
WHIZARD -Tutorial

MC4BSM 2014
Daejeon, Korea

May 2014

1 How to use this tutorial

WHIZARD is a program system designed for the efficient calculation of multi-particle scattering
cross sections and simulated event samples. The project web page can be reached via the URL

http://whizard.hepforge.org/

This tutorial will walk you through the basic usage of WHIZARD and take you to the point where
you can generate event samples which match those which you will be analyzing later. Before
you start working on the tutorial, take a little time to familiarize yourself with the virtual
machine environment.

Whenever you encounter a line starting with a dollar sign $, the remainder is a command
which you should run in the shell. Boxed frames filled with code are SINDARIN scripts (WHIZARDs
flavor of input files) which you should copy into your favorite editor and run through WHIZARD.
Typewrite-style paragraphs are sample WHIZARD output.

At several points, you will encounter sections labelled “Self-Study”. Those are suggestions
for modifications of the examples presented in this tutorial which you might want to try out
in order to get a deeper understanding of how the program works. Feel free try out your own
ideas as well. You can find a copy of the WHIZARD manual on the virtual machine in

Desktop/manual.pdf

and several examples in

/usr/local/share/whizard/examples

1

http://whizard.hepforge.org/

As WHIZARD produces a number of files during its run, you may want to use different directories
for different processes.

Remarks on Installation

The VM provides you with a complete environment, so for the purpose of this tutorial, you
don’t have to worry about program installation. However, for further studies, you may wish to
install WHIZARD yourself, outside the VM. You will find a detailed description of the options,
necessary steps and requirements in the manual.

At this place, we just list a few important issues: (i) WHIZARD can be installed centrally
on a machine, or in a user directory. In both cases, your work projects remain separate from
the installation. (ii) WHIZARD’s programming languages are modern Fortran and Objective

Caml. For both languages, there are free compilers that are available for all relevant platforms,
packaged for standard OS distributions. In particular, the free gfortran compiler will work if
you have at least version 4.7, preferably 4.8 or higher.1 (iii) WHIZARD can optionally make use of
external packages, which should be installed if you want their functionality. Notable examples
are LHAPDF, StdHEP, or HepMC.

As a shortcut, there is also the instant-whizard script which automatically downloads,
compiles, and installs are necessary software.

2 First steps

In this first part of the tutorial, you will learn how to invoke WHIZARD and get a short overview
over its input language SINDARIN. No physics in this section.

2.1 Invoking the program

After installation (it’s already installed in the VM), WHIZARD is available as a standalone pro-
gram which can be executed by calling the binary:

$ whizard

The program now starts, prints its banner and then waits for input on stdin. For now, we can
terminate the run by pressing ctrl-d in order to send an end-of-file. Of course, the usual way to
run WHIZARD is not to read from stdin but to supply an input file as an argument when calling
the program.

After WHIZARD has terminated, inspect the directory in which you ran the program. You
will find that it has left you a file called whizard.log. This file contains a copy of most of the
output also sent to stdout during the run.

1Note that there are Fortran compilers that don’t work with WHIZARD, yet.

2

2.2 Talking to the WHIZARD: SINDARIN and “Hello, World!”

WHIZARD expects input in its own scripting language called SINDARIN. Therefore, start out
by writing the SINDARIN flavor of the usual “Hello, World!” program. Create a file called
hello world.sin containing

printf "Hello, World"

and run it through WHIZARD via

$ whizard hello_world.sin

2.3 Variables

WHIZARD predefines many variables and also allows you to define your own. As with most
languages, SINDARINs variables come in different types. Among others, there are integer,
real, complex, string and logical variables, the last two of which are prefixed with $ and ?

respectively. In order to get a list of the predefined variables, augment your script by another
line such that it reads

printf "Hello, World"

show ()

and rerun it. show is the second WHIZARD command we encounter. Used without argument,
it prints a list of all defined variables, but variants such as show (model) or show (mW, mZ,

mtop) are possible. You can easily get a scrollable version of the same list via

$ echo ’show ()’ | whizard | less

(a nice trick if you are unsure how a variable is called or want to find out the defaults). Take
some time to inspect the result. Most variables act as options controlling the behavior of
WHIZARD commands, e.g. $restrictions or ?alpha s is fixed. Further down the list, you
will find variables of real type like GF and mZ which repesent parameters of the currently active
model and which you can modifiy in order to change the model values. Note that some of those
are marked by an asterisk *: this tells you that they are automatically calculated and cannot
be changed by assignment. At the bottom of the variable list you’ll find a long list of more
exotic definitions like

down* = PDG(1)

dbar* = PDG(-1)

3

Those are “PDG array” type variables which bind one or more PDG numbers to a name. They
are defined in the model files and are used to refer to particles when defining processes and
observables.

In order to see some of the things you can do with variables, try another SINDARIN script
(or augment your existing one)

real conv = 180 / pi

printf "Weinberg angle, default value [degrees]: %f" (asin (sw) * conv)

mW = 70 GeV

printf "Weinberg angle, new value [degrees]: %f" (asin (sw) * conv)

Note that the line breaks are not mandatory; SINDARIN’s syntax is not line based. You
won’t see characters for terminating or separating statements, either. Statements just follow
each other.

The output should look like

[user variable] conv = 5.729577951308E+01

Weinberg angle, default value [degrees]: 28.127416

SM.mW = 7.000000000000E+01

Weinberg angle, new value [degrees]: 39.857282

What happened?

1. We defined a new real variable called conv and assigned it the conversion factor from
radians to degrees. Evidently, WHIZARD has some predefined constants like pi. Note you
must explicitly declare the type when you use a new variable for the first time: integer,
real, complex, string or logical. Every assignment is reflected in the program output,
making it easy to find out what happened after the run.

2. We used printf to print the value of the Weinberg angle. The formats of the values are
defined in the message string, and the actual values are given as a comma separated list
in parenthesis. WHIZARD accepts most of the format specifiers also used in C and other
languages. We also used a function, asin, to get the value of the angle.

3. A new value was assigned to the W mass. Note that although their use is not mandatory,
WHIZARD supports and encourages the use of units where appropiate. You can find a list of
them in the manual; the default energy unit is GeV. The output SM.mW = ... confirms
that we indeed modified a model input parameter.

4. The next printf statement reflects the fact that the Weinberg angle is not a free quantity
but does depend on the W mass. The corresponding relation is defined in the model file.

4

Incidentally, the variable conv that we defined above is already available in form of a unit.
You may simplify the SINDARIN code above to

printf "Weinberg angle, default value [degrees]: %f" (asin (sw) / 1 degree)

mW = 70 GeV

printf "Weinberg angle, new value [degrees]: %f" (asin (sw) / 1 degree)

2.4 Other SINDARIN constructs

Although we will not cover them in this tutorial, SINDARIN has several additional constructs
common to programming languages:

• Loops. SINDARIN supports scanning over variables, a feature which can be exploited for
parameter scans.

• Conditionals. The usual if...then...else construct exists and can be used for code
blocks and in expressions. The latter can be very useful in defining observables for
histogramming (more later).

• sprintf. This works similarly to printf, but returns a string. Allows e.g. for automatic
generation of filenames for output in a loop.

All of these features are documented in the manual.

2.5 Self-Study

Play a bit around with variable assignments and expressions, and try to find out which functions
WHIZARD supports for use in expressions and how common operators look like and work. If you
like, look up loops and conditionals in the manual and try them out.

3 A first stab at physics: e+e → W+W

In this section we will use the trivial example of e+e → W+W to see how the basic function-
ality of a tree level Monte Carlo works in WHIZARD: process definition, integration and event
generation.

3.1 Process definition and integration

Create a SINDARIN script with the following content

5

! Define the process

process proc = "e+", "e-" => "W+", "W-"

! Compile the process into a process library

compile

! Set the process energy

sqrts = 500 GeV

! Integrate the process

integrate (proc)

(note the appearance of comments) and run it through WHIZARD. You will be greeted by a
lot of output. What happened?

3.1.1 Process definition and code generation

The first line process proc = ... defines our W pair production process and assigns the
name proc with which we will refer to it in the remainder of the script. Note the appearance
of quotation marks—those are needed to prevent WHIZARD from interpreting the + and - as
operators. However, most WHIZARD models define several aliases for each particle. Instead of
e+, e-, W+ and W- one could also use E1, e1, Wp and Wm. An exhaustive list of definitions can be
found in the model file

/usr/local/share/whizard/models/SM.mdl

Matrix elements for WHIZARD are generated automatically by a separate matrix element gen-
erator called O’MEGA. For every process, O’MEGA generates a piece of Fortran code which is
dynamically compiled and loaded by WHIZARD. The compile statement in the second line trig-
gers the code generation and the compilation into a process library, which is then loaded.2

3.1.2 Phase space parameterization and integration

The third statement in the script, sqrts = ..., sets the center of mass energy of the process
and is then followed by the final integrate statement, which takes the name(s) of the pro-
cess(es) to be integrated in parenthesis, separated by commata. The first interesting bit of
output from the integrate commend is

| Phase space: generating configuration ...

2 The explicit invocation of compile is not mandatory. If you omit it, the program will automatically generate
the matrix element upon integration or simulation.

6

| Phase space: ... success.

| Phase space: writing configuration file ’proc_i1.phs’

| Phase space: 3 channels, 2 dimensions

For efficient integration of multileg cross sections, WHIZARD employs a multichannel Monte
Carlo integrator (VAMP). Each channel corresponds to a separate phase space parametrization,
automatically tailored to map out a class of singularities, combined with a Monte Carlo grid
and a weight. During adaption, grids and weights are iteratively optimized. What does the
above output signify? WHIZARD starts out looking for an existing phase space parameterization
for the process and, upon discovering that none exists, generates a new one. For our trivial
example, this step is instantaneous, but for more complicated (multijet) processes, it may take
a finite amount of time.

After the channels and grids have been set up, WHIZARD starts the adaption and integration
process. The output from this process reads

| Starting integration for process ’proc’

| Integrate: iterations not specified, using default

| Integrator: 2 chains, 3 channels, 2 dimensions

| Integrator: Using VAMP channel equivalences

| Integrator: 1000 initial calls, 20 bins, stratified = T

| Integrator: VAMP

|===|

| It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] |

|===|

1 864 7.2138993E+03 5.97E+01 0.83 0.24* 26.15

2 776 7.2042129E+03 3.62E+01 0.50 0.14* 44.66

3 776 7.2335102E+03 4.02E+01 0.56 0.15 44.11

|---|

3 2416 7.2167572E+03 2.45E+01 0.34 0.17 44.11 0.15 3

|---|

4 9984 7.1964029E+03 4.65E+00 0.06 0.06* 45.49

5 9984 7.1954733E+03 4.72E+00 0.07 0.07 45.49

6 9984 7.1910422E+03 4.79E+00 0.07 0.07 45.46

|---|

6 29952 7.1943588E+03 2.73E+00 0.04 0.07 45.46 0.36 3

|===|

| Time estimate for generating 10000 events: 0d:00h:00m:02s

Each line corresponds to an adaption run in which the phase space is sampled and the grids
and weights of the different channels are adapted. The whole adaption is separated into two
batches of iterations, and only the results of the second batch are actually used to compute
the integral (the first batch is also different in that only the grids are adapted and the weights
are kept fixed). The asterisk denotes the “current best grid”. During event generation, the
last one of those is used to sample the phase space. The default choices for the number of

7

iterations and samples (“calls”) depend on the process under consideration and are usually
sufficient to achieve a stable integration result. However, there are situations in which more
control is desireable. This can be achieved by the iterations option. In order to see how it
works, modify the example in the following way

integrate (proc) { iterations = 3:1000:"gw", 5:3000:"w", 5:10000 }

(enclosing the statement in curly braces localizes its effect to this specific integrate com-
mand) and observe how the output changes. The flags “g”, “w” or “gw” tells WHIZARD to adapt
the grid, the weight or both of them at each iteration. If no flag is set, both the grid and the
weight will be adjusted. The exception is the final integration pass, in which grid and weights
are frozen, unless specified otherwise.

3.1.3 Event generation and analysis

In order to see how event generation and analysis works in WHIZARD modify the previous
example by appending the lines

! Define a histogram for the angular distribution

histogram angular_distribution (-1, 1) {

n_bins = 30

$title = "Angular distribution"

$x_label = "$\cos\theta_{W^-}$"

}

analysis = record angular_distribution (eval cos (Theta) ["W-"])

! Generate 1 fb-1 of events

simulate (proc) {

luminosity = 1 / 1 fbarn

}

! Compile the analysis to a file

compile_analysis

The first statement defines a histogram; the three numbers in parenthesis denote the range
and the bin width. Since we are going to histogram the cosine of the polar angle, our histogram
goes from −1 to 1, and we choose it to have 30 bins. The second statement analysis =

... assigns an analysis expression. This will be executed for every event generated in the
simulation. As this expression introduces a lot of new stuff, lets break it up:

8

["W-"] defines a “subevent”. A subevent is a set of momenta associated with final state
particles (or combinations of them). The subevent defined above is trivial in that it
consists only of the W− momentum. We could also have built a subevent with two
separate momenta via ["W+":"W-"] (which would have made no sense in this context) or
have added up the momenta of both W bosons by writing [collect["W+":"W-"]]. There
are many ways to manipulate subevents which allow to build quite elaborate observables
that can be used in the context of cuts, scale and analysis expressions. You can find a
list of them in the manual.

eval is a function which takes an expression and evaluates it in the context of a subevent.

Theta is an observable. An observable is a quantity which maps one or two four momenta to a
number. Observables may only appear in the context of an eval function (or in the all

and any functions which will be discussed later). In this example, we have used Theta as
a unary observable, thus calculating the polar angle, but we could also have evaluated it
on a pair of subevents (this is different from a single subevent with multiple momenta!) by
doing eval cos (Theta) ["W+","W-"]. In this context, Theta would have evaluated to
the angle enclosed by the two W momenta. You can find a list of all available observables
in the manual.

record takes a number and records it in a histogram. It is in fact a function returning a
logical value, which allows to chain several record calls via the and operator in order
to fill several histograms at once 3 . The result tells whether the observable lies in the
histogram range.

So, in a nutshell, this definition will cause WHIZARD to calculate cos θW− for every event and bin
the values in the previously defined histogram.

The actual simulation is triggered by the simulate command, with which we request the
program to simulate 1 fb−1 of unweighted events. We could also have used n events = 10000

instead of luminosity in order to set the number of generated events directly. Finally, after
performing the simulation, the compile analysis command tells WHIZARD to write the analysis
to disk and create a PDF containing any histograms and plots. The result can be found in
whizard analysis.pdf. Inspect it with a PDF viewer (the virtual machine provides evince

for this purpose). Also, observe how we used LATEX when labelling the histogram. This works
because WHIZARD in fact uses LATEX to generate the graphical analysis, so you can use whatever
TEXish expressions you like.

During simulation, events are written to disk in a WHIZARD-specific format which contains
all available information for each event and can be read back later (see the next self-study). We
will later see how to instruct the program to provide additional event files in different formats.

3.2 More SINDARIN: options and global vs. local variables

Another new thing we encountered in the above SINDARIN snippets are command options. Most
of these are just ordinary variables, the values of which influence the operation of WHIZARD. The

3Obviously, WHIZARD does not short-circuit the and.

9

only exception was iterations which does not correspond to a variable as it does not map to
any of the available variable types. In addition, apart from sqrts, all of these variables were set
inside {...} behind commands. The reason is simple: the effect of statements in curly brackets
after commands is localized to the execution of this command—any changes are forgotten after
the command has been executed. For example, we could also have moved $title = ... out
of the brackets and put it before the histogram = This would have worked just as well,
but we would have affected all subsequently defined histograms. Similarly, we could have put
sqrts = ... into curly brackets after integrate, but simulate would have complained about
a missing value for sqrts in this case.

3.3 Self-Study

WHIZARD has a checksumming and caching mechanism which tries to reuse as much information
as it can from previous runs. Rerun the above example and change the setup and parameters
a bit in order to find out how it works. There are also flags which control the caching; try to
locate them in the show output and see how they work. There are command line options which
do the same thing; check out

$ whizard --help

and try them.

3.4 Event Files

You may have noticed that so far, all data stayed within WHIZARD, and only final results were
printed on screen or ended up in a PDF document. However, for an actual analysis you would
like to see the events themselves.

Actually, WHIZARD did generate an event file. You can recognize it by the extension .evx.
This file is written in a private binary format for internal use, so you can’t make much use
of it outside WHIZARD. If you want to have events in a readable format (by a human or by a
computer), you can generate it. For instance, this simulation command converts the events in
LHE (Les Houches Event) format:

! Generate 1 fb-1 of events and write to file

simulate (proc) {

n_events = 10

$sample = "my_events"

sample_format = lhef

}

Such event files can be fed into external programs. If quarks and gluons are present (later
we’ll see how to produce complete events directly), you may wish to run an external shower
and hadronization program over this file, before the events enter analysis.

10

3.5 Beam Properties

In our first example, the incoming particles had a fixed, well-defined energy. Since reality is
different, we should mention how to come to a more detailed beam description.

Let us look first at ILC physics. (If you are interested in LHC only, you may skip to
the next section.) In e+e− collisions the initial electrons can radiate a significant fraction of
their initial energy before the collision. This is summarized in the ISR (initial-state radiation)
approximation, which you can turn on by a SINDARIN command, just before integrate.

beams = "e+", "e-" => isr

This should slightly modify the final results.
At a Linear Collider, you must also consider the beamstrahlung effect which also reduces

the available energy, before the ISR effect comes into play. This spectrum can become rather
complex, so WHIZARD relies on external code. The simplest approach uses the CIRCE 1 beam-
events generator:

beams = "e+", "e-" => circe1 => isr

Of course, this approach is available only for specific beam setups, for which the beam
parameters are known in some detail.

3.6 Self-Study

Look up the options for ILC beam description in the manual and try to apply them to the
example. For instance, you may polarize the beam particles and watch the cross section change.

4 Hadron Collider: pp initial state

Simple W pair production at a hadron collider is used as example to show how flavor sums
and structure functions work. We will also add an additional jet to the final state and use the
opportunity to show how cuts work.

4.1 Basic setup

In order to change our W pair production example to a proton-proton initial state and add a
convolution with the parton distributions, change the above example such that the first few
lines read

11

! Define the process

alias pr = u:ubar:d:dbar:g

process proc = pr, pr => "W+", "W-"

! Compile the process into a process library

compile

! Setup the beams

sqrts = 8 TeV

beams = p, p => pdf_builtin

What changed?

1. We have to accomodate for the composite intial state at a hadron collider. To this end,
final and initial state particles in WHIZARD can be defined as flavor products of particles,
seperated by colons. In order to avoid repetition, an alias can be assigned to a flavor
product, in this case pr4. In fact, assigning an alias creates a variable of the PDG(...)

type which we already encountered in the variable list.

2. The cross section has to be convoluted with a structure function. This is accomplished
by providing a beam setup via beams = . The equality sign is followed by a pair of
particle identifiers p, p which identify the hadronic initial states as protons, followed by
the declaration of the requested structure function => pdf builtin. In this case we are
using the PDFs built into WHIZARD, the default being CTEQ6L. If WHIZARD was built with
LHAPDF support, => lhapdf would be another choice which we will use later. Options
for the choice of PDF set exist and are documented in the manual, and other structure
functions are available for adding e.g. initial state photon radiation or simulating the
beamstrahlung of a linear collider. Also, structure functions can be chained.

The changes in the resulting program output are not overly exciting, the most noteworthy being
the summary of the structure function setup.

4.2 Adding a jet and defining cuts

We now will add an additional jet to the final state of our W pair production example. The
corresponding leading order matrix element has a divergence when the jet momentum becomes
soft or collinear to the beam axis, and we therefore need a cut to remove it. Modify the first
half of the example to read

4 The more fitting identifier p is already taken by the actual proton, represented by its proper MCID.

12

! Define the process

alias pr = u:ubar:d:dbar:g

alias j = u:ubar:d:dbar:g

process proc = pr, pr => "W+", "W-", j

! Compile the process into a process library

compile

! Set the process energy

sqrts = 8 TeV

beams = p, p => pdf_builtin

cuts = all Pt > 5 GeV [j]

and all 200 GeV < M < 2 TeV [collect ["W+":"W-":j]]

! Integrate the process

integrate (proc)

Apart from the additional jet in the final state, the only other new element is the introduc-
tion of two cuts

pT,jet > 5 GeV, 200 GeV ≤
√
ŝ ≤ 2 TeV

The first cut keeps the jet momentum away from the dangerous soft and collinear regions,
the second cut is for demonstration purposes. Here is a detailed explanation:

• [j] and [collect ["W+":"W-":j]] are subevents. The first consists of the momenta of
all final state particles which match the j alias (only a single momentum in our case),
and the second contains the sum of all final state momenta.

• The all function takes a logical expression, evaluates it for all momenta in a subevent
and concatenates the results with a logical and—a phasespace point passes the cut only
if all momenta in the subevent satisfy the condition. On the other hand the function any

accepts a phasespace point if at least one condition is true.

• The observables Pt and M evaluate to the transverse energy and the invariant mass.

• Both cuts are concatenated with a logical and.

Note that it is possible to define additional cuts which are only applied to the generated
events—those are set up with selection = ... instead of cuts =

The output of the run does not deliver new insights.

13

4.3 Self-Study

Take a look at the generated angular distribution and compare it the leptonic case—where does
the difference come from? If you like, try to extend the example to include the decay of the
W bosons by using the inclusive matrix element for pp→ e+νeµ

−ν̄µ.

References

[1] W. Kilian, T. Ohl and J. Reuter, Eur. Phys. J. C 71 (2011) 1742 [arXiv:0708.4233].

14

	How to use this tutorial
	First steps
	Invoking the program
	Talking to the WHIZARD: SINDARIN and ``Hello, World!''
	Variables
	Other SINDARIN constructs
	Self-Study

	A first stab at physics: e+eâ‹™W+Wâ‹™
	Process definition and integration
	Process definition and code generation
	Phase space parameterization and integration
	Event generation and analysis

	More SINDARIN: options and global vs. local variables
	Self-Study
	Event Files
	Beam Properties
	Self-Study

	Hadron Collider: pp initial state
	Basic setup
	Adding a jet and defining cuts
	Self-Study

