the
condition, a logical expression. Example: cluster if Pt > 10 GeV [colored]

This command is available from WHIZARD version 2.2.1 on, and only if the FastJet package
has been installed and linked with WHIZARD (cf. Sec.2.2.9); in a future version of WHIZARD it
is foreseen to have also an intrinsic clustering package inside WHIZARD which will be able to
support some of the clustering algorithms below. To use it in an analysis, you have to set the
variable jet_algorithm to one of the predefined jet-algorithm values (integer constants):

kt_algorithm
cambridge_algorithm
antikt_algorithm
genkt_algorithm
cambridge_for_passive_algorithm
genkt_for_passive_algorithm

ee kt_algorithm
ee_genkt_algorithm
plugin_algorithm

and the variable jet_r to the desired R parameter value, as appropriate for the analysis and
the jet algorithm. Example:

jet_algorithm = antikt_algorithm
jet_r = 0.7
cuts = all Pt > 15 GeV [cluster if Pt > 5 GeV [colored]]

combine

combine [particles_1, particles_2]

combine if condition [particles_1, particles_2]

72 CHAPTER 5. DETAILED WHIZARD STEERING: SINDARIN

Make a new subevent of composite particles. The composites are generated by combining all
particles from subevent particles_1 with all particles from subevent particles_2 in all possible
combinations. Overlapping combinations are excluded, however: if a (composite) particle in the
first argument has a constituent in common with a composite particle in the second argument,
the combination is dropped. In particular, this applies if the particles are identical.

If a condition is provided, the combination is done only when the logical expression, applied
to the particle pair in question, returns true. For instance, here we reconstruct intermediate
W~ bosons:

let @W_candidates = combine if 70 GeV < M < 80 GeV ["mu-", "numubar"]
in ...

Note that the combination may fail, so the resulting subevent could be empty.

operator +

If there is no condition, the + operator provides a convenient shorthand for the combine
command. In particular, it can be used if there are several particles to combine. Example:

cuts = any 170 GeV < M < 180 GeV [b + lepton + invisible]

select

select if condition [particles]

select if condition [particles, ref_particles]

One argument: select all particles in the argument that satisfy the condition and drop the rest.
Two arguments: the ref particles provide a second argument for binary observables. Select
particles if the condition is satisfied for all reference particles.

extract

extract [particles]

extract index indez-value [particles]

Return a single-particle subevent. In the first version, it contains the first particle in the
subevent particles. In the second version, the particle with index index-value is returned,
where index-value is an integer expression. If its value is negative, the index is counted from
the end of the subevent.

The order of particles in an event or subevent is not always well-defined, so you may wish
to sort the subevent before applying the eztract function to it.

5.2. PARTICLES AND (SUB)EVENTS 73

sort

sort [particles]
sort by observable [particles]

sort by observable [particles, ref_particlel]

Sort the subevent according to some criterion. If no criterion is supplied (first version), the
subevent is sorted by increasing PDG code (first particles, then antiparticles). In the second
version, the observable is a real expression which is evaluated for each particle of the subevent
in turn. The subevent is sorted by increasing value of this expression, for instance:

let @sorted_evt = sort by Pt [Q@evt]
in ...

In the third version, a reference particle is provided as second argument, so the sorting can be
done for binary observables. It doesn’t make much sense to have several reference particles at
once, so the sort function uses only the first entry in the subevent ref-particle, if it has more
than one.

join

join [particles, new_particles]

join if condition [particles, new_particles]

This commands appends the particles in subevent new_particles to the subevent particles, i.e.,
it joins the two particle sets. To be precise, a (pseudo)particle from new_particles is only
appended if it does not overlap with any of the (pseudo)particles present in particles, so the
function will not produce overlapping entries.

In the second version, each particle from new_particles is also checked with all particles
in the first set whether condition is fulfilled. If yes, and there is no overlap, it is appended,
otherwise it is dropped.

operator &

Subevents can also be concatenated by the operator & This effectively applies join to all
operands in turn. Example:

let @visible =
select if Pt > 10 GeV and E > 5 GeV [photon]
& select if Pt > 20 GeV and E > 10 GeV [colored]
& select if Pt > 10 GeV [lepton]
in ...

74 CHAPTER 5. DETAILED WHIZARD STEERING: SINDARIN

5.2.4 Calculating observables

Observables (invariant mass M, energy E, ...) are used in expressions just like ordinary numeric
variables. By convention, their names start with a capital letter. They are computed using
a particle momentum (or two particle momenta) which are taken from a subsequent subevent
argument.

We can extract the value of an observable for an event and make it available for computing
the scale value, or for histogramming etc.:

eval

eval ezpr [particles]

eval expr [particles_1, particles 2]

The function eval takes an expression involving observables and evaluates it for the first
momentum (or momentum pair) of the subevent (or subevent pair) in square brackets that
follows the expression. For example,

eval Pt [colored]

evaluates to the transverse momentum of the first colored particle,

eval M [@jets, @jets]

evaluates to the invariant mass of the first distinct pair of jets (assuming that @jets has been
defined in a let construct), and

eval E - M [combine [el, N1]]

evaluates to the difference of energy and mass of the combination of the first electron-neutrino
pair in the event.

The last example illustrates why observables are treated like variables, even though they are
functions of particles: the eval construct with the particle reference in square brackets after
the expression allows to compute derived observables — observables which are functions of new
observables — without the need for hard-coding them as new functions.

5.2.5 Cuts and event selection

Instead of a numeric value, we can use observables to compute a logical value.

all

all logical_expr [particles]

all logical_exzpr [particles_1, particles_2]

The all construct expects a logical expression and one or two subevent arguments in square
brackets.

5.2. PARTICLES AND (SUB)EVENTS 75

all Pt > 10 GeV [charged]
all 80 GeV < M < 100 GeV [lepton, antilepton]

In the second example, lepton and antilepton should be aliases defined in a let construct.
(Recall that aliases are promoted to subevents if they occur within square brackets.)

This construction defines a cut. The result value is true if the logical expression evaluates
to true for all particles in the subevent in square brackets. In the two-argument case it must
be true for all non-overlapping combinations of particles in the two subevents. If one of the
arguments is the empty subevent, the result is also true.

any

any logical_exzpr [particles]

any logical_expr [particles_1, particles 2]
The any construct is true if the logical expression is true for at least one particle or non-
overlapping particle combination:

any E > 100 GeV [photon]

This defines a trigger or selection condition. If a subevent argument is empty, it evaluates to
false

no

no logical_expr [particles]

no logical_expr [particles_1, particles_2]

The no construct is true if the logical expression is true for no single one particle or non-
overlapping particle combination:

no 5 degree < Theta < 175 degree ["e-":"e+"]

This defines a veto condition. If a subevent argument is empty, it evaluates to true. It is
equivalent to not any. .., but included for notational convenience.

5.2.6 More particle functions
count

count [particles]
count [particles_1, particles_2]
count if logical-expr [particles]

count if logical-expr [particles, ref_particles]

This counts the number of events in a subevent, the result is of type int. If there is a conditional
expression, it counts the number of particle in the subevent that pass the test. If there are
two arguments, it counts the number of non-overlapping particle pairs (that pass the test, if

any).

76 CHAPTER 5. DETAILED WHIZARD STEERING: SINDARIN

Predefined observables

The following real-valued observables are available in SINDARIN for use in eval, all, any,
no, and count constructs. The argument is always the subevent or alias enclosed in square
brackets.

e M2
— One argument: Invariant mass squared of the (composite) particle in the argument.
— Two arguments: Invariant mass squared of the sum of the two momenta.
o M
— Signed square root of M2: positive if M2 > 0, negative if M2 < 0.
o E
— One argument: Energy of the (composite) particle in the argument.
— Two arguments: Sum of the energies of the two momenta.
e Px, Py, Pz
— Like E, but returning the spatial momentum components.
e P
— Like E, returning the absolute value of the spatial momentum.
e Pt Pl
— Like E, returning the transversal and longitudinal momentum, respectively.
e Theta

— One argument: Absolute polar angle in the lab frame

— Two arguments: Angular distance of two particles in the lab frame.

e Theta star Only with two arguments, gives the relative polar angle of the two momenta
in the rest system of the momentum sum (i.e. mother particle).

e Phi

— One argument: Absolute azimuthal angle in the lab frame

— Two arguments: Azimuthal distance of two particles in the lab frame
e Rap, Eta

— One argument: rapidity / pseudorapidity

5.3. PHYSICS MODELS 7

— Two arguments: rapidity / pseudorapidity difference

e Dist

— Two arguments: Distance on the n-¢ cylinder, i.e., \/An? + A¢?
e kT

— Two arguments: kr jet clustering variable: 2min(E3, E%,)/Q* X (1 — cos 01 52). At
the moment, Q? = 1 GeV?2.

There is also an integer-valued observable:
e PDG

— One argument: PDG code of the particle. For a composite particle, the code is
undefined (value 0).

5.3 Physics Models

A physics model is a combination of particles, numerical parameters (masses, couplings, widths),
and Feynman rules. Many physics analyses are done in the context of the Standard Model (SM).
The SM is also the default model for WHIZARD. Alternatively, you can choose a subset of the SM
(QED or QCD), variants of the SM (e.g., with or without nontrivial CKM matrix), or various
extensions of the SM. The complete list is displayed in Table 10.1.

The model definitions are contained in text files with filename extension .mdl, e.g., SM.md1l,
which are located in the share/models subdirectory of the WHIZARD installation. These files
are easily readable, so if you need details of a model implementation, inspect their contents.
The model file contains the complete particle and parameter definitions as well as their default
values. It also contains a list of vertices. This is used only for phase-space setup; the vertices
used for generating amplitudes and the corresponding Feynman rules are stored in different
files within the 0’Mega source tree.

In a SINDARIN script, a model is a special object of type model. There is always a current
model. Initially, this is the SM, so on startup WHIZARD reads the SM.md1 model file and assigns
its content to the current model object. (You can change the default model by the --model
option on the command line. Also the preloading of a model can be switched off with the
--no-model option) Once the model has been loaded, you can define processes for the model,
and you have all independent model parameters at your disposal. As noted before, these are
intrinsic parameters which need not be declared when you assign them a value, for instance:

mW
wH

80.33 GeV
243.1 MeV

Other parameters are derived. They can be used in expressions like any other parameter, they
are also intrinsic, but they cannot be modified directly at all. For instance, the electromagnetic
coupling ee is a derived parameter. If you change either GF (the Fermi constant), mW (the W

78 CHAPTER 5. DETAILED WHIZARD STEERING: SINDARIN

mass), or mZ (the Z mass), this parameter will reflect the change, but setting it directly is an
error. In other words, the SM is defined within WHIZARD in the Gp-my-myz scheme. (While
this scheme is unusual for loop calculations, it is natural for a tree-level event generator where
the Z and W poles have to be at their experimentally determined location®.)

The model also defines the particle names and aliases that you can use for defining processes,
cuts, or analyses.

If you would like to generate a SUSY process instead, for instance, you can assign a different
model (cf. Table 10.1) to the current model object:

model = MSSM

This assignment has the consequence that the list of SM parameters and particles is replaced
by the corresponding MSSM list (which is much longer). The MSSM contains essentially all
SM parameters by the same name, but in fact they are different parameters. This is revealed
when you say

model = SM
mb = 5.0 GeV
model = MSSM
show (mb)

After the model is reassigned, you will see the MSSM value of m; which still has its default
value, not the one you have given. However, if you revert to the SM later,

model = SM
show (mb)

you will see that your modification of the SM’s m, value has been remembered. If you want
both mass values to agree, you have to set them separately in the context of their respective
model. Although this might seem cumbersome at first, it is nevertheless a sensible procedure
since the parameters defined by the user might anyhow not be defined or available for all chosen
models.

When using two different models which need an SLHA input file, these have to be provided
for both models.

Within a given scope, there is only one current model. The current model can be reset
permanently as above. It can also be temporarily be reset in a local scope, i.e., the option body
of a command or the body of a scan loop. It is thus possible to use several models within the
same script. For instance, you may define a SUSY signal process and a pure-SM background
process. Each process depends only on the respective model’s parameter set, and a change to
a parameter in one of the models affects only the corresponding process.

5.4 Processes

The purpose of WHIZARD is the integration and simulation of high-energy physics processes:
scatterings and decays. Hence, process objects play the central role in SINDARIN scripts.

3In future versions of WHIZARD it is foreseen to implement other electroweak schemes.

5.4. PROCESSES 79

A SINDARIN script may contain an arbitrary number of process definitions. The initial
states need not agree, and the processes may belong to different physics models.

5.4.1 Process definition

A process object is defined in a straightforward notation. The definition syntax is straightfor-
ward:

process process-td = incoming-particles => outgoing-particles
Here are typical examples:

process w_pair_production = el, E1 => "W+", "W-"
process zdecay = Z => u, ubar

Throughout the program, the process will be identified by its process-id, so this is the name
of the process object. This identifier is arbitrary, chosen by the user. It follows the rules
for variable names, so it consists of alphanumeric characters and underscores, where the first
character is not numeric. As a special rule, it must not contain upper-case characters. The
reason is that this name is used for identifying the process not just within the script, but also
within the Fortran code that the matrix-element generator produces for this process.

After the equals sign, there follow the lists of incoming and outgoing particles. The number
of incoming particles is either one or two: scattering processes and decay processes. The
number of outgoing particles should be two or larger (as 2 — 1 processes are proportional to a
0 function they can only be sensibly integrated when using a structure function like a hadron
collider PDF or a beamstrahlung spectrum.). There is no hard upper limit; the complexity of
processes that WHIZARD can handle depends only on the practical computing limitations (CPU
time and memory). Roughly speaking, one can assume that processes up to 2 — 6 particles are
safe, 2 — 8 processes are feasible given sufficient time for reaching a stable integration, while
more complicated processes are largely unexplored.

We emphasize that in the default setup, the matrix element of a physics process is computed
exactly in leading-order perturbation theory, i.e., at tree level. There is no restriction of in-
termediate states, the result always contains the complete set of Feynman graphs that connect
the initial with the final state. If the result would actually be expanded in Feynman graphs
(which is not done by the 0’Mega matrix element generator that WHIZARD uses), the number of
graphs can easily reach several thousands, depending on the complexity of the process and on
the physics model.

More details about the different methods for quantum field-theoretical matrix elements can
be found in Chap. 9. In the following, we will discuss particle names, options for processes
like restrictions on intermediate states, parallelization, flavor sums and process components for
inclusive event samples (process containers).

5.4.2 Particle names

The particle names are taken from the particle definition in the current model file. Looking at
the SM, for instance, the electron entry in share/models/SM.mdl reads

80 CHAPTER 5. DETAILED WHIZARD STEERING: SINDARIN

particle E_LEPTON 11
spin 1/2 charge -1 isospin -1/2
name "e-" el electron e
anti "e+" El1 positron
tex_name "e"-"
tex_anti "e"+"
mass me

This tells that you can identify an electron either as "e-", el, electron, or simply e. The
first version is used for output, but needs to be quoted, because otherwise SINDARIN would
interpret the minus sign as an operator. (Technically, unquoted particle identifiers are aliases,
while the quoted versions — you can say either el or "el" — are names. On input, this makes
no difference.) The alternative version el follows a convention, inherited from CompHEP [50],
that particles are indicated by lower case, antiparticles by upper case, and for leptons, the
generation index is appended: e2 is the muon, e3 the tau. These alternative names need not
be quoted because they contain no special characters.

In Table 5.1, we list the recommended names as well as mass and width parameters for all
SM particles. For other models, you may look up the names in the corresponding model file.

Where no mass or width parameters are listed in the table, the particle is assumed to be
massless or stable, respectively. This is obvious for particles such as the photon. For neutrinos,
the mass is meaningless to particle physics collider experiments, so it is zero. For quarks, the
u or d quark mass is unobservable directly, so we also set it zero. For the heavier quarks, the
mass may play a role, so it is kept. (The s quark is borderline; one may argue that its mass is
also unobservable directly.) On the other hand, the electron mass is relevant, e.g., in photon
radiation without cuts, so it is not zero by default.

It pays off to set particle masses to zero, if the approximation is justified, since fewer
helicity states will contribute to the matrix element. Switching off one of the helicity states of
an external fermion speeds up the calculation by a factor of two. Therefore, script files will
usually contain the assignments

me =0 mmu =0 ms =0 mc =20

unless they deal with processes where this simplification is phenomenologically unacceptable.
Often m, and m; can also be neglected, but this excludes processes where the Higgs couplings
of 7 or b are relevant.

Setting fermion masses to zero enables, furthermore, the possibility to define multi-flavor
aliases

d:u:s:c
D:U:S:C

alias q
alias Q

and handle processes such as

process two_jets_at_ilc = el, E1 => q, Q
process w_pairs_at_lhc = q, Q => Wp, Wm

where a sum over all allowed flavor combination is automatically included. For technical reasons,
such flavor sums are possible only for massless particles (or more general for mass-degenerate

5.4. PROCESSES 81

\ Particle \ Output name \ Alternative names \ Mass Width ‘

Leptons e e- el electron me
et e+ E1 positron me
w mu- e2 muon mmu
pt mu+ E2 mmu
T tau- e3 tauon mtau
Tt tau+ E3 mtau
Neutrinos Ve nue nil
Ve nuebar N1
Yy numu n2
Uy numubar N2
Uy nutau n3
78 nutaubar N3
Quarks d d down
d dbar D
U u up
U ubar U
S S strange ms
s sbar S ms
& C charm mc
c cbar C mc
b b bottom mb
b bbar B mb
t t top mtop wtop
t tbar T mtop wtop
Vector bosons | g gl g G gluon
Y A gamma photon
Z y/ mZ wZ
w+ W+ Wp mW wW
W= W- Wm mW wW
| Scalar bosons | H | H | b Higgs | mH wH |

Table 5.1: Names that can be used for SM particles. Also shown are the intrinsic variables
that can be used to set mass and width, if applicable.

82 CHAPTER 5. DETAILED WHIZARD STEERING: SINDARIN

particles). If you want to generate inclusive processes with sums over particles of different
masses (e.g. summing over W/Z in the final state etc.), confer below the section about process
components, Sec. 5.4.4.

Assignments of masses, widths and other parameters are actually in effect when a process is
integrated, not when it is defined. So, these assignments may come before or after the process
definition, with no significant difference. However, since flavor summation requires masses to
be zero, the assignments may be put before the alias definition which is used in the process.

The muon, tau, and the heavier quarks are actually unstable. However, the width is set to
zero because their decay is a macroscopic effect and, except for the muon, affected by hadron
physics, so it is not described by WHIZARD. (In the current WHIZARD setup, all decays occur at
the production vertex. A future version may describe hadronic physics and/or macroscopic
particle propagation, and this restriction may be eventually removed.)

5.4.3 Options for processes
The process definition may contain an optional argument:
process process-id = incoming-particles => outgoing-particles {options...}

The options are a SINDARIN script that is executed in a context local to the process command.
The assignments it contains apply only to the process that is defined. In the following, we
describe the set of potentially useful options (which all can be also set globally):

Model reassignment

It is possible to locally reassign the model via a model = statment, permitting the definition
of process using a model other than the globally selected model. The process will retain this
association during integration and event generation.

Restriction on intermediate states
Another useful option is the setting
$restrictions = string

This option allows to select particular classes of Feynman graphs for the process when using
the 0’Mega matrix element generator. The $restrictions string specifies propagators that
the graph must contain. Here is an example:

process zh_invis = el, E1 => n1:n2:n3, N1:N2:N3, H { $restrictions = "1+2 ~ Z" }

The complete process e”e™ — v H, summed over all neutrino generations, contains both ZH
pair production (Higgs-strahlung) and WW~ — H fusion. The restrictions string selects the
Higgs-strahlung graph where the initial electrons combine to a Z boson. Here, the particles
in the process are consecutively numbered, starting with the initial particles. An alternative
for the same selection would be $restrictions = "3+4 ~ Z". Restrictions can be combined
using &&, for instance

5.4. PROCESSES 83

$restrictions = "1+2 ~ Z && 3 + 4 ~ Z"

which is redundant here, however.

The restriction keeps the full energy dependence in the intermediate propagator, so the
Breit-Wigner shape can be observed in distributions. This breaks gauge invariance, in partic-
ular if the intermediate state is off shell, so you should use the feature only if you know the
implications. For more details, cf. the Chap. 9 and the 0’Mega manual.

Other options

There are some further options that the 0’ Mega matrix-element generator can take. If desired,
any string of options that is contained in this variable

$omega_flags = string

will be copied verbatim to the 0’Mega call, after all other options.

One important application is the scheme of treating the width of unstable particles in the
t-channel. This is modified by the model: class of 0’Mega options.

It is well known that for some processes, e.g., single W production from photon-W fusion,
gauge invariance puts constraints on the treatment of the unstable-particle width. By default,
0’Mega puts a nonzero width in the s channel only. This correctly represents the resummed
Dyson series for the propagator, but it violates QED gauge invariance, although the effect is
only visible if the cuts permit the photon to be almost on-shell.

An alternative is

$omega_flags = "-model:fudged_width"

which puts zero width in the matrix element, so that gauge cancellations hold, and reinstates
the s-channel width in the appropriate places by an overall factor that multiplies the whole
matrix element.

Another possibility is

$omega_flags = "-model:constant_width"

which puts the width both in the s and in the ¢ channel everywhere.
Note that both options apply only to charged unstable particles, such as the W boson.

Multithreaded calculation of helicity sums via OpenMP

On multicore and / or multiprocessor systems, it is possible to speed up the calculation by
using multiple threads to perform the helicity sum in the matrix element calculation. As the
processing time used by WHIZARD is not used up solely in the matrix element, the speedup thus
achieved varies greatly depending on the process under consideration; while simple processes
without flavor sums do not profit significantly from this parallelization, the computation time
for processes involving flavor sums with four or more particles in the final state is typically
reduced by a factor between two and three when utilizing four parallel threads.

84 CHAPTER 5. DETAILED WHIZARD STEERING: SINDARIN

The parallization is implemented using OpenMP and requires WHIZARD to be compiled with
an OpenMP aware compiler and the appropiate compiler flags This is done in the configuration
step, cf. Sec. 2.3.

As with all OpenMP programs, the default number of threads used at runtime is up to the com-
piler runtime support and typically set to the number of independent hardware threads (cores /
processors / hyperthreads) available in the system. This default can be adjusted by setting the
OMP_NUM_THREADS environment variable prior to calling WHIZARD. Alternatively, the available
number of threads can be reset anytime by the SINDARIN parameter openmp num_threads. Note
however that the total number of threads that can be sensibly used is limited by the number
of nonvanishing helicity combinations.

5.4.4 Process components

It was mentioned above that processes with flavor sums (in the initial or final state or both) have
to be mass-degenerate (in most cases massless) in all particles that are summed over at a certain
position. This condition is necessary in order to use the same phase-space parameterization and
integration for the flavor-summed process. However, in many applications the user wants to
handle inclusive process definitions, e.g. by defining inclusive decays, inclusive SUSY samples
at hadron colliders (gluino pairs, squark pairs, gluino-squark associated production), or maybe
lepton-inclusive samples where the tau and muon mass should be kept at different values.
In WHIZARD from version v2.2.0 on, there is the possibility to define such inclusive process
containers. The infrastructure for this feature is realized via so-called process components:
processes are allowed to contain several process components. Those components need not be
provided by the same matrix element generator, e.g. internal matrix elements, 0’Mega matrix
elements, external matrix element (e.g. from a one-loop program, OLP) can be mixed. The very
same infrastructure can also be used for next-to-leading order (NLO) calculations, containing
the born with real emission, possible subtraction terms to make the several components infrared-
and collinear finite, as well as the virtual corrections.

Here, we want to discuss the use for inclusive particle samples. There are several options,
the simplest of which to add up different final states by just using the + operator in SINDARIN,

e.g.:
process multi_comp = el, E1 => (e2, E2) + (e3, E3) + (A, A)

The brackets are not only used for a better grouping of the expressions, they are not mandatory
for WHIZARD to interpret the sum correctly. When integrating, WHIZARD tells you that this a
process with three different components:

| Initializing integration for process multi_comp_1_pl:

| Process [scatteringl: ’multi_comp’

| Library name = ’default_lib’

| Process index = 1

| Process components:

| 1: ’multi_comp_il’: e-, e+ => m—, m+ [omega]
| 2: ’multi_comp_i2’: e-, e+ => t-, t+ [omegal]

5.4. PROCESSES 85

| 3: ’multi_comp_i3’: e-, e+ => A, A [omega]

A different phase-space setup is used for each different component. The integration for each
different component is performed separately, and displayed on screen. At the end, a sum of all
components is shown. All files that depend on the components are being attached an _i<n>
where <n> is the number of the process component that appears in the list above: the Fortran
code for the matrix element, the .phs file for the phase space parameterization, and the grid
files for the VAMP Monte-Carlo integration (or any other integration method). However, there
will be only one event file for the inclusive process, into which a mixture of events according to
the size of the individual process component cross section enter.

More options are to specify additive lists of particles. WHIZARD then expands the final states
according to tensor product algebra:

process multi_tensor = el, E1 => e2 + e3 + A, E2 + E3 + A

This gives the same three process components as above, but WHIZARD recognized that e.g.
e~et — u~ v is a vanishing process, hence the numbering is different:

| Process component ’multi_tensor_i2’: matrix element vanishes
ulti_ _i3’: ix vani

| Process component ’multi_tensor_i3’: matr element vanishes
| Process component ’multi_tensor_i4’: matrix element vanishes
| Process component ’multi_tensor_i6’: matrix element vanishes

rocess componen multi_tensor_i7’: matrix element vanishes
| P t multi_t 7’ t 1 t h

rocess componen multi_tensor_i8’: matrix element vanishes
| P t ’multi_t 8’ t 1 t h
| __
| Process [scattering]: ’multi_tensor’
| Library name = ’default_lib’
| Process index = 1
| Process components:
|
|
|

1: ’multi_tensor_il’: e-, e+ => m—, m+ [omegal
5: multi_tensor_ib5’: e-, e+t => t—, t+ [omegal
9: ’multi_tensor_i9’: e-, e+t => A, A [omega]

Identical copies of the same process that would be created by expanding the tensor product of
final states are eliminated and appear only once in the final sum of process components.
Naturally, inclusive process definitions are also available for decays:

process multi_dec = Wp => E2 + E3, n2 + n3

This yields:

| Process component ’multi_dec_i2’: matrix element vanishes
| Process component ’multi_dec_i3’: matrix element vanishes

| Process [decay]: ’multi_dec’

| Library name ’default_lib’
| Process index = 2

| Process components:
|
|

1: ’multi_dec_il’: W+ => mu+, numu [omega]
4: ’multi_dec_i4’: W+ => tau+, nutau [omega]

86 CHAPTER 5. DETAILED WHIZARD STEERING: SINDARIN

5.4.5 Compilation

Once processes have been set up, to make them available for integration they have to be
compiled. More precisely, the matrix-element generator 0’°Mega (and it works similarly if a
different matrix element method is chosen) is called to generate matrix element code, the
compiler is called to transform this Fortran code into object files, and the linker is called to
collect this in a dynamically loadable library. Finally, this library is linked to the program.
From version v2.2.0 of WHIZARD this is no longer done by system calls of the OS but steered
via process library Makefiles. Hence, the user can execute and manipulate those Makefiles in
order to manually intervene in the particular steps, if he/she wants to do so.

All this is done automatically when an integrate, unstable, or simulate command is
encountered for the first time. You may also force compilation explicitly by the command

compile

which performs all steps as listed above, including loading the generated library.

The Fortran part of the compilation will be done using the Fortran compiler specified
by the string variable $fc and the compiler flags specified as $fcflags. The default settings
are those that have been used for compiling WHIZARD itself during installation. For library
compatibility, you should stick to the compiler. The flags may be set differently. They are
applied in the compilation and loading steps, and they are processed by 1libtool, so 1ibtool-
specific flags can also be given.

WHIZARD has some precautions against unnecessary repetitions. Hence, when a compile
command is executed (explicitly, or implicitly by the first integration), the program checks
first whether the library is already loaded, and whether source code already exists for the
requested processes. If yes, this code is used and no calls to 0°Mega (or another matrix element
method) or to the compiler are issued. Otherwise, it will detect any modification to the process
configuration and regenerate the matrix element or recompile accordingly. Thus, a SINDARIN
script can be executed repeatedly without rebuilding everything from scratch, and you can
safely add more processes to a script in a subsequent run without having to worry about the
processes that have already been treated.

This default behavior can be changed. By setting

?rebuild_library = true

code will be re-generated and re-compiled even if WHIZARD would think that this is unncessary.
The same effect is achieved by calling WHIZARD with a command-line switch,

/home/user$ whizard --rebuild_library

There are further rebuild switches which are described below. If everything is to be rebuilt,
you can set a master switch ?rebuild or the command line option —-rebuild. The latter can
be abbreviated as a short command-line option:

/home/user$ whizard -r
Setting this switch is always a good idea when starting a new project, just in case some old

files clutter the working directory. When re-running the same script, possibly modified, the -r
switch should be omitted, so the existing files can be reused.

5.4. PROCESSES 87

5.4.6 Process libraries

Processes are collected in libraries. A script may use more than one library, although for most
applications a single library will probably be sufficient.

The default library is default_1ib. If you do not specify anything else, the processes you
compile will be collected by a driver file default _1ib.£90 which is compiled together with the
process code and combined as a libtool archive default 1ib.1la, which is dynamically linked
to the running WHIZARD process.

Once in a while, you work on several projects at once, and you didn’t care about opening
a new working directory for each. If the -r option is given, a new run will erase the existing
library, which may contain processes needed for the other project. You could omit -r, so all
processes will be collected in the same library (this does not hurt), but you may wish to cleanly
separate the projects. In that case, you should open a separate library for each project.

Again, there are two possibilities. You may start the script with the specification

library = "my_lhc_proc"

to open a library my_lhc_proc in place of the default library. Repeating the command with
different arguments, you may introduce several libraries in the script. The active library is
always the one specified last. It is possible to issue this command locally, so a particular
process goes into its own library.

Alternatively, you may call WHIZARD with the option

/home/user$ whizard --library=my_lhc_proc

If several libraries are open simultaneously, the compile command will compile all libraries
that the script has referenced so far. If this is not intended, you may give the command an
argument,

compile ("my_lhc_proc", "my_other_proc")

to compile only a specific subset.
The command

show (library)

will display the contents of the actually loaded library together with a status code which
indicates the status of the library and the processes within.

5.4.7 Stand-alone WHIZARD with precompiled processes

Once you have set up a process library, it is straightforward to make a special stand-alone
WHIZARD executable which will have this library preloaded on startup. This is a matter of
convenience, and it is also useful if you need a statically linked executable for reasons of profiling,
batch processing, etc.

For this task, there is a variant of the compile command:

compile as "my_whizard" ()

88 CHAPTER 5. DETAILED WHIZARD STEERING: SINDARIN

which produces an executable my_whizard. You can omit the library argument if you simply
want to include everything. (Note that this command will not load a library into the current
process, it is intended for creating a separate program that will be started independently.)

As an example, the script

process procl = el, E1 => el, E1l
process proc2 = el, El1 => e2, E2
process proc3 = el, E1 => e3, E3
compile as "whizard-leptons" ()

will make a new executable program whizard-leptons. This program behaves completely
identical to vanilla WHIZARD, except for the fact that the processes procl, proc2, and proc3
are available without configuring them or loading any library.

5.5 Beams

Before processes can be integrated and simulated, the program has to know about the collider
properties. They can be specified by the beams statement.

In the command script, it is irrelevant whether a beams statement comes before or after
process specification. The integrate or simulate commands will use the beams statement
that was issued last.

5.5.1 Beam setup

If the beams have no special properties, and the colliding particles are the incoming particles
in the process themselves, there is no need for a beams statement at all. You only must specify
the center-of-momentum energy of the collider by setting the value of /s, for instance

sqrts = 14 TeV
The beams statement comes into play if

e the beams have nontrivial structure, e.g., parton structure in hadron collision or photon
radiation in lepton collision, or

e the beams have non-standard properties: polarization, asymmetry, crossing angle.

Note that some of the abovementioned beam properties had not yet been reimplemented in the
WHIZARD2 release series. From version v2.2.0 on all options of the legacy series WHIZARD1 are
available again. From version v2.1 to version v2.2 of WHIZARD there has also been a change in
possible options to the beams statement: in the early versions of WHIZARD2 (v2.0/v2.1), local
options could be specified within the beam settings, e.g. beams = p, p sqrts = 14 TeV
=> pdf builtin. These possibility has been abandoned from version v2.2 on, and the beams
command does not allow for any optional arguments any more.

Hence, beam parameters can — with the exception of the specification of structure functions
— be specified only globally:

5.5. BEAMS 89

sqrts 14 TeV
beams = p, p => lhapdf

It does not make any difference whether the value of sqrts is set before or after the beams
statement, the last value found before an integrate or simulate is the relevant one. This in
particularly allows to specify the beam structure, and then after that perform a loop or scan
over beam energies, beam parameters, or structure function settings.

The beams statement also applies to particle decay processes, where there is only a single
beam. Here, it is usually redundant because no structure functions are possible, and the energy
is fixed to the decaying particle’s mass. However, it is needed for computing polarized decay,

e.g.

beams = Z
beams_pol_density = @(0)

where for a boson at rest, the polarization axis is defined to be the z axis.

Beam polarization is described in detail below in Sec. 5.6.

Note also that future versions of WHIZARD might give support for single-beam events, where
structure functions for single particles indeed do make sense.

In the following sections we list the available options for structure functions or spectra
inside WHIZARD and explain their usage. More about the physics of the implemented structure
functions can be found in Chap. 9.

5.5.2 Asymmetric beams and Crossing angles

WHIZARD not only allows symmetric beam collisions, but basically arbitrary collider setups. In
the case there are two different beam energies, the command

beams_momentum = <beam_moml>, <beam_mom2>

allows to specify the momentum (or as well energies for massless particles) for the beams. Note
that for scattering processes both values for the beams must be present. So the following to
setups for 14 TeV LHC proton-proton collisions are equivalent:

beams = p, p => pdf_builtin
sqrts = 14 TeV

and

beams = p, p => pdf_builtin

beams_momentum = 7 TeV, 7 TeV

Asymmetric setups can be set by using different values for the two beam momenta, e.g. in a
HERA setup:

beams = e, p => none, pdf_builtin beams_momentum = 27.5 GeV, 920 GeV

or for the BELLE experiment at the KEKB accelerator:

90 CHAPTER 5. DETAILED WHIZARD STEERING: SINDARIN

beams = el, El1 beams_momentum = 8 GeV, 3.5 GeV

WHIZARD lets you know about the beam structure and calculates for you that the center of mass
energy corresponds to 10.58 GeV:

| Beam structure: e-, e+

| momentum = 8.000000000000E+00, 3.500000000000E+00

| Beam data (collision):

| e- (mass = 5.1099700E-04 GeV)

| e+ (mass = 5.1099700E-04 GeV)

| sqrts = 1.058300530253E+01 GeV

| Beam structure: lab and c.m. frame differ

It is also possible to specify beams for decaying particles, where beams_momentum then only
has a single argument, e.g.:

process zee = Z => "e-", "e+"
beams = Z
beams_momentum = 500 GeV

simulate (zee) { n_events = 100 }

This would corresponds to a beam of Z bosons with a momentum of 500 GeV. Note, however,
that WHIZARD will always do the integration of the particle width in the particle’s rest frame,
while the moving beam is then only taken into account for the frame of reference for the
simulation.

Further options then simply having different beam energies describe a non-vanishing between
the two incoming beams. Such concepts are quite common e.g. for linear colliders to improve
the beam properties in the collimation region at the beam interaction points. Such crossing
angles can be specified in the beam setup, too, using the beams_theta command:

beams = el, E1
beams_momentum = 500 GeV, 500 GeV
beams_theta = 0, 10 degree

It is important that when a crossing angle is being specified, and the collision system conse-
quently never is the center-of-momentum system, the beam momenta have to explicitly set.
Besides a planar crossing angle, one is even able to rotate an azimuthal distance:

beams = el, E1

beams_momentum = 500 GeV, 500 GeV
beams_theta = 0, 10 degree
beams_phi = 0, 45 degree

5.5.3 LHAPDF

For incoming hadron beams, the beams statement specifies which structure functions are used.
The simplest example is the study of parton-parton scattering processes at a hadron-hadron
collider such as LHC or Tevatron. The LHAPDF structure function set is selected by a syntax
similar to the process setup, namely the example already shown above:

5.5. BEAMS 91

beams = p, p => lhapdf

Note that there are slight differences in using the LHAPDF release series 6 and the older Fortran
LHAPDF release series 5, at least concerning the naming conventions for the PDF sets *. The
above beams statement selects a default LHAPDF structure-function set for both proton beams
(which is the CT10 central set for LHAPDF 6, and cteq611.LHpdf central set for LHAPDF5). The
structure function will apply for all quarks, antiquarks, and the gluon as far as supported by
the particular LHAPDF set. Choosing a different set is done by adding the filename as a local
option to the 1hapdf keyword:

beams = p, p => lhapdf
$lhapdf_file = "MSTW2008l068cl"

for the actual LHAPDF 6 series, and

beams = p, p => lhapdf
$1lhapdf_file = "MSTW2008l068cl.LHgrid"

for LHAPDF5.Similarly, a member within the set is selected by the numeric variable 1hapdf _member
(for both release series of LHAPDF).

In some cases, different structure functions have to be chosen for the two beams. For
instance, we may look at ep collisions:

beams = "e-", p => none, lhapdf

Here, there is a list of two independent structure functions (each with its own option set, if
applicable) which applies to the two beams.

Another mixed case is py collisions, where the photon is to be resolved as a hadron. The
simple assignment

beams = p, gamma => lhapdf, lhapdf_photon

will be understood as follows: WHIZARD selects the appropriate default structure functions (here
we are using LHAPDF 5 as an example as the support of photon and pion PDFs in LHAPDF 6
has been dropped), cteq61l.LHpdf for the proton and GSG960.LHgrid for the photon. The
photon case has an additional integer-valued parameter lhapdf_photon_scheme. (There are
also pion structure functions available.) For modifying the default, you have to specify separate
structure functions

beams = p, gamma => lhapdf, lhapdf_photon

$lhapdf_file = ...

$1hapdf_photon_file = ...

Finally, the scattering of elementary photons on partons is described by

beams = p, gamma => lhapdf, none

4Until WHIZARD version 2.2.1 including, only the LHAPDF series 5 was supported, while from version 2.2.2 on
also the LHAPDF release series 6 has been supported.

92 CHAPTER 5. DETAILED WHIZARD STEERING: SINDARIN

Note that for LHAPDF version 5.7.1 or higher and for PDF sets which support it, photons
can be used as partons.

There is one more option for the LHAPDF PDF's, namely to specify the path where the LHAPDF
PDF sets reside: this is done with the string variable $1hapdf dir = "<path-to-lhapdf>".
Usually, it is not necessary to set this because WHIZARD detects this path via the 1hapdf-config
script during configuration, but in the case paths have been moved, or special files/special
locations are to be used, the user can specify this location explicitly.

5.5.4 Built-in PDFs

In addition to the possibility of linking against LHAPDF, WHIZARD comes with a couple of built-in
PDF's which are selected via the pdf _builtin keyword

beams = p, p => pdf_builtin

The default PDF set is CTEQGL, but other choices are also available by setting the string
variable $pdf_builtin_set to an appropiate value. E.g, modifying the above setup to

beams = p, p => pdf_builtin
$pdf_builtin_set = "mrst2004qedp"

would select the proton PDF from the MRST2004QED set. A list of all currently available
PDFs can be found in Table 5.2.

The two MRST2004QED sets also contain the photon as a parton, which can be used
in the same way as for LHAPDF from v5.7.1 on. Note, however, that there is no builtin
PDF that contains a photon structure function. There is a beams structure function specifier
pdf _builtin_photon, but at the moment this throws an error. It just has been implemented
for the case that in future versions of WHIZARD a photon structure function might be included.

Note that in general only the data sets for the central values of the different PDF's ship
with WHIZARD. Using the error sets is possible, i.e. it is supported in the syntax of the code,
but you have to download the corresponding data sets from the web pages of the PDF fitting
collaborations.

5.5.5 HOPPET b parton matching

When the HOPPET tool [(] for hadron-collider PDF structure functions and their manipulations
are correctly linked to WHIZARD, it can be used for advanced calculations and simulations of
hadron collider physics. Its main usage inside WHIZARD is for matching schemes between 4-flavor
and 5-flavor schemes in b-parton initiated processes at hadron colliders. Note that in versions
2.2.0 and 2.2.1 it only worked together with LHAPDF version 5, while with the LHAPDF version
6 interface from version 2.2.2 on it can be used also with the modern version of PDFs from
LHAPDF. Furthermore, from version 2.2.2, the HOPPET b parton matching also works for the
builtin PDF's.

It depends on the corresponding process and the energy scales involved whether it is a better
description to use the g — bb splitting from the DGLAP evolution inside the PDF and just

5.5. BEAMS 93

Tag H Name Notes \ References ‘
cteq6l CTEQ6L —]
cteq6l1l CTEQG6L1 —
cteq6d CTEQ6D —
cteqbm CTEQ6M —

’ mrst2004qgedp H MRST2004QED (proton) \ includes photon \ ‘

’ mrst2004qgedn

mstw20081lo MSTW2008LO —
mstw2008nlo MSTW2008NLO —
mstw2008nnlo | MSTW2008NNLO —

[
[
[
[
[
[
[
[
[
ct10 | CT10 — Hi
[
[
[
[
[
[
[
[
[
[

| MRST2004QED (neutron) | includes photon |

CJ12_max CJ12_max —
CJ12_mid CJ12_mid —
CJ12 min CJ12_min —

mmht201410 MMHT2014LO —
mmht2014nlo MMHT2014NLO —
mmht2014nnlo || MMHT2014NNLO —

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

CT14LL CT14LLO —
CT14L CT14LO —
CT14N CT1414NLO —
CT14NN CT14NNLO —

Table 5.2: All PDF sets available as builtin sets. The two MRST2004QED sets also contain a
photon.

94 CHAPTER 5. DETAILED WHIZARD STEERING: SINDARIN

take the b parton content of a PDF, e.g. in BSM Higgs production for large tan3: pp — H
with a partonic subprocess bb — H, or directly take the gluon PDFs and use pp — bbH with
a partonic subprocess gg — bbH. Elaborate schemes for a proper matching between the two
prescriptions have been developed and have been incorporated into the HOPPET interface.

Another prime example for using these matching schemes is single top production at hadron
colliders. Let us consider the following setup:

process procl = b, u =>t, d

process proc2 =u, b => t, d

process proc3 = g, u=>1t, d, B { $restrictions = "2+4 ~ W+" }
process procd = u, g =>t, d, B { $restrictions = "1+4 ~ W+" }
beams = p,p => pdf_builtin

sqrts = 14 TeV

7hoppet_b_matching = true

$sample = "single_top_matched"

luminosity = 1 / 1 fbarn
simulate (procl, proc2, proc3, proc4)

The first two processes are single top production from b PDFs, the last two processes con-
tain an explicit g — bb splitting (the restriction, cf. Sec. 5.4.3 has been placed in order to
single out the single top production signal process). PDFs are then chosen from the default
builtin PDF (which is CTEQ6L), and the HOPPET matching routines are switched on by the flag
?hoppet_b_matching.

5.5.6 Lepton Collider ISR structure functions

Initial state QED radiation off leptons is an important feature at all kinds of lepton colliders:
the radiative return to the Z resonance by ISR radiation was in fact the largest higher-order
effect for the SLC and LEP I colliders. The soft-collinear and soft photon radiation can indeed
be resummed/exponentiated to all orders in perturbation theory [7], while higher orders in
hard-collinear photons have to be explicitly calculated order by order [3,9]. WHIZARD has an
intrinsic implementation of the lepton ISR structure function that includes all orders of soft
and soft-collinear photons as well as up to the third order in hard-collinear photons. It can be
switched on by the following statement:

beams = el, E1 => isr

As the ISR structure function is a single-beam structure function, this expression is synonymous
for

beams = el, E1 => isr, isr

The ISR structure function can again be applied to only one of the two beams, e.g. in a
HERA-like setup:

beams = el, p => isr, pdf_builtin

5.5. BEAMS 95

Their are several options for the lepton-collider ISR structure function that are summarized
in the following:

’ Parameter \ Default \ Meaning ‘
isr_alpha 0/intrinsic | value of aggp for ISR
isr_order 3 max. order of hard-collinear photon emission
isr_mass 0/intrinsic | mass of the radiating lepton
isr_q max 0/+/s upper cutoff for ISR
?isr_recoil | false flag to switch on recoil/pr

The maximal order of the hard-collinear photon emission taken into account by WHIZARD
is set by the integer variable isr_order; the default is the maximally available order of three.
With the variable isr_alpha, the value of the QED coupling constant aggrp used in the ISR
structure function can be set. The default is taken from the active physics model. The mass
of the radiating lepton (in most cases the electron) is set by isr_mass; again the default is
taken from the active physics model. Furthermore, the upper integration border for the ISR
structure function which acts roughly as an upper hardness cutoff for the emitted photons,
can be set through isr_qmax; if not set, the collider energy (possibly after beamstrahlung,
cf. Sec. 5.5.7) v/s (or V/3) is taken. Finally, with the flag ?isr_recoil, the py recoil of the
emitting lepton against the photon radiation can be switched on; per default it is off. Note that
WHIZARD accounts for the exclusive effects of ISR radiation at the moment by a single (hard,
resolved) photon in the event; a more realistic treatment of exclusive ISR photons in simulation
is foreseen for a future version.

For more information on the underlying physics, see Chap. 9.

5.5.7 Lepton Collider Beamstrahlung

At linear lepton colliders, the macroscopic electromagnetic interaction of the bunches leads to a
distortion of the spectrum of the bunches that is important for an exact simulation of the beam
spectrum. There are several methods to account for these effects. The most important tool to
simulate classical beam-beam interactions in lepton-collider physics is GuineaPig++ [10,11,12].
A direct interface between this tool GuineaPig++ and WHIZARD had existed as an inofficial
add-on to the legacy branch WHIZARD1, but is no longer applicable in WHIZARD2. A WHIZARD-
internal interface is foreseen for the very near future, most probably within this v2.2 release.
Other options are to use parameterizations of the beam spectrum that have been included in the
package CIRCE1 [6] which has been interfaced to WHIZARD since version v1.20 and been included
in the WHIZARD2 release series. Another option is to generate a beam spectrum externally and
then read it in as an ASCII data file, cf. Sec. 5.5.8. More about this can be found in a dedicated
section on lepton collider spectra, Sec. 10.3.

In this section, we discuss the usage of beamstrahlung spectra by means of the circeone
package. The beamstrahlung spectra are true spectra, so they have to be applied to pairs of
beams, and an application to only one beam is meaningless. They are switched on by this
beams statement including structure functions:

beams = el, E1 => circel

96 CHAPTER 5. DETAILED WHIZARD STEERING: SINDARIN

It is important to note that the parameterization of the beamstrahlung spectra within CIRCE1
contain also processes where e — 7 conversions have been taking place, i.e. also hard processes
with one (or two) initial photons can be simulated with beamstrahlung switched on. In that
case, the explicit photon flags, ?circel photonl and ?circel _photon2, for the two beams
have to be properly set, e.g. (ordering in the final state does not play a role):

process procl = A, el => A, el
sqrts = 500 GeV

beams = el, E1 => circel
?circel_photonl = true
integrate (procl)

process proc2 = el, A => A, el
sqrts = 1000 GeV

beams = el, A => circel
?circel_photon2 = true

or

process procl = A, A => Wp, Wm
sqrts = 200 GeV

beams = el, E1 => circel
?circel_photonl = true
?circel_photon2 = true

In all cases (one or both beams with photon conversion) the beam spectrum applies to both
beams simultaneously.

This is an overview over all options and flags for the CIRCE1 setup for lepton collider
beamstrahlung:

] Parameter \ Default \ Meaning ‘
?circel_photonl false e — 7y conversion for beam 1
?circel_photon2 false e — 7y conversion for beam 2
circel_sqrts NG collider energy for the beam spectrum
7circel_generate true flag for the CIRCE1 generator mode
?circel map true flag to apply special phase-space mapping
circel mapping slope | 2. value of PS mapping exponent
circel _eps 1E-5 parameter for mapping of spectrum peak position
circel_ver 0 internal version of CIRCE1 package
circel_rev 0/most recent | internal revision of CIRCE1
$circel acc SBAND accelerator type
circel_chat 0 chattiness/verbosity of CIRCE1

The collider energy relevant for the beamstrahlung spectrum is set by circel_sqrts. As
a default, this is always the value of sqrts set in the SINDARIN script. However, sometimes
these values do not match, e.g. the user wants to simulate tth at sqrts = 550 GeV, but the
only available beam spectrum is for 500 GeV. In that case, circel_sqrts = 500 GeV has to
be set to use the closest possible available beam spectrum.

5.5. BEAMS 97

In general, in CIRCE1 there are two options to use the beam spectra for beamstrahlung:
intrinsic semi-analytic approximation formulae for the spectra, or a Monte-Carlo sampling of
the sampling. The second possibility always give a better description of the spectra, and is the
default for WHIZARD. It can, however, be switched off by setting the flag ?circel _generate to
false.

As the beamstrahlung spectra are sharply peaked at the collider energy, but still having
long tails, a mapping of the spectra for an efficient phase-space sampling is almost mandatory.
This is the default in WHIZARD, which can be changed by the flag ?circel map. Also, the
default exponent for the mapping can be changed from its default value 2. with the variable
circel mapping slope. It is important to efficiently sample the peak position of the spectrum;
the effective ratio of the peak to the whole sampling interval can be set by the parameter
circel_eps. The integer parameter circel chat sets the chattiness or verbosity of the CIRCE1
package, i.e. how many messages and warnings from the beamstrahlung generation/sampling
will be issued.

The actual internal version and revision of the CIRCE1 package are set by the two integer
parameters circel ver and circel rev. The default is in any case always the newest version
and revision, while older versions are still kept for backwards compatibility and regression
testing.

Finally, the geometry and design of the accelerator type is set with the string variable
$circel_acc: it contains the possible options for the old "SBAND" and "XBAND" setups, as well
as the "TESLA" and JLC/NLC SLAC design "JLCNLC". The setups for the most important
energies of the ILC as they are summarized in the ILC TDR [13,14,15,10] are available as ILC.
Beam spectra for the CLIC [18,19,20] linear collider are much more demanding to correctly
simulate (due to the drive beam concept; only the low-energy modes where the drive beam is
off can be simulated with the same setup as the abovementioned machines). Their setup will
be supported soon in one of the upcoming WHIZARD versions within the CIRCE2 package.

An example of how to generate beamstrahlung spectra with the help of the package CIRCE2
(that is also a part of WHIZARD) is this:

process eemm = el, E1 => e2, E2
sqrts = 500 GeV

beams = el, E1 => circe2
$circe2_file = "ilcb500.circe"
$circe2_design = "ILC"
7circe_polarized = false

Here, the ILC design is used for a beamstrahlung spectrum at 500 GeV nominal energy, with
polarization averaged (hence, the setting of polarization to false). A list of all available options
can be found in Sec. 5.5.13.

More technical details about the simulation of beamstrahlung spectra see the documented
source code of the CIRCE1 package, as well as Chap. 9. In the next section, we discuss how to
read in beam spectra from external files.

98 CHAPTER 5. DETAILED WHIZARD STEERING: SINDARIN

5.5.8 Beam events

As mentioned in the previous section, beamstrahlung is one of the crucial ingredients for a
realistic simulation of linear lepton colliders. Omne option is to take a pre-generated beam
spectrum for such a machine, and make it available for simulation within WHIZARD as an external
ASCII data file. Such files basically contain only pairs of energy fractions of the nominal collider
energy +/s (z values). In WHIZARD they can be used in simulation with the following beams
statement:

beams = el, E1 => beam_events
$beam_events_file = "<beam_spectrum_file>"

Note that beam spectra must always be pair spectra, i.e. they are automatically applied to
both beam simultaneously. Beam spectra via external files are expected to reside in the current
working directory. Alternatively, WHIZARD searches for them in the install directory of WHIZARD
in share/beam-sim. There you can find an example file, uniform spread_2.5%.dat for such a
beam spectrum. The only possible parameter that can be set is the flag ?beam_events_warn_eof
whose default is true. This triggers the issuing of a warning when the end of file of an external
beam spectrum file is reached. In such a case, WHIZARD starts to reuse the same file again from
the beginning. If the available data points in the beam events file are not big enough, this could
result in an insufficient sampling of the beam spectrum.

5.5.9 Gaussian beam-energy spread

Real beams have a small energy spread. If beamstrahlung is small, the spread may be approx-

imately described as Gaussian. As a replacement for the full simulation that underlies CIRCE2

spectra, it is possible to impose a Gaussian distributed beam energy, separately for each beam.
beams = el, E1 => gaussian

gaussian_spread_1 = 0.1\%
gaussian_spread_2 = 0.2\}%

(Note that the % sign means multiplication by 0.01, as it should.) The spread values are defined
as the o value of the Gaussian distribution, i.e., 2/3 of the events are within +1o for each beam,
respectively.

5.5.10 Equivalent photon approximation

The equivalent photon approximation (EPA) uses an on-shell approximation for the e — ey
collinear splitting to allow the simulation of photon-induced backgrounds in lepton collider
physics. The original concept is that of the Weizsidcker-Williams approximation [21,22,23].
This is a single-beam structure function that can be applied to both beams, or also to one
beam only. Examples are:

beams = el, E1 => epa

or for a single beam:

5.5. BEAMS 99

beams = el, p => epa, pdf_builtin

The last process allows the reaction of (quasi-) on-shell photons with protons.

In the following, we collect the parameters and flags that can be adjusted when using the
EPA inside WHIZARD:

| Parameter | Default | Meaning |
epa_alpha 0/intrinsic | value of aggp for EPA
epa_x.min 0. soft photon cutoff in # (mandatory)
epa_q-min 0. minimal ¥ momentum transfer
epa_mass 0/intrinsic | mass of the radiating fermion (mandatory)
epa_e_max 0/+/s upper cutoff for EPA
7epa_recoil | false flag to switch on recoil/pr

The adjustable parameters are partially similar to the parameters in the QED initial-state
radiation (ISR), cf. Sec. 5.5.6: the parameter epa_alpha sets the value of the electromagnetic
coupling constant, agrp used in the EPA structure function. If not set, this is taken from the
value inside the active physics model. The same is true for the mass of the particle that radiates
the photon of the hard interaction, which can be reset by the user with the variable epa mass.
There are two dimensionful scale parameters, the minimal momentum transfer to the photon,
epa_q-min, which must not be zero, and the upper energy cutoff for the EPA structure function,
epa_e max. The default for the latter value is the collider energy, /s, or the energy reduced by
another structure function like e.g. beamstrahlung, v/3. Furthermore, there is a soft-photon
regulator for the splitting function in = space, epa_x min, which also has to be explicitly set
different from zero. Hence, a minimal viable scenario that will be accepted by WHIZARD looks
like this:

beams = el, E1 => epa
epa_q_min = 5 GeV
epa_x_min = 0.01

Finally, like the ISR case in Sec. 5.5.6, there is a flag to consider the recoil of the photon
against the radiating electron by setting ?epa_recoil to true (default: false).

Though in principle processes like et e~ — e*e™ v where the two photons have been created
almost collinearly and then initiate a hard process could be described by exact matrix elements
and exact kinematics. However, the numerical stability in the very far collinear kinematics is
rather challenging, such that the use of the EPA is very often an acceptable trade-off between
quality of the description on the one hand and numerical stability and speed on the other hand.

In the case, the EPA is set after a second structure function like a hadron collider PDF,
there is a flavor summation over the quark constituents inside the proton, which are then the
radiating fermions for the EPA. Here, the masses of all fermions have to be identical.

More about the physics of the equivalent photon approximation can be found in Chap. 9.

100 CHAPTER 5. DETAILED WHIZARD STEERING: SINDARIN

5.5.11 Effective W approximation

An approach similar to the equivalent photon approximation (EPA) discussed in the previous
section Sec. 5.5.10, is the usage of a collinear splitting function for the radiation of massive
electroweak vector bosons W /Z, the effective W approximation (EWA). It has been developed
for the description of high-energy weak vector-boson fusion and scattering processes at hadron
colliders, particularly the Superconducting Super-Collider (SSC). This was at a time when the
simulation of 2 — 4 processes war still very challenging and 2 — 6 processes almost impossible,
such that this approximation was the only viable solution for the simulation of processes like
pp — 77V V and subsequent decays of the bosons V =W, Z.

Unlike the EPA, the EWA is much more involved as the structure functions do depend on
the isospin of the radiating fermions, and are also different for transversal and longitudinal
polarizations. Also, a truely collinear kinematics is never possible due to the finite W and
Z boson masses, which start becoming more and more negligible for energies larger than the
nominal LHC energy of 14 TeV.

Though i